
Documentation 3.2

ZABBIX

10.04.2025

Contents

Zabbix Manual 4
Copyright notice . 4

1. Introduction . 4
1 Manual structure . 4
2 What is Zabbix . 5
3 Zabbix features . 5
4 Zabbix overview . 6
5 What’s new in Zabbix 3.2.0 . 7
6 What’s new in Zabbix 3.2.1 . 16
7 What’s new in Zabbix 3.2.2 . 17
8 What’s new in Zabbix 3.2.3 . 18
9 What’s new in Zabbix 3.2.4 . 18
10 What’s new in Zabbix 3.2.5 . 19
11 What’s new in Zabbix 3.2.6 . 19
12 What’s new in Zabbix 3.2.7 . 19
13 What’s new in Zabbix 3.2.8 . 20
14 What’s new in Zabbix 3.2.9 . 20
15 What’s new in Zabbix 3.2.10 . 20
16 What’s new in Zabbix 3.2.11 . 21

2. Zabbix concepts . 21
2 Server . 21
2. Definitions . 23
3 Agent . 25
4 Proxy . 28
5 Java gateway . 29
6 Sender . 32
7 Get . 32

3. Installation . 33
1 Getting Zabbix . 33
2 Requirements . 33
3 Installation from sources . 40
4 Installation from packages . 48
5 Installation from containers . 55
6 Upgrade procedure using sources . 60
7 Upgrade procedure using packages . 62
8 Known issues . 65
9 Template changes . 66
10 Upgrade notes for 3.2.0 . 67
11 Upgrade notes for 3.2.1 . 69
12 Upgrade notes for 3.2.2 . 69
13 Upgrade notes for 3.2.3 . 69
14 Upgrade notes for 3.2.4 . 69
15 Upgrade notes for 3.2.5 . 70
16 Upgrade notes for 3.2.6 . 70
17 Upgrade notes for 3.2.7 . 70
18 Upgrade notes for 3.2.8 . 70
19 Upgrade notes for 3.2.9 . 70
20 Upgrade notes for 3.2.10 . 71
21 Upgrade notes for 3.2.11 . 71

4. Quickstart . 71

1

1 Login and configuring user . 71
2 New host . 75
3 New item . 77
4 New trigger . 80
5 Receiving problem notification . 82
6 New template . 86

5. Zabbix appliance . 89
6. Configuration . 93

1 Hosts and host groups . 98
2 Items . 106
3 Triggers . 243
4 Events . 258
5 Event correlation . 260
6 Visualisation . 265
7 Templates . 307
8 Notifications upon events . 307
9 Macros . 343
10 Users and user groups . 349

7. IT services . 354
8. Web monitoring . 357

1 Web monitoring items . 366
2 Real life scenario . 368

9. Virtual machine monitoring . 377
Virtual machine discovery key fields . 380

10. Maintenance . 382
11. Regular expressions . 386
12. Event acknowledgment . 388
13. Configuration export/import . 389

Groups . 391
Hosts . 391

14. Discovery . 399
1 Network discovery . 399
2 Active agent auto-registration . 406
3 Low-level discovery . 408

15. Distributed monitoring . 433
1 Proxies . 433

16. Encryption . 436
1 Using certificates . 439
2 Using pre-shared keys . 445
3 Troubleshooting . 447

17. Web interface . 449
1 Frontend sections . 449
2 User profile . 514
3 Global search . 519
4 Frontend maintenance mode . 521
5 Page parameters . 521
6 Definitions . 522
7 Creating your own theme . 523
8 Debug mode . 524

18. API . 525
Method reference . 530
Appendix 1. Reference commentary . 888
Appendix 2. Changes from 3.0 to 3.2 . 890
Zabbix API changes in 3.2 . 891

19. Appendixes . 893
1 Frequently asked questions / Troubleshooting . 893
2 Installation . 894
3 Daemon configuration . 897
4 Protocols . 932
5 Items . 946
6 Triggers . 964
7 Macros . 983
8 Setting time periods . 995

2

9 Command execution . 995
10 Recipes for monitoring . 996
11 Performance tuning . 997
12 Version compatibility . 1000
13 Database error handling . 1000
14 Zabbix sender dynamic link library for Windows . 1000

Zabbix manpages 1001
zabbix_agentd . 1001

NAME . 1001
SYNOPSIS . 1001
DESCRIPTION . 1001
OPTIONS . 1001
FILES . 1002
SEE ALSO . 1002
AUTHOR . 1002
Index . 1003

zabbix_get . 1003
NAME . 1003
SYNOPSIS . 1003
DESCRIPTION . 1003
OPTIONS . 1003
EXAMPLES . 1004
SEE ALSO . 1004
AUTHOR . 1004
Index . 1004

zabbix_proxy . 1005
NAME . 1005
SYNOPSIS . 1005
DESCRIPTION . 1005
OPTIONS . 1005
FILES . 1006
SEE ALSO . 1006
AUTHOR . 1006
Index . 1006

zabbix_sender . 1006
NAME . 1006
SYNOPSIS . 1007
DESCRIPTION . 1007
OPTIONS . 1007
EXIT STATUS . 1009
EXAMPLES . 1009
SEE ALSO . 1010
AUTHOR . 1010
Index . 1010

zabbix_server . 1010
NAME . 1010
SYNOPSIS . 1010
DESCRIPTION . 1010
OPTIONS . 1011
FILES . 1011
SEE ALSO . 1011
AUTHOR . 1011
Index . 1012

3

Zabbix Manual

Welcome to the user manual for Zabbix 3.2 software. These pages are created to help users successfully manage their monitoring
tasks with Zabbix, from the simple to the more complex.

Copyright notice

Zabbix documentation is NOT distributed under a GPL license. Use of Zabbix documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as
long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on
any media, except if you distribute the documentation in a manner similar to how Zabbix disseminates it (that is, electronically for
download on a Zabbix web site) or on a USB or similar medium, provided however that the documentation is disseminated together
with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation,
in whole or in part, in another publication, requires the prior written consent from an authorized representative of Zabbix. Zabbix
reserves any and all rights to this documentation not expressly granted above.

1. Introduction

Please use the sidebar to access content in the Introduction section.

1 Manual structure

Structure

The content of this Zabbix 3.2 manual is divided into sections and subsections to provide easy access to particular subjects of
interest.

When you navigate to respective sections, make sure that you expand section folders to reveal full content of what is included in
subsections and individual pages.

Cross-linking between pages of related content is provided as much as possible to make sure that relevant information is not
missed by the users.

Sections

Introduction provides general information about current Zabbix software. Reading this section should equip you with some good
reasons to choose Zabbix.

Zabbix concepts explain the terminology used in Zabbix and provides details on Zabbix components.

Installation and Quickstart sections should help you to get started with Zabbix. Zabbix appliance is an alternative for getting a
quick taster of what it is like to use Zabbix.

Configuration is one of the largest and more important sections in this manual. It contains loads of essential advice about how to set
up Zabbix to monitor your environment, from setting up hosts to getting essential data to viewing data to configuring notifications
and remote commands to be executed in case of problems.

IT services section details how to use Zabbix for a high-level overview of your monitoring environment.

Web monitoring should help you learn how to monitor the availability of web sites.

Virtual machine monitoring presents a how-to for configuring VMware environment monitoring.

Maintenance, Regular expressions, Event acknowledgment and XML export/import are further sections that reveal how to use these
various aspects of Zabbix software.

Discovery contains instructions for setting up automatic discovery of network devices, active agents, file systems, network inter-
faces, etc.

Distributed monitoring deals with the possibilities of using Zabbix in larger and more complex environments.

Encryption helps explaining the possibilities of encrypting communications between Zabbix components.

Web interface contains information specific for using the web interface of Zabbix.

API section presents details of working with Zabbix API.

Detailed lists of technical information are included in Appendixes. This is where you will also find a FAQ section.

4

2 What is Zabbix

Overview

Zabbix was created by Alexei Vladishev, and currently is actively developed and supported by Zabbix SIA.

Zabbix is an enterprise-class open source distributed monitoring solution.

Zabbix is software that monitors numerous parameters of a network and the health and integrity of servers. Zabbix uses a flexible
notification mechanism that allows users to configure e-mail based alerts for virtually any event. This allows a fast reaction to
server problems. Zabbix offers excellent reporting and data visualisation features based on the stored data. This makes Zabbix
ideal for capacity planning.

Zabbix supports both polling and trapping. All Zabbix reports and statistics, as well as configuration parameters, are accessed
through a web-based frontend. A web-based frontend ensures that the status of your network and the health of your servers can be
assessed from any location. Properly configured, Zabbix can play an important role in monitoring IT infrastructure. This is equally
true for small organisations with a few servers and for large companies with a multitude of servers.

Zabbix is free of cost. Zabbix is written and distributed under the GPL General Public License version 2. It means that its source
code is freely distributed and available for the general public.

Commercial support is available and provided by Zabbix Company.

Learn more about Zabbix features.

Users of Zabbix

Many organisations of different size around the world rely on Zabbix as a primary monitoring platform.

3 Zabbix features

Overview

Zabbix is a highly integrated network monitoring solution, offering a multiplicity of features in a single package.

Data gathering

• availability and performance checks
• support for SNMP (both trapping and polling), IPMI, JMX, VMware monitoring
• custom checks
• gathering desired data at custom intervals
• performed by server/proxy and by agents

Flexible threshold definitions

• you can define very flexible problem thresholds, called triggers, referencing values from the backend database

Highly configurable alerting

• sending notifications can be customized for the escalation schedule, recipient, media type
• notifications can be made meaningful and helpful using macro variables
• automatic actions include remote commands

Real-time graphing

• monitored items are immediately graphed using the built-in graphing functionality

Web monitoring capabilities

• Zabbix can follow a path of simulated mouse clicks on a web site and check for functionality and response time

Extensive visualisation options

• ability to create custom graphs that can combine multiple items into a single view
• network maps
• custom screens and slide shows for a dashboard-style overview
• reports
• high-level (business) view of monitored resources

Historical data storage

5

http://www.zabbix.com/support.php

• data stored in a database
• configurable history
• built-in housekeeping procedure

Easy configuration

• add monitored devices as hosts
• hosts are picked up for monitoring, once in the database
• apply templates to monitored devices

Use of templates

• grouping checks in templates
• templates can inherit other templates

Network discovery

• automatic discovery of network devices
• agent auto registration
• discovery of file systems, network interfaces and SNMP OIDs

Fast web interface

• a web-based frontend in PHP
• accessible from anywhere
• you can click your way through
• audit log

Zabbix API

• Zabbix API provides programmable interface to Zabbix for mass manipulations, 3rd party software integration and other
purposes.

Permissions system

• secure user authentication
• certain users can be limited to certain views

Full featured and easily extensible agent

• deployed on monitoring targets
• can be deployed on both Linux and Windows

Binary daemons

• written in C, for performance and small memory footprint
• easily portable

Ready for complex environments

• remote monitoring made easy by using a Zabbix proxy

4 Zabbix overview

Architecture

Zabbix consists of several major software components, the responsibilities of which are outlined below.

Server

Zabbix server is the central component to which agents report availability and integrity information and statistics. The server is
the central repository in which all configuration, statistical and operational data are stored.

Database storage

All configuration information as well as the data gathered by Zabbix is stored in a database.

Web interface

For an easy access to Zabbix from anywhere and from any platform, the web-based interface is provided. The interface is part of
Zabbix server, and usually (but not necessarily) runs on the same physical machine as the one running the server.

6

Note:
Zabbix web interface must run on the same physical machine if SQLite is used.

Proxy

Zabbix proxy can collect performance and availability data on behalf of Zabbix server. A proxy is an optional part of Zabbix
deployment; however, it may be very beneficial to distribute the load of a single Zabbix server.

Agent

Zabbix agents are deployed on monitoring targets to actively monitor local resources and applications and report the gathered
data to Zabbix server.

Data flow

In addition it is important to take a step back and have a look at the overall data flow within Zabbix. In order to create an item that
gathers data you must first create a host. Moving to the other end of the Zabbix spectrum you must first have an item to create a
trigger. You must have a trigger to create an action. Thus if you want to receive an alert that your CPU load it too high on Server X
you must first create a host entry for Server X followed by an item for monitoring its CPU, then a trigger which activates if the CPU
is too high, followed by an action which sends you an email. While that may seem like a lot of steps, with the use of templating it
really isn’t. However, due to this design it is possible to create a very flexible setup.

5 What’s new in Zabbix 3.2.0

5.1 Event correlation With the introduction of event tags, it is now possible to tag problem events. That also means that with
tagging it is possible to correlate a specific problem event to its resolution. For example, in log monitoring, when several problems
are discovered that are related to different applications, you may want to see them resolved separately rather than all together.
This is now possible.

For example, in log monitoring you encounter lines similar to these:

Line1: Application 1 stopped
Line2: Application 2 stopped
Line3: Application 1 was restarted
Line4: Application 2 was restarted

With event correlation, you can match the problem event from Line1 to the resolution from Line3 and the problem event from Line2
to the resolution from Line4, and close these problems one by one:

Line1: Application 1 stopped
Line3: Application 1 was restarted #problem from Line 1 closed

Line2: Application 2 stopped
Line4: Application 2 was restarted #problem from Line 2 closed

For more information see the event correlation section.

5.2 Event tags for greater flexibility Custom tags for events are introduced in the new version. Custom event tags are realized
as a pair of the tag name and value. You can use only the name or pair it with a value.

These tags are defined in trigger configuration - for triggers, template triggers and trigger prototypes.

7

After the tags are defined on the trigger level, corresponding events get marked with tag data.

Having custom tags for events opens up new possibilities:

• it is possible to tag events and correlate them
• tag data is visible in Monitoring → Problems
• tag-based filtering is available for actions. You can get notified only on events matched by the tag/tag value.

Tags can be defined for template triggers and trigger prototypes. These tags are propagated to real triggers when created.

For more information see the event tag section.

5.3 View problems more clearly The monitoring part of Zabbix frontend has gained a new dedicated ”Problems” view. This
section is for displaying problems only and it follows immediately after Monitoring → Dashboard. The new section is intended to
give users a much clearer view of problems in comparison to the two Monitoring → Triggers and Monitoring → Events sections used
for this purpose previously.

8

In a related development, Monitoring → Events has been removed from the frontend. To access event details, use the new section
for problems.

5.4 Close problems manually Some problems in log monitoring or trap handling need to be closed manually because there is
no easy way to determine when the problem has been resolved. For these cases, triggers can now be configured with the option
of manual closing of problem events. Once configured, problem events of the trigger can be closed manually when using the
acknowledgement screen.

For more information see: Manual closing of problems.

5.5 Ability to customize macro values Sometimes a macro may resolve to a value that is not necessarily easy to work with.
It may be long or contain a specific substring of interest that you would like to extract. For these purposes, the new version comes
with a new concept of macro functions. Currently, two macro functions are supported:

• regsub - substring extraction by a regular expression match (case sensitive)
• iregsub - substring extraction by a regular expression match (case insensitive)

These macro functions are supported for the {ITEM.VALUE} and {ITEM.LASTVALUE} macro values in trigger names, trigger descrip-
tions, event tags, notifications subjects and notification messages.

For more information see the macro function section.

9

5.6 Nested representation of host groups Having a built-in mechanism for a logical grouping of host groups is something
that is very much required, especially in larger organizations. While the new Zabbix version does not support a full nesting of host
groups where a higher-level host group would automatically inherit all hosts of a nested host group, first steps towards nested host
groups have been taken by allowing a nested representation of host groups and aligning the permission schema to host group
nesting.

Nested representation of host groups is accomplished by using the ’/’ forward slash to separate the logical levels of host groups.

For more information see: Configuring a host group

Note that nested host group functionality is extended in Zabbix 3.2.2.

In a related development, the host group permission tab has been significantly reworked in user group and user configuration
forms.

5.7 Coping with fast-growing log files More advanced options are available for dealing with fast-growing log files. The key
issue with such files is the enormous number of messages, which are written to the log files in certain situations. As all new lines
must be analyzed by Zabbix and the matching lines sent to Zabbix server, it may result both in serious delays and a large number
of identical messages sent and stored in the database.

To deal with these issues there are two major improvements:

• an optional maxdelay parameter for log monitoring items, which can be used to set a time bracket that log records must be
analyzed within - if it’s impossible to analyze all records within the set time, older lines are skipped in favour of analyzing
the more recent ones.

• log.count and logrt.count - two new agent items that count the number of matched lines and return that number instead
of the lines themselves.

5.8 Easier trigger hysteresis Trigger hysteresis is a useful option both to avoid trigger ”flapping” (switching between problem
and OK too often) and in situations where you need an interval between the problem value and the OK value. While it was possible
in previous Zabbix versions to define trigger hysteresis using the {TRIGGER.VALUE}macro, the resulting expression was not exactly
the easiest way of doing things:

({TRIGGER.VALUE}=0 and {server:temp.last()}>20) or
({TRIGGER.VALUE}=1 and {server:temp.last()}>15)

The new version proposes a much easier way of defining trigger hysteresis by introducing an optional second trigger expression
called ’recovery expression’ where you can separately define the conditions that have to be met for the trigger to return back to
the OK state.

10

There is also more control over how OK events are generated. You can use the problem expression as basis (then it works the same
way as before), the recovery expression as basis, or even select ’None’ in which case the trigger will always remain in problem
state if it goes into it.

Additionally, PROBLEM event generation mode for single/multiple problem events has been changed from a silent default/optional
checkbox into an obvious two-way choice.

See also:

• Configuring a trigger
• Trigger hysteresis

5.9 Recovery operations Being notified on problem recovery has become easier in Zabbix. If previously there was the slightly
confusing concept of a special ”Recovery message” or the possibility to create a full escalation when problem triggers go OK, now
that has been united into one ”Recovery operation” concept.

In a recovery operation you can both receive a notification and execute a remote command. Even though recovery messages
cannot be escalated (assigned to several steps), it is possible to assign several operations to a single step. Moreover, all users
that were notified on the problem previously, can be notified on the recovery with just one selection made in action configuration.

Recovery operations also get a dedicated tab in the action configuration form, while the condition tab has been dropped and
conditions now can be set in the general action property tab.

Note that some action conditions have been dropped completely with this development:

• ”Trigger value” conditions for trigger events
• ”Event type” conditions for internal events - Item in “normal” state, Low-level discovery rule in “normal” state, Trigger in
“normal” state

11

For more details, see:

• Actions
• Recovery operations

5.10 Delaying escalations during maintenance The logic of delaying problem notifications during host maintenance has
been changed.

In previous Zabbix versions, it was possible to skip problem notifications during a host maintenance period (using the Maintenance
status = not in ”maintenance” action condition). Then, if the problem persisted, problem events were generated immediately after
the maintenance. However, since the original problem messages were suppressed, it was not always easy for users to understand
what generated those events and why. Acknowledgement information of the original event was also lost.

In the new version, the old mechanism is dropped. Instead there is a new option in action configuration, which allows to pause
notifications in the host maintenance phase if you wish so.

12

If notifications are paused during maintenance, they get started after the maintenance, according to the escalation scenario. That
means that no messages are skipped, simply delayed.

See also:

• Upgrade notes for 3.2
• Action operations

5.11 Viewable items, triggers, graphs created by LLD Entities created by low-level discovery (items, triggers, graphs) in
previous Zabbix versions were only listed. It was not possible to view their details or apply mass operations to them, such as
enabling/disabling or deleting.

Now these entities are shown in a much more user-friendly way. It is possible to view the details of these items, triggers and
graphs. Check-boxes are enabled to apply mass operations to them. Thus it is possible to enable/disable/delete them.

Items created by low-level discovery before 3.2.0.

Items created by low-level discovery in 3.2.0.

5.12 Web scenario export/import When exporting hosts or templates into XML, web scenarios are now exported as well. When
importing hosts/templates, there are options for creating new, updating existing and deleting missing web scenarios.

Now on you may easily share web scenarios on share.zabbix.com. For example, export a template with the web scenarios into
XML and upload to share.zabbix.com. Then others can download the template and import the XML into Zabbix.

5.13 Frontend improvements 5.13.1 Acknowledgement of OK events removed

A separate option for acknowledging OK events along with problem events has been removed from the acknowledgement screen.
It is now possible to acknowledge problem events only, with the choice of acknowledging just one or all problem events of the
trigger(s).

13

5.13.2 Several new filters

5.13.2.1 Filtering by name

Host groups, templates and global scripts can now be searched by name in:

• Configuration → Host groups
• Configuration → Templates
• Administration → Scripts

5.13.2.2 Filtering by name and status

Several frontend sections have gained a filter allowing to search by name as well as status, type or mode:

• Configuration → Maintenance
• Configuration → Actions
• Configuration → Discovery
• Administration → Proxies
• Administration → User groups
• Administration → Users
• Administration → Media types

14

5.13.3 Updated translations

• Chinese (China)
• Czech
• English (United States)
• French
• Georgian
• German
• Italian
• Japanese
• Korean
• Polish
• Portuguese (Brazil)
• Russian
• Slovak
• Spanish
• Turkish
• Ukrainian

5.14 Daemon changes/improvements 5.14.1 Host availability, discovery, auto-registration and history data validation

Zabbix server will validate host availability, discovery and auto-registration data received from proxy stricter and will reject the
whole data packet in case it contains invalid entries. At the same time fewer but more informative messages will be written to
the log file. Also, if passive proxy for example returns invalid host availability data, server will skip polling discovery, history and
auto-registration data from that proxy. Apart from better messages processing of historical data from proxies and active agents
is not affected. Log file messages containing name, IP address and error description will help troubleshooting misconfiguration
issues such as proxypoller connecting server’s trapper port or agent instead of proxy.

5.14.2 Configuration parameters

Flexible item key parameters for alias in agent configuration

Zabbix agent configuration file parameter Alias now supports setting flexible key parameters. For instance, now it is possible to
set an alias with wildcard as a parameter (alias[*]) and use it on item setup entering required valid key parameters as usual
(e.g., alias[all,avg5]). The other benefit of such flexibility is that now it is possible to pass any parameters to a key which
originally doesn’t support parameters. In such case passed parameters will be ignored and original key processed. This may be
used setting up multiple low-level discovery rules for the same items.

5.15 Item changes/improvements log.count and logrt.count - two new items have been added along with a ’maxdelay’
parameter for log monitoring. For more information see: Coping with fast-growing log files.

5.16 VMware monitoring improvements Two new item keys to read the datacenter name have been added for hypervisors
and virtual machines:

• vmware.hv.datacenter.name[<url>,<uuid>]
• vmware.vm.datacenter.name[<url>,<uuid>]

A {#DATACENTER.NAME} field has been added to the hypervisor and virtual machine discovery item keys vmware.hv.discovery
and vmware.vm.discovery.

5.17 Trigger functions The count() function now supports regexp and iregexp operators for all item types. It is now possible
to count values matching a regular expression (ordinary or global) collected over a specified period of time.

Several functions are now calculated for unsupported items as well:

• nodata()
• date()

15

• dayofmonth()
• dayofweek()
• now()
• time()

Host and item, however, must be enabled as before.

5.18 Unsupported items and unknown values in triggers/calculated items Previously any unsupported item in trigger ex-
pression or error in function evaluation immediately rendered the whole expression value to Unknown. Triggers became Unknown,
calculated items became unsupported.

In the new version there’s a more flexible approach: unsupported items and errors in function evaluation continue to take part in
expression evaluation as unknowns.

Advantage - logical OR and AND expressions are evaluated, if possible, to known values. For example:

• ’1 or Unsuported_item1.some_function()’ is evaluated to ’1’ (True)
• ’0 and Unsuported_item1.some_function()’ is evaluated to ’0’ (False)

See Expressions with unsupported items and unknown values.

5.19 Miscellaneous improvements 5.19.1 Database changes

The history_text.id and history_log.id fields were removed from the corresponding history tables. Those fields were redundant and
removing them will simplify history table structures and will remove unnecessary overhead when inserting values.

See also

• Template changes

6 What’s new in Zabbix 3.2.1

6.1 Frontend improvements

• Many frontend fields have been made much wider by default:

Before Zabbix 3.2.1.

In Zabbix 3.2.1.

• XML import now correctly converts SNMP low-level discovery rules to multiple OID support.

6.1.1 Updated translations

• Chinese (China)

16

• French
• Italian
• Portuguese (Brazil)

6.2 Daemon improvements 6.2.1 VMware monitoring optimisations

The VMware data processing and storage was changed, resulting in less time VMware cache is locked and also reducing the size
of cached data.

7 What’s new in Zabbix 3.2.2

7.1 Nested host group support Nested representation of host groups was introduced in Zabbix 3.2.0. However, it was limited
to assigning permissions to host groups and frontend filtering options.

Also, to select subgroups, a ’/*’ syntax had to be used after the parent group name. Now it is possible to select subgroups by
simply:

• entering the parent group name
• entering the parent group name and selecting Include subgroups (in assigning user permissions to host groups)

More importantly, specifying a parent host group now implicitly selects all level-down host groups in several new locations:

• aggregate checks - items of hosts from nested groups are included
• action conditions - hosts from nested host groups are included
• action operations - remote command is also executed on hosts from nested groups
• correlation conditions - hosts from nested host groups are included
• host maintenance - hosts from nested host groups are also included
• global scripts - when checking if a script can be executed on a nested group, parent group is included

7.2 User macros in event tags Options related to event tags (tag name, value and tag for matching) now may include user
macros and user macro context. Low-level discovery macros can be used inside the user macro context.

Additionally, the limitation of using a ’/’ forward slash has been removed from event tag names.

7.3 Frontend improvements 7.3.1 Updated translations

• English (United States)
• Ukrainian

7.3.2 One-line display of problem and resolution

Having the problem event and its resolution event displayed in one line was introduced by the new Monitoring → Problems section
of Zabbix 3.2. Now this approach has been expanded to other related sections.

In Monitoring → Triggers, when Show all events or Show unacknowledged events are selected in the filter, both problem time and
recovery time (if any) are displayed in one line instead of simply showing the last change time.

|<| |<| |<| |-| |<|

Note that the term ”Resolved” is used when displaying resolved problem events instead of ”OK”.

Event details accessed from Monitoring → Problems now also display problems and their resolution in one line. More events in less
space can be displayed as a result.

|<| |<| |<| |-| |<|

Similarly, the history of events, available as a screen element, now displays problems and their resolution in one line.

|<| |<| |<| |-| |<|

7.3.3 Miscellaneous

• When exporting a template or a host with web scenarios, triggers and graphs based on the web scenario or step items are
exported as well.

• {HOST.*} macros used in web scenario configuration are now correctly resolved in several frontend locations, including
Monitoring → Web, Monitoring → Latest data, simple graphs, etc.

• {HOST.*} macros in item key parameters are now also resolved for items without interfaces, resolving to either Zabbix
agent, SNMP, JMX or IPMI interface of the host.

17

• User macros are now resolved on allowed hosts even if the macros are defined on a template that the user does not have
permissions to.

7.4 Daemon improvements

• Active agent auto-registration events are not generated any more if there is no action for auto registration.
• OpenSSL 1.1.0 support, it brings some new ciphersuites for PSK, enabling Perfect Forward Secrecy. See differences between
OpenSSL 1.0.2c and 1.1.0 Ciphersuites

• Item creation/update by low-level discovery now returns errors in case macro resolving cannot be fully accomplished (in-
stead of making such items that will inevitably fail on later stages). A corresponding error message will be displayed in
Configuration → Hosts → Discovery.

7.5 Item changes 7.5.1 VMware monitoring

A new vmware.hv.sensor.health.state key has been added to monitor VMware hypervisor health state rollup sensor. The
vmware.hv.status key was reverted back to its original implementation and now uses the hypervisor overall status property.

A new vmware.hv.datastore.size key has been added to monitor VMware datastore capacity and free space.

7.5.2 Windows monitoring

A new vm.vmemory.size key has been added to monitor virtual memory statistics on Windows.

7.5.3 Chassis information

Changed system.hw.chassis key to read the DMI table from sysfs, if sysfs access fails then try reading directly from memory.

7.6 Trigger functions

• Support for suffixed values has been added to the threshold parameter of the timeleft() trigger function.
• forecast() now supports negative values in the time parameter.

8 What’s new in Zabbix 3.2.3

8.1 Frontend improvements 8.1.1 Updated translations

• Czech
• English (United States)
• French
• Italian
• Japanese
• Korean
• Portuguese (Brazil)
• Russian
• Ukrainian

8.2 Daemon improvements

• Before 3.0.7 and 3.2.3 inactive IPMI hosts were deleted only from IPMI poller processes. Now the inactive hosts are deleted
also from unreachable poller processes.

9 What’s new in Zabbix 3.2.4

9.1 Item count retrieval limit changes for queue requests QUEUE_DETAIL_ITEM_COUNT definition parameter now may
be edited to retrieve more than default 500 values.

Format of the counter displayed in Detail view of Administration → Queue has been enhanced by exposing the overall number of
queued items regardless of the parameter settings. Position and appearance of the counter has also been changed to be consistent
with counters on the other pages.

18

Before Zabbix 3.2.4

In Zabbix 3.2.4

9.2 Frontend improvements 9.2.1 Updated translations

• Chinese (China)
• Czech
• French
• Japanese
• Polish
• Portuguese (Brazil)

9.3 Daemon improvements

• Database inserts on Oracle have been reworked to use dynamic binding. This should improve the bulk insert speed, especially
in high latency environments.

• The rounding of numbers has been made more accurate when calculating CPU statistics.

10 What’s new in Zabbix 3.2.5

10.1 Frontend improvements

• In Windows event log history events with a zero ”Event ID” now have their ”Event ID” displayed as ”0”.

10.1.1 Updated translations

10.2 Daemon improvements

11 What’s new in Zabbix 3.2.6

11.1 Frontend improvements 11.1.1 Updated translations

• Czech
• English (United States)
• Korean
• Russian
• Ukrainian

11.2 Daemon improvements

12 What’s new in Zabbix 3.2.7

19

12.1 Frontend improvements 12.1.1 Updated translations

• Catalan
• Chinese (China)
• English (United States)
• Japanese
• Korean
• Polish
• Portuguese (Brazil)
• Ukrainian

12.1.2 Miscellaneous

• Warning messages about errors are no longer displayed in the Status of Zabbix dashboard widget;
• If LDAP module is not installed or not enabled the LDAP configuration form is hidden in Administration → Authentication and
a corresponding error message is displayed.

12.2 Daemon improvements

13 What’s new in Zabbix 3.2.8

Frontend improvements

• A new ZBX_URI_VALID_SCHEMES constant has been added which defines the allowed URI schemes.

Updated translations

• Czech
• English (United States)
• French
• Italian
• Japanese
• Korean
• Russian
• Turkish

Enabled Turkish translation to be displayed by default.

Processing low-level discovery (LLD)

LLD rule processing has been modified so multiple values for the same LLD rule are not processed simultaneously. For more details,
see the upgrade notes.

14 What’s new in Zabbix 3.2.9

Frontend improvements

• Permissions are now correctly applied when revealing personal information from resolving {ESC.HISTORY}, {EVENT.ACK.HISTORY}
macros. Non-super Admin users can only see personal details (such as user name, e-mail address) about themselves and
other users who belong to their group. When displaying users that are from another group personal details are hidden, even
though message text is viewable.

Daemon improvements

• On Unix-like systems Zabbix server, proxy and agent now follow changes in the /etc/resolv.conf file without restart.

15 What’s new in Zabbix 3.2.10

Checking if macros in LLD rule filter receive value

20

It is now checked if all low-level discovery macros used in the low-level discovery rule filter actually receive a value. If JSON data
do not contain a value for the corresponding macro, then an error message is displayed in the Info column for the discovery rule:

Cannot accurately apply filter: no value received for macro "{#MACRO.NAME}".

Item changes

• system.cpu.num agent item on AIX now returns a value based on the logical processors attached to an AIX LPAR and not
the physical ones.

16 What’s new in Zabbix 3.2.11

Configurable URI validation

URI validation, introduced in Zabbix 3.2.8, now can be turned off/on in the new VALIDATE_URI_SCHEMES frontend constant.

Item changes

• vmware.eventlog items that previously were always taking only the 10 latest events will now browse up to 1000 (this is
a VMware limitation) events in search of events that have not yet been processed. This means there is less chance to miss
events when they are generated at a higher rate. Zabbix can also catch up after some downtime.

Housekeeper changes

• An event will now only be deleted by the housekeeper if it is not associated with a problem in any way. This means that if an
event is either a problem or recovery event, it will not be deleted until the related problem record is removed. Additionally,
the housekeeper now will delete problems first and events after, to avoid potential problems with stale events or problem
records.

2. Zabbix concepts

Please use the sidebar to access content in the Zabbix concepts section.

2 Server

Overview

Zabbix server is the central process of Zabbix software.

The server performs the polling and trapping of data, it calculates triggers, sends notifications to users. It is the central component
to which Zabbix agents and proxies report data on availability and integrity of systems. The server can itself remotely check
networked services (such as web servers and mail servers) using simple service checks.

The server is the central repository in which all configuration, statistical and operational data is stored, and it is the entity in Zabbix
that will actively alert administrators when problems arise in any of the monitored systems.

The functioning of a basic Zabbix server is broken into three distinct components; they are: Zabbix server, web frontend and
database storage.

All of the configuration information for Zabbix is stored in the database, which both the server and the web frontend interact with.
For example, when you create a new item using the web frontend (or API) it is added to the items table in the database. Then,
about once a minute Zabbix server will query the items table for a list of the items which are active that is then stored in a cache
within the Zabbix server. This is why it can take up to two minutes for any changes made in Zabbix frontend to show up in the
latest data section.

Server process

If installed as package

Zabbix server runs as a daemon process. The server can be started by executing:

shell> service zabbix-server start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-server start

21

Similarly, for stopping/restarting/viewing status, use the following commands:

shell> service zabbix-server stop
shell> service zabbix-server restart
shell> service zabbix-server status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_server binary and execute:

shell> zabbix_server

You can use the following command line parameters with Zabbix server:

-c --config <file> absolute path to the configuration file (default is /usr/local/etc/zabbix_server.conf)
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Note:
Runtime control is not supported on OpenBSD and NetBSD.

Examples of running Zabbix server with command line parameters:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf
shell> zabbix_server --help
shell> zabbix_server -V

Runtime control

Runtime control options:

Option Description Target

config_cache_reload Reload configuration cache. Ignored if cache is being
currently loaded.

housekeeper_execute Start the housekeeping procedure. Ignored if the
housekeeping procedure is currently in progress.

log_level_increase[=<target>] Increase log level, affects all processes if target is not
specified.

pid - Process identifier (1 to
65535)
process type - All processes
of specified type (e.g., poller)
process type,N - Process
type and number (e.g.,
poller,3)

log_level_decrease[=<target>] Decrease log level, affects all processes if target is not
specified.

Allowed range of PIDs for changing the log level of a single Zabbx process is from 1 to 65535. On systems with large PIDs <process
type,N> target option can be used for changing the log level of a single process.

Example of using runtime control to reload the server configuration cache:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R config_cache_reload

Example of using runtime control to trigger execution of housekeeper:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R housekeeper_execute

Examples of using runtime control to change log level:

Increase log level of all processes:
shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R log_level_increase

Increase log level of second poller process:
shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R log_level_increase=poller,2

Increase log level of process with PID 1234:
shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R log_level_increase=1234

22

Decrease log level of all http poller processes:
shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R log_level_decrease="http poller"

Process user

Zabbix server is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run server as
any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
server as ’root’ if you modify the ’AllowRoot’ parameter in the server configuration file accordingly.

If Zabbix server and agent are run on the same machine it is recommended to use a different user for running the server than for
running the agent. Otherwise, if both are run as the same user, the agent can access the server configuration file and any Admin
level user in Zabbix can quite easily retrieve, for example, the database password.

Configuration file

See the configuration file options for details on configuring zabbix_server.

Start-up scripts

The scripts are used to automatically start/stop Zabbix processes during system’s start-up/shutdown. The scripts are located under
directory misc/init.d.

Supported platforms

Due to the security requirements and mission-critical nature of server operation, UNIX is the only operating system that can
consistently deliver the necessary performance, fault tolerance and resilience. Zabbix operates on market leading versions.

Zabbix server is tested on the following platforms:

• Linux
• Solaris
• AIX
• HP-UX
• Mac OS X
• FreeBSD
• OpenBSD
• NetBSD
• SCO Open Server
• Tru64/OSF1

Note:
Zabbix may work on other Unix-like operating systems as well.

Locale

Note that the server requires a UTF-8 locale so that some textual items can be interpreted correctly. Most modern Unix-like systems
have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

2. Definitions

Overview

In this section you can learn the meaning of some terms commonly used in Zabbix.

Definitions

host

- a networked device that you want to monitor, with IP/DNS.

host group

- a logical grouping of hosts; it may contain hosts and templates. Hosts and templates within a host group are not in any way linked
to each other. Host groups are used when assigning access rights to hosts for different user groups.

item

- a particular piece of data that you want to receive off of a host, a metric of data.

trigger

23

- a logical expression that defines a problem threshold and is used to ”evaluate” data received in items.

When received data are above the threshold, triggers go from ’Ok’ into a ’Problem’ state. When received data are below the
threshold, triggers stay in/return to an ’Ok’ state.

event

- a single occurrence of something that deserves attention such as a trigger changing state or a discovery/agent auto-registration
taking place.

event tag

- a pre-defined marker for the event. It may be used in event correlation, permission granulation, etc.

event correlation

- a method of correlating problems to their resolution flexibly and precisely.

For example, you may define that a problem reported by one trigger may be resolved by another trigger, which may even use a
different data collection method.

problem

- a trigger that is in ”Problem” state.

action

- a predefined means of reacting to an event.

An action consists of operations (e.g. sending a notification) and conditions (when the operation is carried out)

escalation

- a custom scenario for executing operations within an action; a sequence of sending notifications/executing remote commands.

media

- a means of delivering notifications; delivery channel.

notification

- a message about some event sent to a user via the chosen media channel.

remote command

- a pre-defined command that is automatically executed on a monitored host upon some condition.

template

- a set of entities (items, triggers, graphs, screens, applications, low-level discovery rules, web scenarios) ready to be applied to
one or several hosts.

The job of templates is to speed up the deployment of monitoring tasks on a host; also to make it easier to apply mass changes to
monitoring tasks. Templates are linked directly to individual hosts.

application

- a grouping of items in a logical group.

web scenario

- one or several HTTP requests to check the availability of a web site.

frontend

- the web interface provided with Zabbix.

Zabbix API

- Zabbix API allows you to use the JSON RPC protocol to create, update and fetch Zabbix objects (like hosts, items, graphs and
others) or perform any other custom tasks.

Zabbix server

- a central process of Zabbix software that performs monitoring, interacts with Zabbix proxies and agents, calculates triggers,
sends notifications; a central repository of data.

Zabbix agent

- a process deployed on monitoring targets to actively monitor local resources and applications.

24

Zabbix proxy

- a process that may collect data on behalf of Zabbix server, taking some processing load off of the server.

encryption

- support of encrypted communications between Zabbix components (server, proxy, agent, zabbix_sender and zabbix_get utilities)
using Transport Layer Security (TLS) protocol.

3 Agent

Overview

Zabbix agent is deployed on a monitoring target to actively monitor local resources and applications (hard drives, memory, pro-
cessor statistics etc).

The agent gathers operational information locally and reports data to Zabbix server for further processing. In case of failures
(such as a hard disk running full or a crashed service process), Zabbix server can actively alert the administrators of the particular
machine that reported the failure.

Zabbix agents are extremely efficient because of use of native system calls for gathering statistical information.

Passive and active checks

Zabbix agents can perform passive and active checks.

In a passive check the agent responds to a data request. Zabbix server (or proxy) asks for data, for example, CPU load, and Zabbix
agent sends back the result.

Active checks require more complex processing. The agent must first retrieve a list of items from Zabbix server for independent
processing. Then it will periodically send new values to the server.

Whether to perform passive or active checks is configured by selecting the respectivemonitoring item type. Zabbix agent processes
items of type ’Zabbix agent’ or ’Zabbix agent (active)’.

Supported platforms

Zabbix agent is supported for:

• Linux
• IBM AIX
• FreeBSD
• NetBSD
• OpenBSD
• HP-UX
• Mac OS X
• Solaris: 9, 10, 11
• Windows: all desktop and server versions since 2000

Agent on UNIX-like systems

Zabbix agent on UNIX-like systems is run on the host being monitored.

Installation

See the package installation section for instructions on how to install Zabbix agent as package.

Alternatively see instructions for manual installation if you do not want to use packages.

Attention:
In general, 32bit Zabbix agents will work on 64bit systems, but may fail in some cases.

If installed as package

Zabbix agent runs as a daemon process. The agent can be started by executing:

shell> service zabbix-agent start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-agent start

25

Similarly, for stopping/restarting/viewing status of Zabbix agent, use the following commands:

shell> service zabbix-agent stop
shell> service zabbix-agent restart
shell> service zabbix-agent status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_agentd binary and execute:

shell> zabbix_agentd

Agent on Windows systems

Zabbix agent on Windows runs as a Windows service.

Preparation

Zabbix agent is distributed as a zip archive. After you download the archive you need to unpack it. Choose any folder to store
Zabbix agent and the configuration file, e. g.

C:\zabbix

Copy bin\win64\zabbix_agentd.exe and conf\zabbix_agentd.win.conf files to c:\zabbix.

Edit the c:\zabbix\zabbix_agentd.win.conf file to your needs, making sure to specify a correct ”Hostname” parameter.

Installation

After this is done use the following command to install Zabbix agent as Windows service:

C:\> c:\zabbix\zabbix_agentd.exe -c c:\zabbix\zabbix_agentd.win.conf -i

Now you should be able to configure ”Zabbix agent” service normally as any other Windows service.

See more details on installing and running Zabbix agent on Windows.

Other agent options

It is possible to run multiple instances of the agent on a host. A single instance can use the default configuration file or a config-
uration file specified in the command line. In case of multiple instances each agent instance must have its own configuration file
(one of the instances can use the default configuration file).

The following command line parameters can be used with Zabbix agent:

Parameter Description

UNIX and Windows agent
-c --config <config-file> Absolute path to the configuration file.

You may use this option to specify a configuration file that is not
the default one.
On UNIX, default is /usr/local/etc/zabbix_agentd.conf or as set by
compile-time variables --sysconfdir or --prefix
On Windows, default is c:\zabbix_agentd.conf

-p --print Print known items and exit.
Note: To return user parameter results as well, you must specify
the configuration file (if it is not in the default location).

-t --test <item key> Test specified item and exit.
Note: To return user parameter results as well, you must specify
the configuration file (if it is not in the default location).

-h --help Display help information
-V --version Display version number
UNIX agent only
-R --runtime-control <option> Perform administrative functions. See runtime control.
Windows agent only
-m --multiple-agents Use multiple agent instances (with -i,-d,-s,-x functions).

To distinguish service names of instances, each service name will
include the Hostname value from the specified configuration file.

Windows agent only (functions)
-i --install Install Zabbix Windows agent as service
-d --uninstall Uninstall Zabbix Windows agent service
-s --start Start Zabbix Windows agent service

26

Parameter Description

-x --stop Stop Zabbix Windows agent service

Specific examples of using command line parameters:

• printing all built-in agent items with values
• testing a user parameter with ”mysql.ping” key defined in the specified configuration file
• installing a ”Zabbix Agent” service for Windows using the default path to configuration file c:\zabbix_agentd.conf
• installing a ”Zabbix Agent [Hostname]” service for Windows using the configuration file zabbix_agentd.conf located in the
same folder as agent executable and make the service name unique by extending it by Hostname value from the config file

shell> zabbix_agentd --print
shell> zabbix_agentd -t "mysql.ping" -c /etc/zabbix/zabbix_agentd.conf
shell> zabbix_agentd.exe -i
shell> zabbix_agentd.exe -i -m -c zabbix_agentd.conf

Runtime control

With runtime control options you may change the log level of agent processes.

Option Description Target

log_level_increase[=<target>] Increase log level.
If target is not specified, all processes are affected.

Target can be specified as:
pid - process identifier (1 to
65535)
process type - all processes
of specified type (e.g., poller)
process type,N - process
type and number (e.g.,
poller,3)

log_level_decrease[=<target>] Decrease log level.
If target is not specified, all processes are affected.

Note that the usable range of PIDs for changing the log level of a single agent process is 1 to 65535. On systems with large PIDs,
the <process type,N> target can be used for changing the log level of a single process.

Examples:

• increasing log level of all processes
• increasing log level of the second listener process
• increasing log level of process with PID 1234
• decreasing log level of all active check processes

shell> zabbix_agentd -R log_level_increase
shell> zabbix_agentd -R log_level_increase=listener,2
shell> zabbix_agentd -R log_level_increase=1234
shell> zabbix_agentd -R log_level_decrease="active checks"

Note:
Runtime control is not supported on OpenBSD, NetBSD and Windows.

Process user

Zabbix agent on UNIX is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run
agent as any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
agent as ’root’ if you modify the ’AllowRoot’ parameter in the agent configuration file accordingly.

Configuration file

For details on configuring Zabbix agent see the configuration file options for zabbix_agentd or Windows agent.

Locale

Note that the agent requires a UTF-8 locale so that some textual agent items can return the expected content. Most modern
Unix-like systems have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

27

Exit code

Before version 2.2 Zabbix agent returned 0 in case of successful exit and 255 in case of failure. Starting from version 2.2 and
higher Zabbix agent returns 0 in case of successful exit and 1 in case of failure.

4 Proxy

Overview

Zabbix proxy is a process that may collect monitoring data from one or more monitored devices and send the information to the
Zabbix server, essentially working on behalf of the server. All collected data is buffered locally and then transferred to the Zabbix
server the proxy belongs to.

Deploying a proxy is optional, but may be very beneficial to distribute the load of a single Zabbix server. If only proxies collect
data, processing on the server becomes less CPU and disk I/O hungry.

A Zabbix proxy is the ideal solution for centralized monitoring of remote locations, branches and networks with no local adminis-
trators.

Zabbix proxy requires a separate database.

Attention:
Note that databases supported with Zabbix proxy are SQLite, MySQL and PostgreSQL. Using Oracle or IBM DB2 is at your
own risk and may contain some limitations as, for example, in return values of low-level discovery rules.

See also: Using proxies in a distributed environment

Proxy process

If installed as package

Zabbix proxy runs as a daemon process. The proxy can be started by executing:

shell> service zabbix-proxy start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-proxy start

Similarly, for stopping/restarting/viewing status of Zabbix proxy, use the following commands:

shell> service zabbix-proxy stop
shell> service zabbix-proxy restart
shell> service zabbix-proxy status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_proxy binary and execute:

shell> zabbix_proxy

You can use the following command line parameters with Zabbix proxy:

-c --config <file> absolute path to the configuration file
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Note:
Runtime control is not supported on OpenBSD and NetBSD.

Examples of running Zabbix proxy with command line parameters:

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf
shell> zabbix_proxy --help
shell> zabbix_proxy -V

Runtime control

Runtime control options:

28

Option Description Target

config_cache_reload Reload configuration cache. Ignored if cache is being
currently loaded.
Active Zabbix proxy will connect to the Zabbix server
and request configuration data.

housekeeper_execute Start the housekeeping procedure. Ignored if the
housekeeping procedure is currently in progress.

log_level_increase[=<target>] Increase log level, affects all processes if target is not
specified.

pid - Process identifier (1 to
65535)
process type - All processes
of specified type (e.g., poller)
process type,N - Process
type and number (e.g.,
poller,3)

log_level_decrease[=<target>] Decrease log level, affects all processes if target is not
specified.

Allowed range of PIDs for changing the log level of a single Zabbx process is from 1 to 65535. On systems with large PIDs <process
type,N> target option can be used for changing the log level of a single process.

Example of using runtime control to reload the proxy configuration cache:

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R config_cache_reload

Example of using runtime control to trigger execution of housekeeper

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R housekeeper_execute

Examples of using runtime control to change log level:

Increase log level of all processes:
shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R log_level_increase

Increase log level of second poller process:
shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R log_level_increase=poller,2

Increase log level of process with PID 1234:
shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R log_level_increase=1234

Decrease log level of all http poller processes:
shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R log_level_decrease="http poller"

Process user

Zabbix proxy is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run proxy as
any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
proxy as ’root’ if you modify the ’AllowRoot’ parameter in the proxy configuration file accordingly.

Configuration file

See the configuration file options for details on configuring zabbix_proxy.

Supported platforms

Zabbix proxy runs on the same list of server#supported platforms as Zabbix server.

Locale

Note that the proxy requires a UTF-8 locale so that some textual items can be interpreted correctly. Most modern Unix-like systems
have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

5 Java gateway

Overview

29

Native support for monitoring JMX applications exists in the form of a Zabbix daemon called ”Zabbix Java gateway”, available
since Zabbix 2.0. Zabbix Java gateway is a daemon written in Java. To find out the value of a particular JMX counter on a host,
Zabbix server queries Zabbix Java gateway, which uses the JMX management API to query the application of interest remotely. The
application does not need any additional software installed, it just has to be started with -Dcom.sun.management.jmxremote
option on the command line.

Java gateway accepts incoming connection from Zabbix server or proxy and can only be used as a ”passive proxy”. As opposed
to Zabbix proxy, it may also be used from Zabbix proxy (Zabbix proxies cannot be chained). Access to each Java gateway is
configured directly in Zabbix server or proxy configuration file, thus only one Java gateway may be configured per Zabbix server
or Zabbix proxy. If a host will have items of type JMX agent and items of other type, only the JMX agent items will be passed to
Java gateway for retrieval.

When an item has to be updated over Java gateway, Zabbix server or proxy will connect to the Java gateway and request the value,
which Java gateway in turn retrieves and passes back to the server or proxy. As such, Java gateway does not cache any values.

Zabbix server or proxy has a specific type of processes that connect to Java gateway, controlled by the option StartJavaPollers.
Internally, Java gateway starts multiple threads, controlled by the START_POLLERS option. On the server side, if a connection
takes more than Timeout seconds, it will be terminated, but Java gateway might still be busy retrieving value from the JMX counter.
To solve this, since Zabbix 2.0.15, Zabbix 2.2.10 and Zabbix 2.4.5 there is the TIMEOUT option in Java gateway that allows to set
timeout for JMX network operations.

Zabbix server or proxy will try to pool requests to a single JMX target together as much as possible (affected by item intervals) and
send them to the Java Gateway in a single connection for better performance.

It is suggested to have StartJavaPollers less than or equal to START_POLLERS, otherwise there might be situations when no
threads are available in the Java gateway to service incoming requests.

Sections below describe how to get and run Zabbix Java gateway, how to configure Zabbix server (or Zabbix proxy) to use Zabbix
Java gateway for JMX monitoring, and how to configure Zabbix items in Zabbix GUI that correspond to particular JMX counters.

1 Getting Java gateway

There are two ways to get Java gateway. One is to download Java gateway package from Zabbix website and the other is to compile
Java gateway from source.

1.1 Downloading from Zabbix website

Zabbix Java gateway packages (RHEL, Debian, Ubuntu) are available for download at http://www.zabbix.com/download.php.

1.2 Compiling from source

In order to compile Java gateway, you first run ./configure script with --enable-java option. It is advisable that you specify
--prefix option to request installation path other than the default /usr/local, because installing Java gateway will create a whole
directory tree, not just a single executable.

$./configure --enable-java --prefix=$PREFIX

To compile and package Java gateway into a JAR file, run make. Note that for this step you will need javac and jar executables
in your path.

$ make

Now you have zabbix-java-gateway-$VERSION.jar file in src/zabbix_java/bin. If you are comfortable with running Java gateway
from src/zabbix_java in the distribution directory, then you can proceed to instructions for configuring and running Java gateway.
Otherwise, make sure you have enough privileges and run make install.

$ make install

2 Overview of files in Java gateway distribution

Regardless of how you obtained Java gateway, you should have ended up with a collection of shell scripts, JAR and configuration
files under $PREFIX/sbin/zabbix_java. The role of these files is summarized below.

bin/zabbix-java-gateway-$VERSION.jar

Java gateway JAR file itself.

lib/logback-core-0.9.27.jar
lib/logback-classic-0.9.27.jar
lib/slf4j-api-1.6.1.jar
lib/android-json-4.3_r3.1.jar

Dependencies of Java gateway: Logback, SLF4J, and Android JSON library.

30

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://www.zabbix.com/download.php
http://logback.qos.ch/
http://www.slf4j.org/
https://android.googlesource.com/platform/libcore/+/master/json

lib/logback.xml
lib/logback-console.xml

Configuration files for Logback.

shutdown.sh
startup.sh

Convenience scripts for starting and stopping Java gateway.

settings.sh

Configuration file that is sourced by startup and shutdown scripts above.

3 Configuring and running Java gateway

By default, Java gateway listens on port 10052. If you plan on running Java gateway on a different port, you can specify that in
settings.sh script. See the description of Java gateway configuration file for how to specify this and other options.

Warning:
Port 10052 is not IANA registered.

Once you are comfortable with the settings, you can start Java gateway by running the startup script:

$./startup.sh

Likewise, once you no longer need Java gateway, run the shutdown script to stop it:

$./shutdown.sh

Note that unlike server or proxy, Java gateway is lightweight and does not need a database.

4 Configuring server for use with Java gateway

Now that Java gateway is running, you have to tell Zabbix server where to find Zabbix Java gateway. This is done by specifying
JavaGateway and JavaGatewayPort parameters in server configuration file. If the host on which JMX application is running is
monitored by Zabbix proxy, then you specify the connection parameters in proxy configuration file instead.

JavaGateway=192.168.3.14
JavaGatewayPort=10052

By default, server does not start any processes related to JMX monitoring. If you wish to use it, however, you have to specify the
number of pre-forked instances of Java pollers. You do this in the same way you specify regular pollers and trappers.

StartJavaPollers=5

Do not forget to restart server or proxy, once you are done with configuring them.

5 Debugging Java gateway

In case there are any problems with Java gateway or an error message that you see about an item in the frontend is not descriptive
enough, you might wish to take a look at Java gateway log file.

By default, Java gateway logs its activities into /tmp/zabbix_java.log file with log level ”info”. Sometimes that information is not
enough and there is a need for information at log level ”debug”. In order to increase logging level, modify file lib/logback.xml and
change the level attribute of <root> tag to ”debug”:

<root level="debug">
<appender-ref ref="FILE" />

</root>

Note that unlike Zabbix server or Zabbix proxy, there is no need to restart Zabbix Java gateway after changing logback.xml file -
changes in logback.xml will be picked up automatically. When you are done with debugging, you can return the logging level to
”info”.

If you wish to log to a different file or a completely different medium like database, adjust logback.xml file to meet your needs.
See Logback Manual for more details.

Sometimes for debugging purposes it is useful to start Java gateway as a console application rather than a daemon. To do that,
comment out PID_FILE variable in settings.sh. If PID_FILE is omitted, startup.sh script starts Java gateway as a console application
and makes Logback use lib/logback-console.xml file instead, which not only logs to console, but has logging level ”debug” enabled
as well.

Finally, note that since Java gateway uses SLF4J for logging, you can replace Logback with the framework of your choice by placing
an appropriate JAR file in lib directory. See SLF4J Manual for more details.

31

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://logback.qos.ch/manual/
http://www.slf4j.org/manual.html

6 Sender

Overview

Zabbix sender is a command line utility that may be used to send performance data to Zabbix server for processing.

The utility is usually used in long running user scripts for periodical sending of availability and performance data.

For sending results directly to Zabbix server or proxy, a trapper item type must be configured.

Running Zabbix sender

An example of running Zabbix UNIX sender:

shell> cd bin
shell> ./zabbix_sender -z zabbix -s "Linux DB3" -k db.connections -o 43

where:

• z - Zabbix server host (IP address can be used as well)
• s - technical name of monitored host (as registered in Zabbix frontend)
• k - item key
• o - value to send

Attention:
Options that contain whitespaces, must be quoted using double quotes.

Zabbix sender can be used to send multiple values from an input file. See the Zabbix sender manpage for more information.

Zabbix sender accepts strings in UTF-8 encoding (for both UNIX-like systems and Windows) without byte order mark (BOM) first in
the file.

Zabbix sender on Windows can be run similarly:

zabbix_sender.exe [options]

Since Zabbix 1.8.4, zabbix_sender realtime sending scenarios have been improved to gather multiple values passed to it in close
succession and send them to the server in a single connection. A value that is not further apart from the previous value than 0.2
seconds can be put in the same stack, but maximum pooling time still is 1 second.

Note:
Zabbix sender will terminate if invalid (not following parameter=value notation) parameter entry is present in the specified
configuration file.

7 Get

Overview

Zabbix get is a command line utility which can be used to communicate with Zabbix agent and retrieve required information from
the agent.

The utility is usually used for the troubleshooting of Zabbix agents.

Running Zabbix get

An example of running Zabbix get under UNIX to get the processor load value from the agent:

shell> cd bin
shell> ./zabbix_get -s 127.0.0.1 -p 10050 -k system.cpu.load[all,avg1]

Another example of running Zabbix get for capturing a string from a website:

shell> cd bin
shell> ./zabbix_get -s 192.168.1.1 -p 10050 -k "web.page.regexp[www.zabbix.com,,,\"USA: ([a-zA-Z0-9.-]+)\",,\1]"

Note that the item key here contains a space so quotes are used to mark the item key to the shell. The quotes are not part of the
item key; they will be trimmed by the shell and will not be passed to Zabbix agent.

32

Zabbix get accepts the following command line parameters:

-s --host <host name or IP> Specify host name or IP address of a host.
-p --port <port number> Specify port number of agent running on the host. Default is 10050.
-I --source-address <IP address> Specify source IP address.
-k --key <item key> Specify key of item to retrieve value of.
-h --help Give this help.
-V --version Display version number.

See also Zabbix get manpage for more information.

Zabbix get on Windows can be run similarly:

zabbix_get.exe [options]

3. Installation

Please use the sidebar to access content in the Installation section.

1 Getting Zabbix

Overview

There are four ways of getting Zabbix:

• Install it from the distribution packages
• Download the latest source archive and compile it yourself
• Install it from the containers
• Download the virtual appliance

To download the latest sources or the virtual appliance, go to the Zabbix download page, where direct links to latest versions are
provided. To download older versions, see the link below stable version downloads.

2 Requirements

Hardware

Memory

Zabbix requires both physical and disk memory. 128 MB of physical memory and 256 MB of free disk space could be a good
starting point. However, the amount of required disk memory obviously depends on the number of hosts and parameters that are
being monitored. If you’re planning to keep a long history of monitored parameters, you should be thinking of at least a couple of
gigabytes to have enough space to store the history in the database. Each Zabbix daemon process requires several connections
to a database server. Amount of memory allocated for the connection depends on configuration of the database engine.

Note:
The more physical memory you have, the faster the database (and therefore Zabbix) works!

CPU

Zabbix and especially Zabbix database may require significant CPU resources depending on number of monitored parameters and
chosen database engine.

Other hardware

A serial communication port and a serial GSM modem are required for using SMS notification support in Zabbix. USB-to-serial
converter will also work.

Examples of hardware configuration

The table provides several examples of hardware configurations:

33

http://www.zabbix.com/download.php

Name Platform CPU/Memory Database Monitored hosts

Small CentOS Virtual Appliance MySQL InnoDB 100
Medium CentOS 2 CPU cores/2GB MySQL InnoDB 500
Large RedHat Enterprise

Linux
4 CPU cores/8GB RAID10 MySQL

InnoDB or
PostgreSQL

>1000

Very large RedHat Enterprise
Linux

8 CPU cores/16GB Fast RAID10 MySQL
InnoDB or
PostgreSQL

>10000

Note:
Actual configuration depends on the number of active items and refresh rates very much. It is highly recommended to run
the database on a separate box for large installations.

Supported platforms

Due to security requirements and mission-critical nature of monitoring server, UNIX is the only operating system that can consis-
tently deliver the necessary performance, fault tolerance and resilience. Zabbix operates on market leading versions.

Zabbix is tested on the following platforms:

• Linux
• IBM AIX
• FreeBSD
• NetBSD
• OpenBSD
• HP-UX
• Mac OS X
• Solaris
• Windows: all desktop and server versions since 2000 (Zabbix agent only)

Note:
Zabbix may work on other Unix-like operating systems as well.

Attention:
Zabbix disables core dumps if compiled with encryption and does not start if system does not allow disabling of core dumps.

Software

Zabbix is built around a modern Apache web server, leading database engines, and PHP scripting language.

Database management system

Software Version Comments

MySQL 5.0.3 or later Required if MySQL is used as Zabbix
backend database. InnoDB engine is
required.

Oracle 10g or later Required if Oracle is used as Zabbix
backend database.

PostgreSQL 8.1 or later Required if PostgreSQL is used as Zabbix
backend database.
It is suggested to use at least PostgreSQL
8.3, which introduced much better
VACUUM performance.

SQLite 3.3.5 or later Required if SQLite is used as Zabbix
backend database.

IBM DB2 9.7 or later Required if IBM DB2 is used as Zabbix
backend database.

Attention:
IBM DB2 support is experimental!

34

http://www.postgresql.org/docs/8.3/static/release-8-3.html
http://www.postgresql.org/docs/8.3/static/release-8-3.html

Attention:
While SQLite3 can be used with Zabbix proxies without any problems, using SQLite3 with Zabbix server is not recom-
mended. Since Zabbix 2.4.0, simultaneous database access with server and frontend may even lead to database corrup-
tion!

Frontend

The following software is required to run Zabbix frontend:

Software Version Comments

Apache 1.3.12 or later
PHP 5.4.0 or later
PHP extensions:
gd 2.0 or later PHP GD extension must support PNG

images (--with-png-dir), JPEG
(--with-jpeg-dir) images and FreeType 2
(--with-freetype-dir).

bcmath php-bcmath (--enable-bcmath)
ctype php-ctype (--enable-ctype)
libXML 2.6.15 or later php-xml or php5-dom, if provided as a

separate package by the distributor.
xmlreader php-xmlreader, if provided as a separate

package by the distributor.
xmlwriter php-xmlwriter, if provided as a separate

package by the distributor.
session php-session, if provided as a separate

package by the distributor.
sockets php-net-socket (--enable-sockets).

Required for user script support.
mbstring php-mbstring (--enable-mbstring)
gettext php-gettext (--with-gettext). Required for

translations to work.
ldap php-ldap. Required only if LDAP

authentication is used in the frontend.
ibm_db2 Required if IBM DB2 is used as Zabbix

backend database.
mysqli Required if MySQL is used as Zabbix

backend database.
oci8 Required if Oracle is used as Zabbix

backend database.
pgsql Required if PostgreSQL is used as Zabbix

backend database.
sqlite3 Required if SQLite is used as Zabbix

backend database.

Note:
Zabbix may work on previous versions of Apache, MySQL, Oracle, and PostgreSQL as well.

Attention:
For other fonts than the default DejaVu, PHP function imagerotate might be required. If it is missing, these fonts might be
rendered incorrectly when a graph is displayed. This function is only available if PHP is compiled with bundled GD, which
is not the case in Debian and other distributions.

Web browser on client side

Cookies and Java Script must be enabled.

Latest versions of Google Chrome, Mozilla Firefox, Microsoft Internet Explorer and Opera are supported. Other browsers (Apple
Safari, Konqueror) may work with Zabbix as well.

35

http://php.net/manual/en/function.imagerotate.php

Warning:
Starting with Zabbix 3.2.10, the same origin policy for IFrames is implemented, which means that Zabbix cannot be placed
in frames on a different domain.

Still, pages placed into a Zabbix frame will have access to Zabbix frontend (through JavaScript) if the page that is placed
in the frame and Zabbix frontend are on the same domain. A page like http://secure-zabbix.com/cms/page.html,
if placed into screens on http://secure-zabbix.com/zabbix/, will have full JS access to Zabbix.

Server

Requirement Description

OpenIPMI Required for IPMI support.
libssh2 Required for SSH support. Version 1.0 or higher.
fping Required for ICMP ping items.
libcurl Required for web monitoring, VMware monitoring and SMTP

authentication. For SMTP authentication, version 7.20.0 or
higher is required.

libiksemel Required for Jabber support.
libxml2 Required for VMware monitoring.
net-snmp Required for SNMP support.

Java gateway

If you obtained Zabbix from the source repository or an archive, then the necessary dependencies are already included in the
source tree.

If you obtained Zabbix from your distribution’s package, then the necessary dependencies are already provided by the packaging
system.

In both cases above, the software is ready to be used and no additional downloads are necessary.

If, however, you wish to provide your versions of these dependencies (for instance, if you are preparing a package for some Linux
distribution), below is the list of library versions that Java gateway is known to work with. Zabbix may work with other versions of
these libraries, too.

The following table lists JAR files that are currently bundled with Java gateway in the original code:

Library License Website Comments

logback-core-0.9.27.jar EPL 1.0, LGPL 2.1 http://logback.qos.ch/ Tested with 0.9.27, 1.0.13, and
1.1.1.

logback-classic-0.9.27.jar EPL 1.0, LGPL 2.1 http://logback.qos.ch/ Tested with 0.9.27, 1.0.13, and
1.1.1.

slf4j-api-1.6.1.jar MIT License http://www.slf4j.org/ Tested with 1.6.1, 1.6.6, and
1.7.6.

android-json-4.3_r3.1.jar Apache License 2.0 https:
//android.googlesource.
com/platform/libcore/+/
master/json

Tested with 2.3.3_r1.1 and
4.3_r3.1. See
src/zabbix_java/lib/README for
instructions on creating a JAR
file.

Java gateway compiles and runs with Java 1.6 and above. It is recommended that those who provide a precompiled version of the
gateway for others use Java 1.6 for compilation, so that it runs on all versions of Java up to the latest one.

Database size

Zabbix configuration data require a fixed amount of disk space and do not grow much.

Zabbix database size mainly depends on these variables, which define the amount of stored historical data:

• Number of processed values per second

This is the average number of new values Zabbix server receives every second. For example, if we have 3000 items for monitoring
with refresh rate of 60 seconds, the number of values per second is calculated as 3000/60 = 50.

It means that 50 new values are added to Zabbix database every second.

36

http://logback.qos.ch/
http://logback.qos.ch/
http://www.slf4j.org/
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json

• Housekeeper settings for history

Zabbix keeps values for a fixed period of time, normally several weeks or months. Each new value requires a certain amount of
disk space for data and index.

So, if we would like to keep 30 days of history and we receive 50 values per second, total number of values will be around
(30*24*3600)* 50 = 129.600.000, or about 130M of values.

Depending on the database engine used, type of received values (floats, integers, strings, log files, etc), the disk space for keeping
a single value may vary from 40 bytes to hundreds of bytes. Normally it is around 90 bytes per value for numeric items. In our
case, it means that 130M of values will require 130M * 90 bytes = 10.9GB of disk space.

Note:
The size of text/log item values is impossible to predict exactly, but you may expect around 500 bytes per value.

• Housekeeper setting for trends

Zabbix keeps a 1-hour max/min/avg/count set of values for each item in the table trends. The data is used for trending and long
period graphs. The one hour period can not be customised.

Zabbix database, depending on database type, requires about 90 bytes per each total. Suppose we would like to keep trend data
for 5 years. Values for 3000 items will require 3000*24*365* 90 = 2.2GB per year, or 11GB for 5 years.

• Housekeeper settings for events

Each Zabbix event requires approximately 170 bytes of disk space. It is hard to estimate the number of events generated by
Zabbix daily. In the worst case scenario, we may assume that Zabbix generates one event per second.

It means that if we want to keep 3 years of events, this would require 3*365*24*3600* 170 = 15GB

The table contains formulas that can be used to calculate the disk space required for Zabbix system:

Parameter Formula for required disk space (in bytes)

Zabbix configuration Fixed size. Normally 10MB or less.
History days*(items/refresh rate)*24*3600*bytes

items : number of items
days : number of days to keep history
refresh rate : average refresh rate of items
bytes : number of bytes required to keep single value, depends on database engine, normally ~90
bytes.

Trends days*(items/3600)*24*3600*bytes
items : number of items
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally ~90
bytes.

Events days*events*24*3600*bytes
events : number of event per second. One (1) event per second in worst case scenario.
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally ~170
bytes.

Note:
Average values such as ~90 bytes for numeric items, ~170 bytes for events have been gathered from real-life statistics
using a MySQL backend database.

So, the total required disk space can be calculated as:
Configuration + History + Trends + Events
The disk space will NOT be used immediately after Zabbix installation. Database size will grow then it will stop growing at some
point, which depends on housekeeper settings.

Time synchronisation

It is very important to have precise system date on server with Zabbix running. ntpd is the most popular daemon that synchronizes
the host’s time with the time of other machines. It’s strongly recommended to maintain synchronised system date on all systems
Zabbix components are running on.

37

http://www.ntp.org/

If the time is not synchronised Zabbix will convert timestamps of the gathered data into Zabbix server time by taking client/server
timestamps after establishing data connection and adjusting the received item value timestamps by the client-server time differ-
ence. To keep it simple and avoid possible complications the connection latency is ignored. Because of that the connection latency
is added to the timestamps of data acquired from active connections (active agent, active proxy, sender) and subtracted from
the timestamps of data acquired from passive connections (passive proxy). All other checks are done in server time and their
timestamps are not adjusted.

Best practices for secure Zabbix setup

Overview

This section contains best practices that should be observed in order to set up Zabbix in a secure way.

The practices contained here are not required for the functioning of Zabbix. They are recommended for better security of the
system.

Secure user for Zabbix agent

In the default configuration, Zabbix server and Zabbix agent processes share one ’zabbix’ user. If you wish to make sure that
the agent cannot access sensitive details in server configuration (e.g. database login information), the agent should be run as a
different user:

1. Create a secure user
2. Specify this user in the agent configuration file (’User’ parameter)
3. Restart the agent with administrator privileges. Privileges will be dropped to the specified user.

UTF-8 encoding

UTF-8 is the only encoding supported by Zabbix. It is known to work without any security flaws. Users should be aware that there
are known security issues if using some of the other encodings.

Setting up SSL for Zabbix frontend

On RHEL/Centos, install mod_ssl package:

yum install mod_ssl

Create directory for SSL keys:

mkdir /etc/httpd/ssl

Add settings for SSL setup:

Country Name (2 letter code) [XX]:
State or Province Name (full name) []:
Locality Name (eg, city) [Default City]:
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:localhost
Email Address []:

Edit Apache SSL configuration:

/etc/httpd/conf.d/ssl.conf

DocumentRoot "/usr/share/zabbix"
ServerName localhost:443
SSLCertificateFile /etc/httpd/ssl/apache.crt
SSLCertificateKeyFile /etc/httpd/ssl/apache.key

Restart the Apache service to apply the changes:

systemctl restart httpd.service

Enabling Zabbix on root directory of URL

Add a virtual host to Apache configuration and set permanent redirect for document root to Zabbix SSL URL. Replace localhost with
the actual name of the server.

/etc/httpd/conf/httpd.conf

#Add lines

38

<VirtualHost *:*>
ServerName localhost
Redirect permanent / http://localhost

</VirtualHost>

Restart the Apache service to apply the changes:

systemctl restart httpd.service

Disabling web server information exposure

It is recommended to disable all web server signatures as part of the web server hardening process. The web server is exposing
software signature by default:

The signature can be disabled by adding two lines to the Apache (used as an example) configuration file:

ServerSignature Off
ServerTokens Prod

PHP signature (X-Powered-By HTTP header) can be disabled by changing the php.ini configuration file (signature is disabled by
default):

expose_php = Off

Web server restart is required for configuration file changes to be applied.

Additional security level can be achieved by using the mod_security (package libapache2-mod-security2) with Apache.
mod_security allows to remove server signature instead of only removing version from server signature. Signature can be
altered to any value by changing ”SecServerSignature” to any desired value after installing mod_security.

Please refer to documentation of your web server to find help on how to remove/change software signatures.

Disabling default web server error pages

It is recommended to disable default error pages to avoid information exposure. Web server is using built-in error pages by default:

Default error pages should be replaced/removed as part of the web server hardening process. The ”ErrorDocument” directive can
be used to define a custom error page/text for Apache web server (used as an example).

Please refer to documentation of your web server to find help on how to replace/remove default error pages.

Removing web server test page

It is recommended to remove the web server test page to avoid information exposure. By default, web server webroot contains a
test page called index.html (Apache2 on Ubuntu is used as an example):

39

The test page should be removed or should be made unavailable as part of the web server hardening process.

3 Installation from sources

You can get the very latest version of Zabbix by compiling it from the sources.

A step-by-step tutorial for installing Zabbix from the sources is provided here.

1 Installing Zabbix daemons

1 Download the source archive

Go to the Zabbix download page and download the source archive. Once downloaded, extract the sources, by running:

$ tar -zxvf zabbix-3.2.0.tar.gz

Note:
Enter the correct Zabbix version in the command. It must match the name of the downloaded archive.

2 Create user account

For all of the Zabbix daemon processes, an unprivileged user is required. If a Zabbix daemon is started from an unprivileged user
account, it will run as that user.

However, if a daemon is started from a ’root’ account, it will switch to a ’zabbix’ user account, which must be present. To create
such a user account (in its own group, ”zabbix”) on Linux systems, run:

groupadd zabbix
useradd -g zabbix zabbix

A separate user account is not required for Zabbix frontend installation.

If Zabbix server and agent are run on the same machine it is recommended to use a different user for running the server than for
running the agent. Otherwise, if both are run as the same user, the agent can access the server configuration file and any Admin
level user in Zabbix can quite easily retrieve, for example, the database password.

Attention:
Running Zabbix as root, bin, or any other account with special rights is a security risk.

3 Create Zabbix database

For Zabbix server and proxy daemons, as well as Zabbix frontend, a database is required. It is not needed to run Zabbix agent.

SQL scripts are provided for creating database schema and inserting the dataset. Zabbix proxy database needs only the schema
while Zabbix server database requires also the dataset on top of the schema.

Having created a Zabbix database, proceed to the following steps of compiling Zabbix.

4 Configure the sources

When configuring the sources for a Zabbix server or proxy, you must specify the database type to be used. Only one database
type can be compiled with a server or proxy process at a time.

To see all of the supported configuration options, inside the extracted Zabbix source directory run:

40

http://www.zabbix.com/download_sources

./configure --help

To configure the sources for a Zabbix server and agent, you may run something like:

./configure --enable-server --enable-agent --with-mysql --enable-ipv6 --with-net-snmp --with-libcurl --with-libxml2

Note:
--with-libcurl configuration option with cURL 7.20.0 or higher is required for SMTP authentication, supported since Zabbix
3.0.0.
--with-libcurl and --with-libxml2 configuration options are required for virtual machine monitoring, supported since Zabbix
2.2.0.

To configure the sources for a Zabbix server (with PostgreSQL etc.), you may run:

./configure --enable-server --with-postgresql --with-net-snmp

To configure the sources for a Zabbix proxy (with SQLite etc.), you may run:

./configure --prefix=/usr --enable-proxy --with-net-snmp --with-sqlite3 --with-ssh2

To configure the sources for a Zabbix agent, you may run:

./configure --enable-agent

You may use the --enable-static flag to statically link libraries. If you plan to distribute compiled binaries among different servers,
you must use this flag to make these binaries work without required libraries. Note that --enable-static does not work in Solaris.

Attention:
Using --enable-static option is not recommended when building server.// //
In order to build the server statically you must have a static version of every external library needed. There is no strict
check for that in configure script.

Note:
Command-line utilities zabbix_get and zabbix_sender are compiled if --enable-agent option is used.

Note:
Add optional path to the MySQL configuration file --with-mysql=/<path_to_the_file>/mysql_config to select the desired
MySQL client library when there is a need to use one that is not located in the default location.
It is useful when there are several versions of MySQL installed or MariaDB installed alongside MySQL on the same system.

Note:
Use --with-ibm-db2 flag to specify location of the CLI API.
Use --with-oracle flag to specify location of the OCI API.

For encryption support see Compiling Zabbix with encryption support.

5 Make and install everything

Note:
If installing from SVN, it is required to run first:
$ make dbschema

make install

This step should be run as a user with sufficient permissions (commonly ’root’, or by using sudo).

Running make install will by default install the daemon binaries (zabbix_server, zabbix_agentd, zabbix_proxy) in /usr/local/sbin
and the client binaries (zabbix_get, zabbix_sender) in /usr/local/bin.

Note:
To specify a different location than /usr/local, use a --prefix key in the previous step of configuring sources, for example --
prefix=/home/zabbix. In this case daemon binaries will be installed under <prefix>/sbin, while utilities under <prefix>/bin.
Man pages will be installed under <prefix>/share.

6 Review and edit configuration files

41

https://docs.oracle.com/cd/E18659_01/html/821-1383/bkajp.html

• edit the Zabbix agent configuration file /usr/local/etc/zabbix_agentd.conf

You need to configure this file for every host with zabbix_agentd installed.

You must specify the Zabbix server IP address in the file. Connections from other hosts will be denied.

• edit the Zabbix server configuration file /usr/local/etc/zabbix_server.conf

You must specify the database name, user and password (if using any).

Note:
With SQLite the full path to database file must be specified; DB user and password are not required.

The rest of the parameters will suit you with their defaults if you have a small installation (up to ten monitored hosts). You should
change the default parameters if you want to maximize the performance of Zabbix server (or proxy) though. See the performance
tuning section for more details.

• if you have installed a Zabbix proxy, edit the proxy configuration file /usr/local/etc/zabbix_proxy.conf

You must specify the server IP address and proxy hostname (must be known to the server), as well as the database name, user
and password (if using any).

Note:
With SQLite the full path to database file must be specified; DB user and password are not required.

7 Start up the daemons

Run zabbix_server on the server side.

shell> zabbix_server

Note:
Make sure that your system allows allocation of 36MB (or a bit more) of shared memory, otherwise the server may not
start and you will see ”Cannot allocate shared memory for <type of cache>.” in the server log file. This may happen on
FreeBSD, Solaris 8.
See the ”See also” section at the bottom of this page to find out how to configure shared memory.

Run zabbix_agentd on all the monitored machines.

shell> zabbix_agentd

Note:
Make sure that your system allows allocation of 2MB of shared memory, otherwise the agent may not start and you will
see ”Cannot allocate shared memory for collector.” in the agent log file. This may happen on Solaris 8.

If you have installed Zabbix proxy, run zabbix_proxy.

shell> zabbix_proxy

2 Installing Zabbix web interface

Copying PHP files

Zabbix frontend is written in PHP, so to run it a PHP supported webserver is needed. Installation is done by simply copying the PHP
files from frontends/php to the webserver HTML documents directory.

Common locations of HTML documents directories for Apache web servers include:

• /usr/local/apache2/htdocs (default directory when installing Apache from source)
• /srv/www/htdocs (OpenSUSE, SLES)
• /var/www/html (Fedora, RHEL, CentOS)
• /var/www (Debian, Ubuntu)

It is suggested to use a subdirectory instead of the HTML root. To create a subdirectory and copy Zabbix frontend files into it,
execute the following commands, replacing the actual directory:

mkdir <htdocs>/zabbix
cd frontends/php
cp -a . <htdocs>/zabbix

If installing from SVN and planning to use any other language than English, you must generate translation files. To do so, run:

42

locale/make_mo.sh

msgfmt utility from gettext package is required.

Note:
Additionally, to use any other language than English, its locale should be installed on the web server. See the ”See also”
section in the ”User profile” page to find out how to install it if required.

Installing frontend

Step 1

In your browser, open Zabbix URL: http://<server_ip_or_name>/zabbix

You should see the first screen of the frontend installation wizard.

Step 2

Make sure that all software prerequisites are met.

Pre-requisite Minimum value Description

PHP version 5.4.0

43

Pre-requisite Minimum value Description

PHP memory_limit option 128MB In php.ini:
memory_limit = 128M

PHP post_max_size option 16MB In php.ini:
post_max_size = 16M

PHP upload_max_filesize option 2MB In php.ini:
upload_max_filesize = 2M

PHP max_execution_time option 300 seconds (values 0 and -1 are
allowed)

In php.ini:
max_execution_time = 300

PHP max_input_time option 300 seconds (values 0 and -1 are
allowed)

In php.ini:
max_input_time = 300

PHP session.auto_start option must be disabled In php.ini:
session.auto_start = 0

Database support One of: IBM DB2, MySQL, Oracle,
PostgreSQL, SQLite

One of the following modules must
be installed:
ibm_db2, mysql, oci8, pgsql,
sqlite3

bcmath php-bcmath
mbstring php-mbstring
PHP mbstring.func_overload option must be disabled In php.ini:

mbstring.func_overload = 0
PHP always_populate_raw_post_data
option

must be disabled Required only for PHP versions
5.6.0 or newer.
In php.ini:
always_populate_raw_post_data =
-1

sockets php-net-socket. Required for user
script support.

gd 2.0 or higher php-gd. PHP GD extension must
support PNG images
(--with-png-dir), JPEG
(--with-jpeg-dir) images and
FreeType 2 (--with-freetype-dir).

libxml 2.6.15 php-xml or php5-dom
xmlwriter php-xmlwriter
xmlreader php-xmlreader
ctype php-ctype
session php-session
gettext php-gettext

Since Zabbix 2.2.1, the PHP
gettext extension is not a
mandatory requirement for
installing Zabbix. If gettext is not
installed, the frontend will work as
usual, however, the translations
will not be available.

Optional pre-requisites may also be present in the list. A failed optional prerequisite is displayed in orange and has a Warning
status. With a failed optional pre-requisite, the setup may continue.

Attention:
If there is a need to change the Apache user or user group, permissions to the session folder must be verified. Otherwise
Zabbix setup may be unable to continue.

Step 3

Enter details for connecting to the database. Zabbix database must already be created.

44

Step 4

Enter Zabbix server details.

Step 5

Review a summary of settings.

45

Step 6

Download the configuration file and place it under conf/ in the webserver HTML documents subdirectory where you copied Zabbix
PHP files to.

46

Note:
Providing the webserver user has write access to conf/ directory the configuration file would be saved automatically and it
would be possible to proceed to the next step right away.

Step 7

Finish the installation.

Step 8

Zabbix frontend is ready! The default user name is Admin, password zabbix.

Proceed to getting started with Zabbix.

See also

1. How to configure shared memory for Zabbix daemons

47

http://www.zabbix.org/wiki/How_to/configure_shared_memory

4 Installation from packages

From distribution packages

Several popular OS distributions have Zabbix packages provided. You can use these packages to install Zabbix.

Note:
OS distributions may lack the latest version of Zabbix in their repositiories.

From Zabbix official repository

Zabbix SIA provides official RPM and DEB packages for:

• Red Hat Enterprise Linux
• Debian
• Ubuntu LTS

Package files are available at repo.zabbix.com. Yum and apt repositories are also available on the server. A step-by-step tutorial
for installing Zabbix from packages is provided in sub-pages here.

1 Repository installation

For Red Hat Enterprise Linux / CentOS

Supported versions

• RHEL 7
• Oracle Linux 7
• CentOS 7

Some packages (agent, proxy, etc.) are available for RHEL 5 and RHEL 6 (in http://repo.zabbix.com/zabbix/3.2/rhel/5/x86_64/ and
http://repo.zabbix.com/zabbix/3.2/rhel/6/x86_64/ directories respectively).

Installing repository configuration package

Install the repository configuration package. This package contains yum (software package manager) configuration files.

rpm -ivh http://repo.zabbix.com/zabbix/3.2/rhel/7/x86_64/zabbix-release-3.2-1.el7.noarch.rpm

Now you are ready to install Zabbix server with MySQL or server with PostreSQL, agent and proxy.

For Debian

Supported versions

• Debian 9 (codename: stretch)
• Debian 8 (codename: jessie)
• Debian 7 (codename: wheezy)

Installing repository configuration package

Install the repository configuration package, which contains apt (software package manager) configuration files. Shell commands
for Debian 9 (stretch):

wget http://repo.zabbix.com/zabbix/3.2/debian/pool/main/z/zabbix-release/zabbix-release_3.2-1+stretch_all.deb
dpkg -i zabbix-release_3.2-1+stretch_all.deb
apt-get update

For Debian 8 change ’stretch’ to ’jessie’. For Debian 7 change ’stretch’ to ’wheezy’.

Now you are ready to install Zabbix server with MySQL or server with PostreSQL, agent and proxy.

For Ubuntu

Supported versions

* Ubuntu 16.04 LTS (codeame: xenial)
* Ubuntu 14.04 LTS (codename: trusty)

48

http://repo.zabbix.com/
http://repo.zabbix.com/zabbix/3.2/rhel/5/x86_64/
http://repo.zabbix.com/zabbix/3.2/rhel/6/x86_64/

Installing repository configuration package

Install the repository configuration package, which contains apt (software package manager) configuration files. Shell commands
for Ubuntu 16.04 LTS (xenial):

wget http://repo.zabbix.com/zabbix/3.2/ubuntu/pool/main/z/zabbix-release/zabbix-release_3.2-1+xenial_all.deb
dpkg -i zabbix-release_3.2-1+xenial_all.deb
apt-get update

For Ubuntu 14.04 LTS change ’xenial’ to ’trusty’.

Now you are ready to install Zabbix server with MySQL or server with PostreSQL, agent and proxy.

2 Server installation with MySQL database

Attention:
It is a good practice to have the innodb_file_per_table option enabled on MySQL. Check this setting before proceeding.

Red Hat Enterprise Linux / CentOS

Installing packages

Here is an example for Zabbix server and web frontend installation with MySQL database:

yum install zabbix-server-mysql zabbix-web-mysql

Attention:
In order to install zabbix-web-mysql on RHEL 7 you need to enable rhel-7-server-optional-rpms repository.

Creating initial database

Create Zabbix database and user on MySQL by the following commands, where <root_password> shall be replaced with the actual
root password (e.g., shell> mysql -uroot -p12345) and <password> with new password for zabbix user on the database
(including apostrophes: ...identified by '67890';):

shell> mysql -uroot -p<root_password>
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost identified by '<password>';
mysql> quit;

Now import initial schema and data. Make sure to insert correct version for 3.2.*. You will be prompted to enter your newly
created password.

zcat /usr/share/doc/zabbix-server-mysql-3.2.*/create.sql.gz | mysql -uzabbix -p zabbix

In order to check the version you have in your package, use the following command:

rpm -q zabbix-server-mysql

Database configuration for Zabbix server

Edit server host, name, user and password in zabbix_server.conf as follows, where DBPassword is the password you’ve set creating
initial database:

vi /etc/zabbix/zabbix_server.conf
DBHost=localhost
DBName=zabbix
DBUser=zabbix
DBPassword=<password>

Starting Zabbix server process

It’s time to start Zabbix server process and make it start at system boot:

systemctl start zabbix-server
systemctl enable zabbix-server

PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/httpd/conf.d/zabbix.conf. Some PHP settings are already configured.
But it’s necessary to uncomment the ”date.timezone” setting and set the right timezone for you.

49

https://dev.mysql.com/doc/refman/5.6/en/tablespace-enabling.html
http://php.net/manual/en/timezones.php

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value always_populate_raw_post_data -1
php_value date.timezone Europe/Riga

SELinux configuration

Having SELinux status enabled in enforcing mode, you need to execute the following command to enable successful connection of
Zabbix frontend to the server:

setsebool -P httpd_can_connect_zabbix on

As frontend and SELinux configuration is done, you need to restart Apache web server:

systemctl start httpd

Installing frontend

Now you are ready to proceed with frontend installation steps which will allow you to access your newly installed Zabbix.

Note:
Zabbix official repository provides fping, iksemel, libssh2 packages for RHEL as well. These packages are located in the
non-supported directory.

Debian / Ubuntu

Installing packages

Here is an example for Zabbix server and web frontend installation with MySQL database:

apt-get install zabbix-server-mysql zabbix-frontend-php

Creating initial database

Create Zabbix database and user on MySQL by the following commands, where <root_password> shall be replaced with the actual
root password (e.g., shell> mysql -uroot -p12345) and <password> with new password for zabbix user on the database
(including apostrophes: ...identified by '67890';):

shell> mysql -uroot -p<root_password>
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost identified by '<password>';
mysql> quit;

Then import initial schema and data. You will be prompted to enter your newly created password.

zcat /usr/share/doc/zabbix-server-mysql/create.sql.gz | mysql -uzabbix -p zabbix

Database configuration for Zabbix server

Edit server host, name, user and password in zabbix_server.conf as follows, where DBPassword is the password you’ve set creating
initial database::

vi /etc/zabbix/zabbix_server.conf
DBHost=localhost
DBName=zabbix
DBUser=zabbix
DBPassword=<password>

Starting Zabbix server process

Now you may start Zabbix server process and make it start at system boot

service zabbix-server start
update-rc.d zabbix-server enable

PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/zabbix/apache.conf. Some PHP settings are already configured. But
it’s necessary to uncomment the ”date.timezone” setting and set the right timezone for you.

50

http://repo.zabbix.com/non-supported/
http://php.net/manual/en/timezones.php

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value always_populate_raw_post_data -1
php_value date.timezone Europe/Riga

After that you need to restart Apache web server:

service apache2 restart

If you have SELinux status enabled in enforcing mode see corresponding block for RHEL / CentOS above.

Installing frontend

Now you are ready to proceed with frontend installation steps which will allow you to access your newly installed Zabbix.

3 Server installation with PostgreSQL database

Red Hat Enterprise Linux / CentOS

Installing packages

Here is an example for Zabbix server and web frontend with PostgreSQL database.

yum install zabbix-server-pgsql zabbix-web-pgsql

Creating initial database

You need to have a database user with permissions to create database objects. The following shell command will create a user
zabbix. Specify a password when prompted and repeat the password (note, you may first be asked for a sudo password):

shell> sudo -u postgres createuser --pwprompt zabbix

Now we will set up the database zabbix (last parameter) with the previously created user as the owner (-O zabbix) and import
initial schema and data:

shell> sudo -u postgres createdb -O zabbix zabbix
shell> zcat /usr/share/doc/zabbix-server-pgsql/create.sql.gz | sudo -u zabbix psql zabbix

Attention:
The above commands are provided as an example that will work in most GNU/Linux installations. You can use different
commands, e. g. psql -U <username> depending on how your system/database is configured. If you have troubles
setting up the database please consult your database administrator.

Database configuration for Zabbix server

Edit server host, name, user and password in zabbix_server.conf as follows, replacing <username_password> with actual password
of PostgreSQL user:

vi /etc/zabbix/zabbix_server.conf
DBHost=
DBName=zabbix
DBUser=zabbix
DBPassword=<username_password>

You might want to keep default setting DBHost=localhost (or an IP address), but this would make PostgreSQL use network socket
connecting to Zabbix. See SELinux configuration block below for instructions.

Starting Zabbix server process

It’s time to start Zabbix server process and make it start at system boot:

systemctl start zabbix-server
systemctl enable zabbix-server

PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/httpd/conf.d/zabbix.conf. Some PHP settings are already configured.
But it’s necessary to uncomment the ”date.timezone” setting and set the right timezone for you.

51

http://php.net/manual/en/timezones.php

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value always_populate_raw_post_data -1
php_value date.timezone Europe/Riga

SELinux configuration

Having SELinux status enabled in enforcing mode, you need to execute the following command to enable successful connection of
Zabbix frontend to the server:

setsebool -P httpd_can_connect_zabbix on

If any parameter such as ”localhost” or an IP address is set for DBHost= in zabbix_server.conf, you need to allow connection
between Zabbix frontend and the database too:

setsebool -P httpd_can_network_connect_db on

As frontend and SELinux configuration is done, you need to restart Apache web server:

systemctl start httpd

Installing frontend

Now you are ready to proceed with frontend installation steps which will allow you to access your newly installed Zabbix.

Note:
Zabbix official repository provides fping, iksemel, libssh2 packages for RHEL as well. These packages are located in the
non-supported directory.

Debian / Ubuntu

Installing packages

Example for Zabbix server and web frontend with PostgreSQL database.

apt-get install zabbix-server-pgsql zabbix-frontend-php

Creating initial database

You need to have database username user set up with permissions to create database objects.
Create Zabbix database on PostgreSQL with the following commands:

shell> psql -U <username>
psql> create database zabbix;
psql> \q

Then import initial schema and data:

zcat /usr/share/doc/zabbix-server-pgsql/create.sql.gz | psql -U <username> zabbix

Database configuration for Zabbix server

Edit server host, name, user and password in zabbix_server.conf as follows, replacing <username_password> with actual password
of PostgreSQL user:

vi /etc/zabbix/zabbix_server.conf
DBHost=
DBName=zabbix
DBUser=zabbix
DBPassword=<username_password>

You might want to keep default setting DBHost=localhost (or an IP address), but this would make PostgreSQL use network socket
instead of UNIX socket connecting to Zabbix. If you also have SELinux enabled in enforcing mode see SELinux configuration for
instructions.

Starting Zabbix server process

Now you may start Zabbix server process and make it start at system boot

52

http://repo.zabbix.com/non-supported/

service zabbix-server start
update-rc.d zabbix-server enable

PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/zabbix/apache.conf. Some PHP settings are already configured. But
it’s necessary to uncomment the ”date.timezone” setting and set the right timezone for you.

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value always_populate_raw_post_data -1
php_value date.timezone Europe/Riga

As frontend is configured, you need to restart Apache web server:

service apache2 restart

Installing frontend

Now you are ready to proceed with frontend installation steps which will allow you to access your newly installed Zabbix.

4 Agent installation

This page covers installation of Zabbix agent. If needed, you may check additional info about supported platforms and permission
requirements for the agent.

Red Hat Enterprise Linux / CentOS

To install agent after correct repository configuration package is installed, run the following command:

yum install zabbix-agent

Now agent is ready to be started by:

systemctl start zabbix-agent

Debian / Ubuntu

To install agent after correct repository configuration package is installed, run the following command:

apt-get install zabbix-agent

Now agent is ready to be started by:

service zabbix-agent start

Windows

Check this appendix section for Windows-based installation and configuration instructions.

5 Proxy installation

For this procedure Zabbix repository provides choice of 3 packages named as follows:

• zabbix-proxy-mysql
• zabbix-proxy-pgsql
• zabbix-proxy-sqlite3

where the last value of the name (after zabbix-proxy-) represents database type of the package — MySQL, PostgreSQL and SQLite
respectively.

Red Hat Enterprise Linux / CentOS

Installing packages

Install proxy and make sure to insert correct database type value for <database_type>:

yum install zabbix-proxy-<database_type>

53

http://php.net/manual/en/timezones.php

Creating proxy database

Create Zabbix proxy database and its user.
For instructions on doing that, see examples from server installation with MySQL or PostgreSQL and mind peculiarity of the SQLite
creation.

Then import initial schema. Make sure to insert correct version for 3.2.X.

MySQL command:

zcat /usr/share/doc/zabbix-proxy-mysql-3.2.X/schema.sql.gz | mysql -u<username> zabbix

PostgreSQL command:

zcat /usr/share/doc/zabbix-proxy-pgsql-3.2.X/schema.sql.gz | psql -U <username> zabbix

SQLite command:

zcat /usr/share/doc/zabbix-proxy-sqlite3-3.2.X/schema.sql.gz | sqlite3 zabbix.db

In order to check the version you have in your package, use the following command:

rpm -q zabbix-proxy-<database_type>

Starting Zabbix proxy process

After database is installed and zabbix_proxy.conf file is configured, you may start Zabbix proxy process.

systemctl start zabbix-proxy

Debian / Ubuntu

Installing packages

Install proxy and make sure to insert correct database type value for <database_type>:

apt-get install zabbix-proxy-<database_type>

Creating proxy database

Create Zabbix proxy database and its user.
For instructions on doing that, see examples from server installation with MySQL or PostgreSQL and mind peculiarity of the SQLite
creation.

Then import initial schema.

MySQL command:

zcat /usr/share/doc/zabbix-proxy-mysql/schema.sql.gz | mysql -u<username> zabbix

PostgreSQL command:

zcat /usr/share/doc/zabbix-proxy-pgsql/schema.sql.gz | psql -U <username> zabbix

SQLite command:

zcat /usr/share/doc/zabbix-proxy-sqlite3/schema.sql.gz | sqlite3 zabbix.db

Starting Zabbix proxy process

After database is installed and zabbix_proxy.conf file is configured, you may start Zabbix proxy process.

service zabbix-proxy start

Common configuration

Database configuration for Zabbix proxy

Edit proxy host, name, user and password in zabbix_proxy.conf

Warning:
If Zabbix proxy and Zabbix server are installed on the same host, their databases must have unique names! Defaults for
both are zabbix.

vi /etc/zabbix/zabbix_proxy.conf
DBHost=localhost
DBName=zabbix
DBUser=zabbix
DBPassword=zabbix

54

5 Installation from containers

Docker Zabbix provides Docker images for each Zabbix component as portable and self-sufficient containers to speed up deploy-
ment and update procedure.

Zabbix components come with MySQL and PostgreSQL database support, Apache2 and Nginx web server support. These images
are separated into different images.

Docker base images

Zabbix components are provided on Ubuntu and Alpine Linux base images:

Image Version
alpine latest
ubuntu trusty

All images are configured to rebuild latest images if base images are updated.

Docker file sources

Everyone can follow Docker file changes using the Zabbix official repository on github.com. You can fork the project or make your
own images based on official Docker files.

Structure

All Zabbix components are available in the following Docker repositories:

• Zabbix agent - zabbix/zabbix-agent
• Zabbix server

– Zabbix server with MySQL database support - zabbix/zabbix-server-mysql
– Zabbix server with PostgreSQL database support - zabbix/zabbix-server-pgsql

• Zabbix web-interface
– Zabbix web-interface based on Apache2 web server with MySQL database support - zabbix/zabbix-web-apache-mysql
– Zabbix web-interface based on Nginx web server with MySQL database support - zabbix/zabbix-web-nginx-mysql
– Zabbix web-interface based on Nginx web server with PostgreSQL database support - zabbix/zabbix-web-nginx-pgsql

• Zabbix proxy
– Zabbix proxy with SQLite3 database support - zabbix/zabbix-proxy-sqlite3
– Zabbix proxy with MySQL database support - zabbix/zabbix-proxy-mysql

• Zabbix Java Gateway - zabbix/zabbix-java-gateway

Additionally there is SNMP trap support. It is provided as additional repository (zabbix/zabbix-snmptraps) based on Ubuntu Trusty
only. It could be linked with Zabbix server and Zabbix proxy.

Versions

Each repository of Zabbix components contains the following tags:

• latest - latest stable version of a Zabbix component based on Alpine Linux image
• alpine-latest - latest stable version of a Zabbix component based on Alpine Linux image
• ubuntu-latest - latest stable version of a Zabbix component based on Ubuntu image
• alpine-3.2-latest - latest minor version of a Zabbix 3.2 component based on Alpine Linux image
• ubuntu-3.2-latest - latest minor version of a Zabbix 3.2 component based on Ubuntu image
• alpine-3.2.* - different minor versions of a Zabbix 3.2 component based on Alpine Linux image, where * is the minor
version of Zabbix component

• ubuntu-3.2.* - different minor versions of a Zabbix 3.2 component based on Ubuntu image, where * is the minor version
of Zabbix component

Usage

Environment variables

All Zabbix component images provide environment variables to control configuration. These environment variables are listed in
each component repository. These environment variables are options from Zabbix configuration files, but with different naming
method. For example, ZBX_LOGSLOWQUERIES is equal to LogSlowQueries from Zabbix server and Zabbix proxy configuration
files.

55

https://www.docker.com
https://hub.docker.com/_/alpine/
https://hub.docker.com/_/ubuntu/
https://github.com/zabbix/zabbix-docker
https://github.com/
https://hub.docker.com/r/zabbix/zabbix-agent/
https://hub.docker.com/r/zabbix/zabbix-server-mysql/
https://hub.docker.com/r/zabbix/zabbix-server-pgsql/
https://hub.docker.com/r/zabbix/zabbix-web-apache-mysql/
https://hub.docker.com/r/zabbix/zabbix-web-nginx-mysql/
https://hub.docker.com/r/zabbix/zabbix-web-nginx-pgsql/
https://hub.docker.com/r/zabbix/zabbix-proxy-sqlite3/
https://hub.docker.com/r/zabbix/zabbix-proxy-mysql/
https://hub.docker.com/r/zabbix/zabbix-java-gateway/
https://hub.docker.com/r/zabbix/zabbix-snmptraps/

Attention:
Some of configuration options are not allowed to change. For example, PIDFile and LogType.

Some of components have specific environment variables, which do not exist in official Zabbix configuration files:

Variable Components Description
DB_SERVER_HOST Server

Proxy
Web interface

This variable is IP or DNS name of
MySQL or PostgreSQL server.
By default, value is mysql-server or
postgres-server for MySQL or
PostgreSQL respectively

DB_SERVER_PORT Server
Proxy
Web interface

This variable is port of MySQL or
PostgreSQL server.
By default, value is ’3306’ or ’5432’
respectively.

MYSQL_USER Server
Proxy
Web-interface

MySQL database user.
By default, value is ’zabbix’.

MYSQL_PASSWORD Server
Proxy
Web interface

MySQL database password.
By default, value is ’zabbix’.

MYSQL_DATABASE Server
Proxy
Web interface

Zabbix database name.
By default, value is ’zabbix’ for Zabbix
server and ’zabbix_proxy’ for Zabbix
proxy.

POSTGRES_USER Server
Web interface

PostgreSQL database user.
By default, value is ’zabbix’.

POSTGRES_PASSWORD Server
Web interface

PostgreSQL database password.
By default, value is ’zabbix’.

POSTGRES_DB Server
Web interface

Zabbix database name.
By default, value is ’zabbix’ for Zabbix
server and ’zabbix_proxy’ for Zabbix
proxy.

PHP_TZ Web-interface Timezone in PHP format. Full list of
supported timezones are available on
php.net.
By default, value is ’Europe/Riga’.

ZBX_SERVER_NAME Web interface Visible Zabbix installation name in
right top corner of the web interface.
By default, value is ’Zabbix Docker’

ZBX_JAVAGATEWAY_ENABLE Server
Proxy

Enables communication with Zabbix
Java gateway to collect Java related
checks.
By default, value is ”false”

ZBX_ENABLE_SNMP_TRAPS Server
Proxy

Enables SNMP trap feature. It requires
zabbix-snmptraps instance and
shared volume
/var/lib/zabbix/snmptraps to Zabbix
server or Zabbix proxy.

Volumes

The images allow to use some mount points. These mount points are different and depend on Zabbix component type:

Volume Description
Zabbix agent
/etc/zabbix/zabbix_agentd.d The volume allows to include *.conf files and extend Zabbix

agent using the UserParameter feature
/var/lib/zabbix/modules The volume allows to load additional modules and extend

Zabbix agent using the LoadModule feature

56

http://php.net/manual/en/timezones.php

/var/lib/zabbix/enc The volume is used to store TLS-related files. These file
names are specified using ZBX_TLSCAFILE,
ZBX_TLSCRLFILE, ZBX_TLSKEY_FILE and
ZBX_TLSPSKFILE environment variables

Zabbix server
/usr/lib/zabbix/alertscripts The volume is used for custom alert scripts. It is the

AlertScriptsPath parameter in zabbix_server.conf
/usr/lib/zabbix/externalscripts The volume is used by external checks. It is the

ExternalScripts parameter in zabbix_server.conf
/var/lib/zabbix/modules The volume allows to load additional modules and extend

Zabbix server using the LoadModule feature
/var/lib/zabbix/enc The volume is used to store TLS related files. These file

names are specified using ZBX_TLSCAFILE,
ZBX_TLSCRLFILE, ZBX_TLSKEY_FILE and
ZBX_TLSPSKFILE environment variables

/var/lib/zabbix/ssl/certs The volume is used as location of SSL client certificate files
for client authentication. It is the SSLCertLocation
parameter in zabbix_server.conf

/var/lib/zabbix/ssl/keys The volume is used as location of SSL private key files for
client authentication. It is the SSLKeyLocation parameter
in zabbix_server.conf

/var/lib/zabbix/ssl/ssl_ca The volume is used as location of certificate authority (CA)
files for SSL server certificate verification. It is the
SSLCALocation parameter in zabbix_server.conf

/var/lib/zabbix/snmptraps The volume is used as location of snmptraps.log file. It could
be shared by zabbix-snmptraps container and inherited
using the volumes_from Docker option while creating a new
instance of Zabbix server. SNMP trap processing feature
could be enabled by using shared volume and switching the
ZBX_ENABLE_SNMP_TRAPS environment variable to ’true’

/var/lib/zabbix/mibs The volume allows to add new MIB files. It does not support
subdirectories, all MIBs must be placed in
/var/lib/zabbix/mibs

Zabbix proxy
/usr/lib/zabbix/externalscripts The volume is used by external checks. It is the

ExternalScripts parameter in zabbix_proxy.conf
/var/lib/zabbix/modules The volume allows to load additional modules and extend

Zabbix server using the LoadModule feature
/var/lib/zabbix/enc The volume is used to store TLS related files. These file

names are specified using ZBX_TLSCAFILE,
ZBX_TLSCRLFILE, ZBX_TLSKEY_FILE and
ZBX_TLSPSKFILE environment variables

/var/lib/zabbix/ssl/certs The volume is used as location of SSL client certificate files
for client authentication. It is the SSLCertLocation
parameter in zabbix_proxy.conf

/var/lib/zabbix/ssl/keys The volume is used as location of SSL private key files for
client authentication. It is the SSLKeyLocation parameter
in zabbix_proxy.conf

/var/lib/zabbix/ssl/ssl_ca The volume is used as location of certificate authority (CA)
files for SSL server certificate verification. It is the
SSLCALocation parameter in zabbix_proxy.conf

/var/lib/zabbix/snmptraps The volume is used as location of snmptraps.log file. It could
be shared by the zabbix-snmptraps container and inherited
using the volumes_from Docker option while creating a new
instance of Zabbix server. SNMP trap processing feature
could be enabled by using shared volume and switching the
ZBX_ENABLE_SNMP_TRAPS environment variable to ’true’

/var/lib/zabbix/mibs The volume allows to add new MIB files. It does not support
subdirectories, all MIBs must be placed in
/var/lib/zabbix/mibs

Zabbix web interface based on Apache2 web server

57

/etc/ssl/apache2 The volume allows to enable HTTPS for Zabbix web
interface. The volume must contain the two ssl.crt and
ssl.key files prepared for Apache2 SSL connections

Zabbix web interface based on Nginx web server
/etc/ssl/nginx The volume allows to enable HTTPS for Zabbix web interface.

The volume must contain the two ssl.crt, ssl.key files
and dhparam.pem prepared for Nginx SSL connections

Zabbix snmptraps
/var/lib/zabbix/snmptraps The volume contains the snmptraps.log log file named

with received SNMP traps
/var/lib/zabbix/mibs The volume allows to add new MIB files. It does not support

subdirectories, all MIBs must be placed in
/var/lib/zabbix/mibs

For additional information use Zabbix official repositories in Docker Hub.

Usage examples

** Example 1 **

The example demonstrates how to run Zabbix server with MySQL database support, Zabbix web interface based on the Nginx web
server and Zabbix Java gateway.

1. Start empty MySQL server instance

docker run --name mysql-server -t \
-e MYSQL_DATABASE="zabbix" \
-e MYSQL_USER="zabbix" \
-e MYSQL_PASSWORD="zabbix_pwd" \
-e MYSQL_ROOT_PASSWORD="root_pwd" \
-d mysql:5.7 \
--character-set-server=utf8 --collation-server=utf8_bin

2. Start Zabbix Java gateway instance

docker run --name zabbix-java-gateway -t \
-d zabbix/zabbix-java-gateway:latest

3. Start Zabbix server instance and link the instance with created MySQL server instance

docker run --name zabbix-server-mysql -t \
-e DB_SERVER_HOST="mysql-server" \
-e MYSQL_DATABASE="zabbix" \
-e MYSQL_USER="zabbix" \
-e MYSQL_PASSWORD="zabbix_pwd" \
-e MYSQL_ROOT_PASSWORD="root_pwd" \
-e ZBX_JAVAGATEWAY="zabbix-java-gateway" \
--link mysql-server:mysql \
--link zabbix-java-gateway:zabbix-java-gateway \
-p 10051:10051 \
-d zabbix/zabbix-server-mysql:latest

Note:
Zabbix server instance exposes 10051/TCP port (Zabbix trapper) to host machine.

4. Start Zabbix web interface and link the instance with created MySQL server and Zabbix server instances

docker run --name zabbix-web-nginx-mysql -t \
-e DB_SERVER_HOST="mysql-server" \
-e MYSQL_DATABASE="zabbix" \
-e MYSQL_USER="zabbix" \
-e MYSQL_PASSWORD="zabbix_pwd" \
-e MYSQL_ROOT_PASSWORD="root_pwd" \
--link mysql-server:mysql \
--link zabbix-server-mysql:zabbix-server \
-p 80:80 \

58

-d zabbix/zabbix-web-nginx-mysql:latest

Note:
Zabbix web interface instance exposes 80/TCP port (HTTP) to host machine.

** Example 2 **

The example demonstrates how to run Zabbix server with PostgreSQL database support, Zabbix web interface based on the Nginx
web server and SNMP trap feature.

1. Start empty PostgreSQL server instance

docker run --name postgres-server -t \
-e POSTGRES_USER="zabbix" \
-e POSTGRES_PASSWORD="zabbix" \
-e POSTGRES_DB="zabbix_pwd" \
-d postgres:latest

2. Start Zabbix snmptraps instance

docker run --name zabbix-snmptraps -t \
-v /zbx_instance/snmptraps:/var/lib/zabbix/snmptraps:rw \
-v /var/lib/zabbix/mibs:/usr/share/snmp/mibs:ro \
-p 162:162/udp \
-d zabbix/zabbix-snmptraps:latest

Note:
Zabbix snmptrap instance exposes the 162/UDP port (SNMP traps) to host machine.

3. Start Zabbix server instance and link the instance with created PostgreSQL server instance

docker run --name zabbix-server-pgsql -t \
-e DB_SERVER_HOST="postgres-server" \
-e POSTGRES_USER="zabbix" \
-e POSTGRES_PASSWORD="zabbix" \
-e POSTGRES_DB="zabbix_pwd" \
-e ZBX_ENABLE_SNMP_TRAPS="true" \
--link postgres-server:postgres \
-p 10051:10051 \
--volumes-from zabbix-snmptraps \
-d zabbix/zabbix-server-pgsql:latest

Note:
Zabbix server instance exposes the 10051/TCP port (Zabbix trapper) to host machine.

4. Start Zabbix web interface and link the instance with created PostgreSQL server and Zabbix server instances

docker run --name zabbix-web-nginx-pgsql -t \
-e DB_SERVER_HOST="postgres-server" \
-e POSTGRES_USER="zabbix" \
-e POSTGRES_PASSWORD="zabbix" \
-e POSTGRES_DB="zabbix_pwd" \
--link postgres-server:postgres \
--link zabbix-server-pgsql:zabbix-server \
-p 443:443 \
-v /etc/ssl/nginx:/etc/ssl/nginx:ro \
-d zabbix/zabbix-web-nginx-pgsql:latest

Note:
Zabbix web interface instance exposes the 443/TCP port (HTTPS) to host machine.
Directory /etc/ssl/nginx must contain certificate with required name.

Docker Compose Zabbix provides compose files also for defining and running multi-container Zabbix components in Docker.
These compose files are available in Zabbix docker official repository on github.com: https://github.com/zabbix/zabbix-docker.

59

https://github.com/zabbix/zabbix-docker

These compose files are added as examples, they are overloaded. For example, they contain proxies with MySQL and SQLite3
support.

There are a few different versions of compose files:

File name Description
docker-compose_v2_alpine_mysql_latest.yaml The compose file runs the latest version of Zabbix 3.2

components on Alpine Linux with MySQL database support.
docker-compose_v2_alpine_mysql_local.yaml The compose file locally builds the latest version of Zabbix

3.2 and runs Zabbix components on Alpine Linux with
MySQL database support.

docker-compose_v2_alpine_pgsql_latest.yaml The compose file runs the latest version of Zabbix 3.2
components on Alpine Linux with PostgreSQL database
support.

docker-compose_v2_alpine_pgsql_local.yaml The compose file locally builds the latest version of Zabbix
3.2 and runs Zabbix components on Alpine Linux with
PostgreSQL database support.

docker-compose_v2_ubuntu_mysql_latest.yaml The compose file runs the latest version of Zabbix 3.2
components on Ubuntu 14.04 with MySQL database support.

docker-compose_v2_ubuntu_mysql_local.yaml The compose file locally builds the latest version of Zabbix
3.2 and runs Zabbix components on Ubuntu 14.04 with
MySQL database support.

docker-compose_v2_ubuntu_pgsql_latest.yaml The compose file runs the latest version of Zabbix 3.2
components on Ubuntu 14.04 with PostgreSQL database
support.

docker-compose_v2_ubuntu_pgsql_local.yaml The compose file locally builds the latest version of Zabbix
3.2 and runs Zabbix components on Ubuntu 14.04 with
PostgreSQL database support.

Attention:
Available Docker compose files support only version 2 of Docker Compose.

Storage

Compose files are configured to support local storage on a host machine. Docker Compose will create a zbx_env directory in
the folder with the compose file when you run Zabbix components using the compose file. The directory will contain the same
structure as described above in the Volumes section and directory for database storage.

There are also volumes in read-only mode for /etc/localtime and /etc/timezone files.

Environment files

In the same directory with compose files on github.com you can find files with default environment variables for each component
in compose file. These environment files are named like .env_<type of component>.

Examples

** Example 1 **

docker-compose -f ./docker-compose_v2_alpine_mysql_latest.yaml up -d

The command will download latest Zabbix 3.2 images for each Zabbix component and run them in detach mode.

Attention:
Do not forget to download .env_<type of component> files from github.com official Zabbix repository with compose
files.

** Example 2 **

docker-compose -f ./docker-compose_v2_ubuntu_mysql_local.yaml up -d

The command will download base image Ubuntu 14.04, then build Zabbix 3.2 components locally and run them in detach mode.

6 Upgrade procedure using sources

60

Overview

This section provides the steps required for a successful upgrade to Zabbix 3.2.

Direct upgrade to Zabbix 3.2 is possible from Zabbix 3.0.x, 2.4.x, 2.2.x and 2.0.x. For upgrading from earlier versions consult
Zabbix documentation for 2.0 and earlier.

While upgrading Zabbix agents is not mandatory (but recommended), Zabbix server and proxies must be of the samemajor version.
Therefore, in a server-proxy setup, Zabbix server and all proxies have to be stopped and upgraded.

To minimize downtime and data loss during the upgrade, it is recommended to stop and upgrade Zabbix server and then stop,
upgrade and start Zabbix proxies one after another. When all proxies are upgraded, start Zabbix server. During the Zabbix server
downtime, running proxies will keep collecting and storing data and will pass the data to Zabbix server when the server is up and
running. Any notifications for problems during Zabbix server downtime will be generated only after the upgraded server is started.

Attention:
It is known to be possible to start the upgraded server and have older, yet unupgraded proxies report data to a newer server
(the proxies can’t refresh their configuration though). This approach, however, is not recommended and not supported by
Zabbix and choosing it is entirely at your own risk.

Note that with SQLite database on proxies, history data from proxies before the upgrade will be lost, because SQLite database
upgrade is not supported and the SQLite database file has to be manually removed. When proxy is started for the first time and
the SQLite database file is missing, proxy creates it automatically.

Note that database upgrade to version 3.2 may take up to several hours depending on the database size.

Before the upgrade from 3.0.x to 3.2:

• read the upgrade notes for 3.2
• check requirements for 3.2

If upgrading from earlier versions, read also the upgrade notes for 2.0 → 2.2, 2.2 → 2.4 and 2.4 → 3.0.

Note:
It may be handy to run two parallel SSH sessions during the upgrade, executing the upgrade steps in one and monitoring
the server/proxy logs in another. For example, run tail -f zabbix_server.log or tail -f zabbix_proxy.log
in the second SSH session showing you the latest log file entries and possible errors in real time. This can be critical for
production instances.

Server upgrade process

1 Stop Zabbix server

Stop Zabbix server to make sure that no new data is inserted into database.

2 Back up the existing Zabbix database

This is a very important step. Make sure that you have a backup of your database. It will help if the upgrade procedure fails (lack
of disk space, power off, any unexpected problem).

3 Back up configuration files, PHP files and Zabbix binaries

Make a backup copy of Zabbix binaries, configuration files and the PHP file directory.

4 Install new server binaries

Use these instructions to compile Zabbix server from sources.

5 Review server configuration parameters

There are no mandatory changes in this version to server parameters.

6 Start new Zabbix binaries

Start the server. Check log files to see if the server has started successfully.

Zabbix server will automatically upgrade the database. When starting up, Zabbix server reports the current (mandatory and
optional) and required database versions. If the current mandatory version is older than the required version, Zabbix server
automatically executes the required database upgrade patches. The start and progress level (percentage) of the database upgrade
is written to the Zabbix server log file. When the upgrade is completed, a ”database upgrade fully completed” message is written
to the log file. If any of the upgrade patches fail, Zabbix server will not start. Zabbix server will also not start if the current
mandatory database version is newer than the required one. Zabbix server will only start if the current mandatory database
version corresponds to the required mandatory version.

61

https://www.zabbix.com/documentation/2.2/manual/installation/upgrade_notes_220
https://www.zabbix.com/documentation/2.4/manual/installation/upgrade_notes_240
https://www.zabbix.com/documentation/3.0/manual/installation/upgrade_notes_300

8673:20161117:104750.259 current database version (mandatory/optional): 03020000/03020000
8673:20161117:104750.259 required mandatory version: 03020000

Before you start the server:

• Make sure the database user has enough permissions (create table, drop table, create index, drop index)
• Make sure you have enough free disk space.

7 Install new Zabbix web interface

The minimum required PHP version is 5.4.0. Update if needed and follow installation instructions.

Proxy upgrade process

1 Stop Zabbix proxy

Stop Zabbix proxy.

2 Back up configuration files and Zabbix proxy binaries

Make a backup copy of the Zabbix proxy binary and configuration file.

3 Install new proxy binaries

Use these instructions to compile Zabbix proxy from sources.

4 Review proxy configuration parameters

There are no mandatory changes in this version to proxy parameters.

5 Start new Zabbix proxy

Start the new Zabbix proxy. Check log files to see if the proxy has started successfully.

Zabbix proxy will automatically upgrade the database. Database upgrade takes place similarly as when starting Zabbix server.

Agent upgrade process

Attention:
Upgrading agents is not mandatory. You only need to upgrade agents if it is required to access the new functionality.

1 Stop Zabbix agent

Stop Zabbix agent.

2 Back up configuration files and Zabbix agent binaries

Make a backup copy of the Zabbix agent binary and configuration file.

3 Install new agent binaries

Use these instructions to compile Zabbix agent from sources.

Alternatively, you may download pre-compiled Zabbix agents from the Zabbix download page.

4 Review agent configuration parameters

There are no mandatory changes in this version to agent parameters. For new optional parameters, see the What’s new section.

5 Start new Zabbix agent

Start the new Zabbix agent. Check log files to see if the agent has started successfully.

Minor upgrade procedure

Minor upgrade procedure using sources is almost the same as major upgrade procedure. It means for example upgrading from
Zabbix 3.2.0 to 3.2.x. It is required to execute the same actions as during the major upgrade. The only difference is that during
minor upgrade no changes to the database are made.

7 Upgrade procedure using packages

Overview

This section provides the steps required for a successful upgrade using official RPM and DEB packages provided by Zabbix for:

• Red Hat Enterprise Linux/CentOS

62

http://www.zabbix.com/download.php

• Debian/Ubuntu

1 Red Hat Enterprise Linux/CentOS

Overview

Make sure to read general information about upgrading first.

Upgrade procedure

1 Stop Zabbix processes

Stop Zabbix server to make sure that no new data is inserted into database.

systemctl stop zabbix-server

If upgrading the proxy, stop proxy too.

systemctl stop zabbix-proxy

2 Back up the existing Zabbix database

This is a very important step. Make sure that you have a backup of your database. It will help if the upgrade procedure fails (lack
of disk space, power off, any unexpected problem).

3 Back up configuration files, PHP files and Zabbix binaries

Make a backup copy of Zabbix binaries, configuration files and the PHP file directory.

Configuration files:

mkdir /opt/zabbix-backup/
cp /etc/zabbix/zabbix_server.conf /opt/zabbix-backup/
cp /etc/httpd/conf.d/zabbix.conf /opt/zabbix-backup/

PHP files and Zabbix binaries:

cp -R /usr/share/zabbix/ /opt/zabbix-backup/
cp -R /usr/share/doc/zabbix-* /opt/zabbix-backup/

4 Update repository configuration package

To proceed with the upgrade your current repository package has to be updated.

rpm -Uvh http://repo.zabbix.com/zabbix/3.2/rhel/7/x86_64/zabbix-release-3.2-1.el7.noarch.rpm

5 Upgrade Zabbix components

To upgrade Zabbix components you may run something like:

yum upgrade zabbix-server-mysql zabbix-web-mysql zabbix-agent

If using PostgreSQL, substitute mysql with pgsql in the command. If upgrading the proxy, substitute server with proxy in the
command.

6 Review component configuration parameters

There are no mandatory changes in this version to component parameters. For new optional agent parameters, see the What’s
new section.

7 Start Zabbix processes

Start the updated Zabbix components.

systemctl start zabbix-server
systemctl start zabbix-proxy
systemctl start zabbix-agent

Minor upgrade procedure

Zabbix minor version upgrade is an easy procedure. It means for example upgrading from Zabbix 3.2.0 to 3.2.x. To execute Zabbix
minor version upgrade it is required to run:

yum update zabbix-*

To execute zabbix agent minor version upgrade run:

yum update zabbix-agent

63

To execute zabbix server minor version upgrade run:

yum update zabbix-server

2 Debian/Ubuntu

Overview

Make sure to read general information about upgrading first.

Upgrade procedure

1 Stop Zabbix processes

Stop Zabbix server to make sure that no new data is inserted into database.

service zabbix-server stop

If upgrading Zabbix proxy, stop proxy too.

service zabbix-proxy stop

2 Back up the existing Zabbix database

This is a very important step. Make sure that you have a backup of your database. It will help if the upgrade procedure fails (lack
of disk space, power off, any unexpected problem).

3 Back up configuration files, PHP files and Zabbix binaries

Make a backup copy of Zabbix binaries, configuration files and the PHP file directory.

Configuration files:

mkdir /opt/zabbix-backup/
cp /etc/zabbix/zabbix_server.conf /opt/zabbix-backup/
cp /etc/apache2/conf-enabled/zabbix.conf /opt/zabbix-backup/

PHP files and Zabbix binaries:

cp -R /usr/share/zabbix/ /opt/zabbix-backup/
cp -R /usr/share/doc/zabbix-* /opt/zabbix-backup/

4 Update repository configuration package

To proceed with the update your current repository package has to be uninstalled.

rm -Rf /etc/apt/sources.list.d/zabbix.list

Then install the new repository configuration package.

On Debian 7 run:

wget http://repo.zabbix.com/zabbix/3.2/debian/pool/main/z/zabbix-release/zabbix-release_3.2-1+wheezy_all.deb
dpkg -i zabbix-release_3.2-1+wheezy_all.deb

On Debian 8 run:

wget http://repo.zabbix.com/zabbix/3.2/debian/pool/main/z/zabbix-release/zabbix-release_3.2-1+jessie_all.deb
dpkg -i zabbix-release_3.2-1+jessie_all.deb

On Ubuntu 14.04 run:

wget http://repo.zabbix.com/zabbix/3.2/ubuntu/pool/main/z/zabbix-release/zabbix-release_3.2-1+trusty_all.deb
dpkg -i zabbix-release_3.2-1+trusty_all.deb

On Ubuntu 16.06 run:

wget http://repo.zabbix.com/zabbix/3.2/ubuntu/pool/main/z/zabbix-release/zabbix-release_3.2-1+xenial_all.deb
dpkg -i zabbix-release_3.2-1+xenial_all.deb

Update the repository information.

apt-get update

5 Upgrade Zabbix components

To upgrade Zabbix components you may run something like:

apt-get install --only-upgrade zabbix-server-mysql zabbix-frontend-php zabbix-agent

64

If using PostgreSQL, substitute mysql with pgsql in the command. If upgrading the proxy, substitute server with proxy in the
command.

6 Review component configuration parameters

There are no mandatory changes in this version to component parameters. For new optional agent parameters, see the What’s
new section.

7 Start Zabbix processes

Start the updated Zabbix components.

service zabbix-server start
service zabbix-proxy start
service zabbix-agent start

Minor upgrade procedure

Zabbix minor version upgrade is an easy procedure. It means for example upgrading from Zabbix 3.2.0 to 3.2.x. To execute Zabbix
minor version upgrade it is required to run:

sudo apt-get install --only-upgrade zabbix.

To execute zabbix agent minor version upgrade run:

sudo apt-get install --only-upgrade zabbix-agent.

To execute zabbix server minor version upgrade run:

sudo apt-get install --only-upgrade zabbix-server.

8 Known issues

Problems with pressing Enter in configuration forms

Affects Zabbix 3.2.0. Pressing Enter in a text field of a configuration form is known to result in various problems.

For instance, if you open the configuration form of a host with linked templates, then press Enter in any text field and update the
form, template linkage is removed (items from the template remain).

Global event correlation

Events may not get correlated correctly if the time interval between the first and second event is very small, i.e. half a second and
less.

IPMI checks

IPMI checks will not work with the standard OpenIPMI library package on Debian prior to 9 (stretch) and Ubuntu prior to 16.04
(xenial). To fix that, recompile OpenIPMI library with OpenSSL enabled as discussed in ZBX-6139.

SSH checks

Some Linux distributions like Debian, Ubuntu do not support encrypted private keys (with passphrase) if the libssh2 library is
installed from packages. Please see ZBX-4850 for more details.

ODBC checks

Zabbix server or proxy that uses MySQL as its database may or may not work correctly with MySQL ODBC library due to an upstream
bug. Please see ZBX-7665 for more information and available workarounds.

XML data queried from Microsoft SQL Server may get truncated to 2033 characters due to a Microsoft issue.

HTTPS checks

Web scenarios using the https protocol and Zabbix agent checks net.tcp.service[https...] and net.tcp.service.perf[https...]
may fail if the target server is configured to disallow TLS v1.0 protocol or below. Please see ZBX-9879 for more information and
available workarounds.

Simple checks

There is a bug in fping versions earlier than v3.10 that mishandles duplicate echo replay packets. This may cause unexpected
results for icmpping, icmppingloss, icmppingsec items. It is recommended to use the latest version of fping. Please see
ZBX-11726 for more details.

SNMP checks

65

https://support.zabbix.com/browse/ZBX-6139
https://support.zabbix.com/browse/ZBX-4850
https://bugs.mysql.com/bug.php?id=73709
https://bugs.mysql.com/bug.php?id=73709
https://support.zabbix.com/browse/ZBX-7665
https://support.microsoft.com/en-us/help/310378/the-xml-data-row-is-truncated-at-2-033-characters-when-you-use-the-sql
https://support.zabbix.com/browse/ZBX-9879
https://support.zabbix.com/browse/ZBX-11726

If the OpenBSD operating system is used, a use-after-free bug in the Net-SNMP library up to the 5.7.3 version can cause a crash
of Zabbix server if the SourceIP parameter is set in the Zabbix server configuration file. As a workaround, please do not set the
SourceIP parameter. The same problem applies also for Linux, but it does not cause Zabbix server to stop working. A local patch
for the net-snmp package on OpenBSD was applied and will be released with OpenBSD 6.3.

Alerter process crash in Centos/RHEL 7

Instances of a Zabbix server alerter process crash have been encountered in Centos/RHEL 7. Please see ZBX-10461 for details.

Web monitoring

Zabbix server leaks memory on CentOS 6, CentOS 7 and possibly other related Linux distributions due to an upstream bug when
”SSL verify peer” is enabled in web scenarios. Please see ZBX-10486 for more information and available workarounds.

Compatibility issue with PHP 7.0

It has been observed that with PHP 7.0 importing a template with web monitoring triggers may fail due to incorrectly added double
quotes to the web monitoring items in the trigger expressions. The issue goes away when upgrading PHP to 7.1.

Graphs

Changes to Daylight Saving Time (DST) result in irregularities when displaying X axis labels (date duplication, date missing, etc).

Log file monitoring

log[] and logrt[] items repeatedly reread log file from the beginning if file system is 100% full and the log file is being appended
(see ZBX-10884 for more information).

Macro functions

When \0 is used as the output option in macro functions it will work as designed, i.e. return the matched text, when server does
the resolving (in trigger tags, notification messages), but not in cases when frontend does the resolving.

Slow MySQL queries

Zabbix server generates slow select queries in case of non-existing values for items. This is caused by a known issue in MySQL
5.6/5.7 versions. A workaround to this is disabling the index_condition_pushdown optimizer in MySQL. For an extended discussion,
see ZBX-10652.

API fails decoding valid JSON-RPC request

Affects Zabbix versions 3.2.0, 3.2.1. API fails to decode a valid JSON-RPC request unless a non-requirement php-json module is
installed. ZBX-11244 contains more information on this issue.

Escalations

Several operations can be assigned to the same step. If these operations have different step duration defined, the shortest one is
taken into account and applied to the step. But due to bug there was exception to this rule when step duration is set to 0, it would
use default value instead of shortest one. Now there will be no exception and default step duration will only be used if it’s shortest,
this is equivalent to behavior that frontend shows and user expects. Affects all versions, fixed in 3.2.3rc1, (see ZBX-11534 for more
information).

Time-based functions ignored in recovery expressions

Affects Zabbix versions 3.2.0 - 3.2.4. Triggers with time-based functions in the recovery expression only are not periodically
recalculated by the timer process.

API

The output parameter does not work properly with the history.get method.

API login

A large number of open user sessions can be created when using custom scripts with the user.loginmethod without a following
user.logout.

9 Template changes

This page lists all changes to the stock templates that are shipped with Zabbix. It is suggested to modify these templates in
existing installations - depending on the changes, it can be done either by importing the latest version or by performing the
change manually.

Template changes in 3.2.0

66

https://support.zabbix.com/browse/ZBX-10461
https://bugzilla.redhat.com/show_bug.cgi?id=1057388
https://support.zabbix.com/browse/ZBX-10486
https://support.zabbix.com/browse/ZBX-10884
https://bugs.mysql.com/bug.php?id=74602
https://support.zabbix.com/browse/ZBX-10652
https://support.zabbix.com/browse/ZBX-11244
https://support.zabbix.com/browse/ZBX-11534

A new service.discovery low-level discovery rule has been added to the Template OS Windows template. It contains a
service.info[{#SERVICE.NAME},state] item prototype that monitors service state.

In order to extended Template OS Windows template, import it from https://www.zabbix.org/wiki/Zabbix_Templates/Official_
Templates.

Template changes in 3.2.2

New items vmware.hv.datastore.size[{$URL},{HOST.HOST},{#DATASTORE}], vmware.hv.datastore.size[{$URL},{HOST.HOST},{#DATASTORE},pfree]
to monitor VMware datastore capacity were added to template Template Virt VMware Hypervisor datastore discovery.

Template changes in 3.2.3

The vmware.vm.cpu.ready item unit and description was changed from percentage to milliseconds.

10 Upgrade notes for 3.2.0

These notes are for upgrading from Zabbix 3.0.x to Zabbix 3.2.0. All notes are grouped into:

• Critical - the most critical information related to the upgrade process and the changes in Zabbix functionality
• Informational - all remaining information describing the changes in Zabbix functionality

It is possible to upgrade to Zabbix 3.2.0 from versions before Zabbix 3.0.0. See the upgrade procedure section for all relevant
information about upgrading from previous Zabbix versions.

Critical Database upgrade

The history_text.id and history_log.id fields will be removed from the corresponding history tables during database upgrade. De-
pending on the history table size this process can be slow.

Case-sensitive MySQL database

A case-sensitive MySQL database is required for proper server work. It is recommended to create a case-sensitive MySQL database
during new installations. If you created a MySQL database with the utf8 character set previously, in order to support case sensi-
tiveness of stored data, you need to convert the charset to utf8_bin.

Informational Escalation changes

Delaying escalations during maintenance

The logic of delaying problem notifications during host maintenance has been changed.

In previous Zabbix versions, problem notifications during a host maintenance period were skipped if you were using the Mainte-
nance status = not in ”maintenance” action condition. In the new version, the old mechanism is dropped. Instead there is a new
Pause operations while in maintenance option in action configuration, which allows to pause notifications during a maintenance if
you wish so.

To ensure that escalations using this functionality work properly after the upgrade you must reconfigure the relevant actions by:

• removing the Maintenance status = not in ”maintenance” condition
• making sure that Pause operations while in maintenance is selected in action configuration

Parallel escalation for each of multiple PROBLEM events

Before Zabbix 3.2 every new PROBLEM event would abort the escalation of an earlier PROBLEM event, i.e. only one active escalation
could run for a trigger with multiple event generation. Now escalation procedures for all these events are processed in parallel.
This change and newly introduced event correlation and event tags enable more flexible approach to multiple PROBLEM event
resolution. For example, depending on configuration now OK event may either stop escalation for the particular PROBLEM event,
for numerous events or for all of them.

Recovery operations

Recovery operations are a new unified way of executing scripts or getting notified on resolved problems. Before the only way
to execute a script when problem triggers went OK was to configure an action to start an escalation on the ’Trigger value = OK’
condition. This is not supported any more - an action with recovery operations must be used instead.

During database upgrade actions with simple conditions are updated automatically while actions having complex conditions are
disabled with a corresponding log message. The disabled actions must be updated manually.

The action upgrade steps performed automatically are:

• Recovery messages are moved to recovery operations;

67

https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates

• All trigger-based and internal actions having ’Or’ or ’Custom expression’ calculation type are disabled;
• Trigger-based actions that could handle both PROBLEM and OK events are disabled;
• Trigger-based actions that could handle OK events only, but have a recovery message or more than one escalation step are
disabled;

• Internal actions that could handle any other event except those corresponding a single Item in “not supported” state, Low-
level discovery rule in “not supported” state or Trigger in “unknown” state condition are disabled;

• ”Trigger value” conditions for trigger events and ”Event type” conditions for internal events - Item in “normal” state, Low-
level discovery rule in “normal” state, Trigger in “normal” state are removed from the conditions - they are not supported
any more.

After database upgrade Zabbix server log must be checked if there are any actions that must be updated manually. It’s recom-
mended to check also other actions.

Recovery operations also get a dedicated tab in the action configuration form, while the condition tab has been dropped and
conditions now can be set in the general action property tab.

IBM DB2 connection encoding

When connecting to IBM DB2 database Zabbix server, proxy and frontend will now ensure that database server anticipates UTF-
8 encoded text. Previously the way IBM DB2 server interpreted text information from Zabbix was fully determined by Zabbix
server/proxy or web server locale settings (LC_ALL, LANG, LC_CTYPE and other environment variables). If the latter were not
configured properly text containing non-ASCII characters was saved in the database incorrectly. In such situations after upgrade
non-ASCII characters will be displayed in Zabbix incorrectly. The problem could easily not manifest itself if locale was identically
misconfigured for Zabbix server and for web server running Zabbix frontend and the number of non-ASCII characters was too low
to cause ”Value too long...” errors. Please check the database contents before upgrading.

Host availability, discovery, auto-registration and history data validation

When Zabbix server had received invalid host availability, discovery or auto-registration data it used to write a warning to the
log file for every invalid entry. Now in the case of invalid entries it will reject the whole data packet and log a single line like
proxy ”<proxy name>” at ”<proxy IP>” returned invalid host availability data[: <detailed error message>] (for passive proxies)
or received invalid host availability data from proxy ”<proxy name>” at ”<proxy IP>”: <detailed error message> (for active
proxies). Also, if passive proxy for example returns invalid host availability data, server will skip polling discovery, history and
auto-registration data from that proxy. Like before, Zabbix will try to process as much historical data from proxies and active
agents as it can and will silently ignore invalid entries. If the whole packet is invalid a message containing name, IP address and
error description will be logged. This will help tracking down misconfiguration issues when proxypoller connects server’s trapper
port or agent instead of proxy.

Miscellaneous

• The customizable time period for displaying resolved problems/OK triggers and for blinking upon trigger status change has
been limited to 86400 seconds (24 hours) in Administration → General → Trigger displaying options.

Logging changes

The messages printed to the log files about completion of the trend data synchronization have been changed.

The following messages were changed:

syncing trends data... → syncing trend data...
syncing trends data done → syncing trend data done

Item changes

system.sw.os[name] item might have different value on Linux systems. Now the PRETTY_NAME parameter from /etc/os-release
file is used by default. Only if os-release is not supported by the system the /etc/issue.net file is used to obtain system name.

Changes in evaluating trigger and calculated item expressions

Previously any unsupported item in trigger expression or error in function evaluation immediately rendered the whole expression
value to Unknown.

In the new version unsupported items and errors in function evaluation continue to take part in expression evaluation as unknown
values.

These unknown values may turn into ”known” values in logical operations, e.g.:

• ’1 or Unsuported_item1.some_function()’ is now evaluated to ’1’ (True)
• ’0 and Unsuported_item1.some_function()’ is now evaluated to ’0’ (False)

Additionally nodata(), date(), dayofmonth(), dayofweek(), now() and time() trigger functions are now calculated for unsup-
ported items as well.

68

See Expressions with unsupported items and unknown values.

Changes in graphs after item data type is changed

When item property ”Type of information” is changed, previous history and trend data will not be displayed in graphs.

See also

• Template changes

11 Upgrade notes for 3.2.1

This minor version does not have any upgrade notes.

12 Upgrade notes for 3.2.2

Changed syntax for selecting nested host groups

Along with extended nested host group support, the syntax for including nested subgroups has changed.

In Zabbix 3.2.0 and 3.2.1 nested host groups are included with the parent host group, it the parent group is specified as
hostgroup/*. In Zabbix 3.2.2, the ’/*’ syntax is dropped. Instead, nested host groups are included if simply the parent host
group is specified as is. This means that a host group that is set, for example, in action conditions, now silently includes all its
nested host groups.

Frontend changes

• The link for adding descriptions to triggers created by low-level discovery has been removed from Monitoring → Triggers.
Such descriptions were later deleted anyway by low-level discovery, if they were not present in the original trigger prototype.

Daemon changes

• Active agent auto-registration events are not generated any more if there is no action for auto registration.

Miscellaneous changes

• Zabbix server and frontend now try to set the MySQL autocommit variable to ”autocommit=1” (enable MySQL autocommit
mode) at the beginning of each connection to the database. Failing to do so results in failed database connection.

13 Upgrade notes for 3.2.3

Daemon changes

In escalations, several operations can be assigned to the same step. If these operations have different step duration defined, the
shortest one is taken into account and applied to the step. But due to bug there was exception to this rule when step duration is
set to 0, it would use default value instead of shortest one. Now there will be no exception and default step duration will only be
used when it’s shortest, this is equivalent to behavior that frontend shows and user expects.

14 Upgrade notes for 3.2.4

Frontend changes

In Monitoring → Web now only values that fall within the last 24 hours are displayed by default. This limit has been introduced
with the aim of improving initial loading times for large pages of web monitoring. It is also possible to change this limitation by
changing the value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

Trigger dependency improvements

Actions on dependent triggers will not be executed if the state of the trigger that it depends on changes from ’PROBLEM’ to
’UNKNOWN’.

Reduced log message severity in web scenarios

69

Web scenario failed step log messages are now displayed from debug level 4 (debugging) instead of debug level 3 (warnings).

15 Upgrade notes for 3.2.5

This minor version does not have any upgrade notes.

16 Upgrade notes for 3.2.6

This minor version does not have any upgrade notes.

17 Upgrade notes for 3.2.7

This minor version does not have any upgrade notes.

18 Upgrade notes for 3.2.8

URI validation

A new ZBX_URI_VALID_SCHEMES constant has been added which defines the URI schemes that are allowed by default (http, https,
ftp, file, mailto, tel, ssh).

All URLs in the frontend should be checked if they contain an allowed scheme.

Note that starting with Zabbix 3.2.11, URI scheme validation can be turned off/on.

Processing low-level discovery (LLD)

LLD rule processing has been modified so multiple values for the same LLD rule are not processed simultaneously.

Previously all values for LLD rules were processed in a context of data gathering process (for example, a trapper). This could
cause deadlocks when separate values of a single low-level discovery rule were being processed in more than one data gathering
process.

LLD rule locking is implemented in the configuration cache. A new piece of LLD data will be discarded if the previous one hasn’t
been fully processed yet. To avoid such possible delays with LLD value processing it is recommended, for example, to increase the
polling interval for LLD rules or not send LLD JSONs with zabbix_sender too frequently. Discarded LLD data is not considered an
error. zabbix_sender can report a value as ”processed” even if the value was discarded. All cases of discarded LLD data are listed
in the Zabbix server log file in the following format:

<TIMESTAMP> cannot process discovery rule "host:key": another value is being processed

SMTP authentication for e-mail

Previously Zabbix would enforce PLAIN as the authentication mechanism when using username/password. Now libcurl may decide
on its own which mechanism among those supported by the SMTP server to choose. With the parameters Zabbix passes to libcurl
it effectively means choosing between PLAIN and LOGIN on most occasions. This is enough to enable Zabbix operation with Office
365 and should be enough for Gmail provided that ”less secure apps” are allowed.

Housekeeper changes

In previous 3.2.x versions, problems for a deleted item/trigger could not get deleted by housekeeper if they were not in a resolved
status. From now on, if housekeeping of events is enabled then deleting an item/trigger will also delete events and problems
generated by that item/trigger. If housekeeping of events is disabled then only problems of a deleted item/trigger will get deleted.

An optional database patch to clean up problems for deleted items and triggers has also been added.

19 Upgrade notes for 3.2.9

This minor version does not have any upgrade notes.

70

https://support.google.com/accounts/answer/6010255

20 Upgrade notes for 3.2.10

More secure Zabbix setup

Several features have been implemented as part of an effort to ”harden” the Zabbix web interface:

• Same origin policy for IFrames. Zabbix now cannot be placed in frames on a different domain. Still, pages placed into a
Zabbix frame will have access to Zabbix frontend (through JavaScript) if the page that is placed in the frame and Zabbix
frontend are on the same domain. A page like http://secure-zabbix.com/cms/page.html, if placed into screens on
http://secure-zabbix.com/zabbix/, will have full JS access to Zabbix.

• Technical errors (PHP/SQL) are now hidden by default from non-Zabbix Super admin users and from users that are not part
of user groups with debug mode enabled. This is configurable via the new ZBX_SHOW_TECHNICAL_ERRORS constant, set to
’false’ by default.

Item changes

• system.cpu.num agent item on AIX now returns a value based on the logical processors attached to an AIX LPAR and not
the physical ones.

21 Upgrade notes for 3.2.11

Configurable URI validation

URI validation, introduced in Zabbix 3.2.8, now can be turned off/on in the new VALIDATE_URI_SCHEMES frontend constant.

Additionally:

• Relative URLs are no longer validated against the URI scheme whitelist i.e. are always considered valid.
• In URLs where macros are supported, delayed validation is used. If the URL after resolving the macros is not valid, then the
link will not work.

• URLs with invalid port numbers, like ftp://user@host:port are considered as invalid

Item changes

• vmware.eventlog items will now browse up to 1000 events (instead of 10) in search of events that have not yet been
processed. Consequently, when catching up after some downtime Zabbix may cache up to 1000 events, which will increase
the VMware cache usage right after startup. The new algorithm is also less tolerant to multiple vmware.eventlog items
configured with the same VMware URL.

Housekeeper changes

• An event will now only be deleted by the housekeeper if it is not associated with a problem in any way. This means that if an
event is either a problem or recovery event, it will not be deleted until the related problem record is removed. Additionally,
the housekeeper now will delete problems first and events after, to avoid potential problems with stale events or problem
records.

4. Quickstart

Please use the sidebar to access content in the Quickstart section.

1 Login and configuring user

Overview

In this section you will learn how to log in and set up a system user in Zabbix.

Login

71

This is the Zabbix ”Welcome” screen. Enter the user name Admin with password zabbix to log in as a Zabbix superuser.

When logged in, you will see ’Connected as Admin’ in the lower right corner of the page. Access to Configuration and Administration
menus will be granted.

Protection against brute force attacks

In case of five consecutive failed login attempts, Zabbix interface will pause for 30 seconds in order to prevent brute force and
dictionary attacks.

The IP address of a failed login attempt will be displayed after a successful login.

Adding user

To view information about users, go to Administration → Users.

Initially there are only two users defined in Zabbix.

• ’Admin’ user is a Zabbix superuser, which has full permissions.
• ’Guest’ user is a special default user. If you are not logged in, you are accessing Zabbix with ”guest” permissions. By default,
”guest” has no permissions on Zabbix objects.

To add a new user, click on Create user.

In the new user form, make sure to add your user to one of the existing user groups, for example ’Zabbix administrators’.

72

By default, new users have no media (notification delivery methods) defined for them. To create one, go to the ’Media’ tab and
click on Add.

73

In this pop-up, enter an e-mail address for the user.

You can specify a time period when the medium will be active (see Time period specification page for description of the format),
by default a medium is always active. You can also customise trigger severity levels for which the medium will be active, but leave
all of them enabled for now.

Click on Add, then click Add in the user properties form. The new user appears in the userlist.

Adding permissions

By default, a new user has no permissions to access hosts. To grant the user rights, click on the group of the user in the Groups
column (in this case - ’Zabbix administrators’). In the group properties form, go to the Permissions tab.

This user is to have read-only access to Linux servers group, so click on Select next to the user group selection field.

74

In this pop-up, mark the checkbox next to ’Linux servers’, then click Select. Linux servers should be displayed in the selection
field. Click the ’Read’ button to set permission level and then Add to add the group to the list of permissions. In the user group
properties form, click Update.

Attention:
In Zabbix, access rights to hosts are assigned to user groups, not individual users.

Done! You may try to log in using the credentials of the new user.

2 New host

Overview

75

In this section you will learn how to set up a new host.

A host in Zabbix is a networked entity (physical, virtual) that you wish to monitor. The definition of what can be a ”host” in Zabbix
is quite flexible. It can be a physical server, a network switch, a virtual machine or some application.

Adding host

Information about configured hosts in Zabbix is available in Configuration → Hosts. There is already one pre-defined host, called
’Zabbix server’, but we want to learn adding another.

To add a new host, click on Create host. This will present us with a host configuration form.

The bare minimum to enter here is:

Host name

• Enter a host name. Alphanumerics, spaces, dots, dashes and underscores are allowed.

Groups

• Select one or several groups from the right hand side selectbox and click on « to move them to the ’In groups’ selectbox.

Note:
All access permissions are assigned to host groups, not individual hosts. That is why a host must belong to at least one
group.

76

IP address

• Enter the IP address of the host. Note that if this is the Zabbix server IP address, it must be specified in the Zabbix agent
configuration file ’Server’ directive.

Other options will suit us with their defaults for now.

When done, click Add. Your new host should be visible in the hostlist.

Note:
If the ZBX icon in the Availability column is red, there is some error with communication - move your mouse cursor over it
to see the error message. If that icon is gray, no status update has happened so far. Check that Zabbix server is running,
and try refreshing the page later as well.

3 New item

Overview

In this section you will learn how to set up an item.

Items are the basis of gathering data in Zabbix. Without items, there is no data - because only an item defines a single metric or
what data to get off of a host.

Adding item

All items are grouped around hosts. That is why to configure a sample item we go to Configuration → Hosts and find the ’New host’
we have created.

The Items link in the row of ’New host’ should display a count of ’0’. Click on the link, and then click on Create item. This will
present us with an item definition form.

77

78

For our sample item, the essential information to enter is:

Name

• Enter CPU Load as the value. This will be the item name displayed in lists and elsewhere.

Key

• Manually enter system.cpu.load as the value. This is a technical name of an item that identifies the type of information that
will be gathered. The particular key is just one of pre-defined keys that come with Zabbix agent.

Type of information

• Select Numeric (float) here. This attribute defines the format of expected data.

Note:
You may also want to reduce the amount of days item history will be kept, to 7 or 14. This is good practice to relieve the
database from keeping lots of historical values.

Other options will suit us with their defaults for now.

When done, click Add. The new item should appear in the itemlist. Click on Details above the list to view what exactly was done.

Seeing data

With an item defined, you might be curious if it is actually gathering data. For that, go to Monitoring → Latest data, click on the +
before - other - and expect your item to be there and displaying data.

With that said, first data may take up to 60 seconds to arrive. That, by default, is how often the server reads configuration changes
and picks up new items to execute.

If you see no value in the ’Change’ column, maybe only one value has been received so far. Wait 30 seconds for another value to
arrive.

If you do not see information about the item as in the screenshot, make sure that:

• you entered item ’Key’ and ’Type of information’ fields exactly as in the screenshot
• both agent and server are running
• host status is ’Monitored’ and its availability icon is green
• host is selected in the host dropdown, item is active

Graphs

With the item working for a while, it might be time to see something visual. Simple graphs are available for any monitored numeric
item without any additional configuration. These graphs are generated on runtime.

To view the graph, go to Monitoring → Latest data and click on the ’Graph’ link next to the item.

79

4 New trigger

Overview

In this section you will learn how to set up a trigger.

Items only collect data. To automatically evaluate incoming data we need to define triggers. A trigger contains an expression that
defines a threshold of what is an acceptable level for the data.

If that level is surpassed by the incoming data, a trigger will ”fire” or go into a ’Problem’ state - letting us know that something has
happened that may require attention. If the level is acceptable again, trigger returns to an ’Ok’ state.

Adding trigger

To configure a trigger for our item, go to Configuration → Hosts, find ’New host’ and click on Triggers next to it and then on Create
trigger. This presents us with a trigger definition form.

80

For our trigger, the essential information to enter here is:

Name

• Enter CPU load too high on ’New host’ for 3 minutes as the value. This will be the trigger name displayed in lists and
elsewhere.

Expression

• Enter: {New host:system.cpu.load.avg(180)}>2

This is the trigger expression. Make sure that the expression is entered right, down to the last symbol. The item key here (sys-
tem.cpu.load) is used to refer to the item. This particular expression basically says that the problem threshold is exceeded when
the CPU load average value for 3 minutes is over 2. You can learn more about the syntax of trigger expressions.

81

When done, click Add. The new trigger should appear in the trigger list.

Displaying trigger status

With a trigger defined, you might be interested to see its status.

For that, go to Monitoring → Triggers. After 3 minutes or so (we asked to evaluate a 3-minute average after all) your trigger should
appear there, presumably with a green ’OK’ flashing in the ’Status’ column.

The flashing indicates a recent change of trigger status, one that has taken place in the last 30 minutes.

If a red ’PROBLEM’ is flashing there, then obviously the CPU load has exceeded the threshold level you defined in the trigger.

5 Receiving problem notification

Overview

In this section you will learn how to set up alerting in the form of notifications in Zabbix.

With items collecting data and triggers designed to ”fire” upon problem situations, it would also be useful to have some alerting
mechanism in place that would notify us about important events even when we are not directly looking at Zabbix frontend.

This is what notifications do. E-mail being the most popular delivery method for problem notifications, we will learn how to set up
an e-mail notification.

E-mail settings

Initially there are several predefined notification delivery methods in Zabbix. E-mail is one of those.

To configure e-mail settings, go to Administration → Media types and click on Email in the list of pre-defined media types.

This will present us with the e-mail settings definition form.

82

Set the values of SMTP server, SMTP helo and SMTP e-mail to the appropriate for your environment.

Note:
’SMTP email’ will be used as the ’From’ address for the notifications sent from Zabbix.

Press Update when ready.

Now you have configured ’Email’ as a working media type. A media type must be linked to users by defining specific delivery
addresses (like we did when configuring a new user), otherwise it will not be used.

New action

Delivering notifications is one of the things actions do in Zabbix. Therefore, to set up a notification, go to Configuration → Actions
and click on Create action.

83

In this form, enter a name for the action.

In the most simple case, if we do not add any more specific conditions, the action will be taken upon any trigger change from ’Ok’
to ’Problem’.

We still should define what the action should do - and that is done in the Operations tab. Click on New in the Operations block,
which opens a new operation form.

84

Here, click on Add in the Send to Users block and select the user (’user’) we have defined. Select ’Email’ as the value of Send only
to. When done with this, click on Add in the operation detail block.

{TRIGGER.STATUS} and {TRIGGER.NAME} macros (or variables), visible in the Default subject and Default message fields, will be
replaced with the actual trigger status and trigger name values.

That is all for a simple action configuration, so click Add in the action form.

Receiving notification

Now, with delivering notifications configured it would be fun to actually receive one. To help with that, we might on purpose
increase the load on our host - so that our trigger ”fires” and we receive a problem notification.

Open the console on your host and run:

cat /dev/urandom | md5sum

You may run one or several of these processes.

Now go to Monitoring → Latest data and see how the values of ’CPU Load’ have increased. Remember, for our trigger to fire, the
’CPU Load’ value has to go over ’2’ for 3 minutes running. Once it does:

• in Monitoring → Triggers you should see the trigger with a flashing ’Problem’ status
• you should receive a problem notification in your e-mail

85

http://en.wikipedia.org/wiki/Md5sum

Attention:
If notifications do not work:

• verify once again that both the e-mail settings and the action have been configured properly
• make sure the user you created has at least read permissions on the host which generated the event, as noted in
the Adding user step. The user, being part of the ’Zabbix administrators’ user group must have at least read access
to ’Linux servers’ host group that our host belongs to.

• Additionally, you can check out the action log by going to Reports → Action log.

6 New template

Overview

In this section you will learn how to set up a template.

Previously we learned how to set up an item, a trigger and how to get a problem notification for the host.

While all of these steps offer a great deal of flexibility in themselves, it may appear like a lot of steps to take if needed for, say, a
thousand hosts. Some automation would be handy.

This is where templates come to help. Templates allow to group useful items, triggers and other entities so that those can be
reused again and again by applying to hosts in a single step.

When a template is linked to a host, the host inherits all entities of the template. So, basically a pre-prepared bunch of checks can
be applied very quickly.

Adding template

To start working with templates, we must first create one. To do that, in Configuration → Templates click on Create template. This
will present us with a template configuration form.

86

The required parameters to enter here are:

Template name

• Enter a template name. Alpha-numericals, spaces and underscores are allowed.

Groups

• Select one or several groups from the right hand side selectbox and click on « to move them to the ’In groups’ selectbox.
The template must belong to a group.

When done, click Add. Your new template should be visible in the list of templates.

As you may see, the template is there, but it holds nothing in it - no items, triggers or other entities.

Adding item to template

To add an item to the template, go to the item list for ’New host’. In Configuration → Hosts click on Items next to ’New host’.

Then:

• mark the checkbox of the ’CPU Load’ item in the list

87

• click on Copy below the list
• select the template to copy item to

• click on Copy

If you now go to Configuration → Templates, ’New template’ should have one new item in it.

We will stop at one item only for now, but similarly you can add any other items, triggers or other entities to the template until it’s
a fairly complete set of entities for given purpose (monitoring OS, monitoring single application).

Linking template to host

With a template ready, it only remains to add it to a host. For that, go to Configuration → Hosts, click on ’New host’ to open its
property form and go to the Templates tab.

There, click on Select next to Link new templates. In the pop-up window click on the name of template we have created (’New
template’). As it appears in the Link new templates field, click on Add. The template should appear in the Linked templates list.

Click Update in the form to save the changes. The template is now added to the host, with all entities that it holds.

As you may have guessed, this way it can be applied to any other host as well. Any changes to the items, triggers and other
entities at the template level will propagate to the hosts the template is linked to.

Linking pre-defined templates to hosts

As you may have noticed, Zabbix comes with a set of predefined templates for various OS, devices and applications. To get started
with monitoring very quickly, you may link the appropriate one of them to a host, but beware that these templates need to be
fine-tuned for your environment. Some checks may not be needed, and polling intervals may be way too frequent.

More information about templates is available.

88

5. Zabbix appliance

Overview As an alternative to setting up manually or reusing an existing server for Zabbix, users may download a Zabbix
appliance or Zabbix appliance installation CD image. Zabbix appliance installation CD could be used for instant deployment of
Zabbix server (MySQL), Zabbix server (PostgreSQL), Zabbix proxy (MySQL) and Zabbix proxy (SQLite 3).

Zabbix Appliance virtual machines have prepared Zabbix server with MySQL support. It is built using Zabbix appliance installation
CD.

|<| |<| |-|

|<| |<| |-|

Zabbix appliance and installation CD versions are based upon the following Ubuntu versions:

Zabbix appliance version Ubuntu version

3.2.0 14.04.3

Zabbix appliance is available in the following formats:

• vmdk (VMware/Virtualbox)
• OVF (Open Virtualisation Format)
• KVM
• HDD/flash image, USB stick
• Live CD/DVD
• Xen guest
• Microsoft VHD (Azure)
• Microsoft VHD (Hyper-V)

To get started, boot the appliance and point your browser at the IP it has received over DHCP: http://<host_ip>/zabbix

It has Zabbix server configured and running on MySQL, as well as frontend available.

The appliance has been built using standard Ubuntu/Debian feature called Preseed files.

1 Changes to Ubuntu configuration There are some changes applied to the base Ubuntu configuration.

1.1 Repositories

Official Zabbix repository has been added to /etc/apt/sources.list:

Zabbix repository
deb http://repo.zabbix.com/zabbix/3.2/ubuntu trusty main
deb-src http://repo.zabbix.com/zabbix/3.2/ubuntu trusty main

1.2 Firewall

The appliance uses iptables firewall with predefined rules:

• Opened SSH port (22 TCP);
• Opened Zabbix agent (10050 TCP) and Zabbix trapper (10051 TCP) ports;
• Opened HTTP (80 TCP) and HTTPS (443 TCP) ports;
• Opened SNMP trap port (162 UDP);
• Opened outgoing connections to DNS port (53 UDP) to 8.8.8.8 and 8.8.4.4;
• Opened outgoing connections to NTP port (123 UDP);
• ICMP pakets limited to 5 packets per second;
• All other incoming connections are dropped.

1.3 Additional packages

Various basic utilities have been added that could make working with Zabbix and monitoring in general easier:

• iptables-persistent
• mc
• htop
• snmptrapfmt
• snmp-mibs-downloader

89

http://www.zabbix.com/download.php#appliance

Some of these packages are used by Zabbix, some of them are installed to help users to configure/manage appliance settings.

1.4 Using a static IP address

By default the appliance uses DHCP to obtain the IP address. To specify a static IP address:

• Log in as root user;
• Open file /etc/network/interfaces in your favourite editor;
• iface eth0 inet dhcp → iface eth0 inet static
• Add the following lines after iface eth0 inet static:

– address <IP address of the appliance>
– netmask <network mask>
– gateway <your gateway address>

• Run the commands sudo ifdown eth0 && sudo ifup eth0.

Note:
For more information about other possible options see the official Ubuntu documentation.

To configure DNS, add nameserver entries in /etc/resolv.conf, specifying each nameserver on its own line: nameserver
192.168.1.2.

1.5 Changing time zone

By default the appliance uses UTC for the system clock. To change the time zone, copy the appropriate file from /usr/share/zoneinfo
to /etc/localtime, for example:

cp /usr/share/zoneinfo/Europe/Riga /etc/localtime

1.6 Locale changes

The appliance contains a few locale changes:

• Contains languages: en_US.UTF-8, ru_RU.UTF-8, ja_JP.UTF-8, cs_CZ.UTF-8, ko_KR.UTF-8, it_IT.UTF-8,
pt_BR.UTF-8, sk_SK.UTF-8, uk_UA.UTF-8, fr_FR.UTF-8, pl.UTF-8;

• Default locale is en_US.UTF-8.

These changes are required to support a multilingual Zabbix web-interface.

1.7 Other changes

• Network is configured to use DHCP to obtain IP address;
• Utility fping is set to have permissions 4710 and is owned by group zabbix - suid and only allowed to be used by zabbix
group;

• ntpd configured to synchronise to the public pool servers: ntp.ubuntu.com;
• LVM volume is used with ext4 filesystem.
• ”UseDNS no” is added to SSH server configuration file /etc/ssh/sshd_config to avoid long SSH connection waits;
• Daemon snmpd is disabled using /etc/default/snmpd configuration file.

2 Zabbix configuration Appliance Zabbix setup has the following passwords and other configuration changes:

2.1 Credentials (login:password)

System:

• appliance:zabbix

Database:

• root:<random>
• zabbix:<random>

Note:
Database passwords are randomly generated during the installation process.
Root password is stored to /root/.my.cnf file, it is not required to input a password under the ”root” account.

Zabbix frontend:

• Admin:zabbix

To change the database user password it has to be changed in the following locations:

• MySQL;

90

https://help.ubuntu.com/lts/serverguide/network-configuration.html

• /etc/zabbix/zabbix_server.conf;
• /etc/zabbix/web/zabbix.conf.php.

2.2 File locations

• Configuration files are placed in /etc/zabbix.
• Zabbix server, proxy and agent logfiles are placed in /var/log/zabbix.
• Zabbix frontend is placed in /usr/share/zabbix.
• Home directory for user zabbix is /var/lib/zabbix.

2.3 Changes to Zabbix configuration

• Server name for Zabbix frontend is set to ”Zabbix Appliance”;
• Frontend timezone is set to Europe/Riga (this can be modified in /etc/apache2/conf-available/zabbix.conf);

2.4 Preserving configuration

If you are running a Live CD/DVD version of the appliance or for some other reason cannot have persistent storage, you can create
a backup of the whole database, including all configuration and gathered data.

To create the backup, run:

sudo mysqldump zabbix | bzip2 -9 > dbdump.bz2

Now you can transfer the dbdump.bz2 file to another machine.

To restore from the backup, transfer it to the appliance and execute:

bzcat dbdump.bz2 | sudo mysql zabbix

Attention:
Make sure that Zabbix server is stopped while performing the restore.

3 Frontend access Access to frontend by default is allowed from everywhere.

The frontend can be accessed http://<host>/zabbix.

This can be customised in /etc/apache2/conf-available/zabbix.conf. You have to restart the webserver after modifying this file.
To do so, log in using SSH as root user and execute:

service apache2 restart

4 Firewall By default, only the ports listed in changes are open. To open additional ports just modify ”/etc/iptables/rules.v4” or
”/etc/iptables/rules.v6” files and reload firewall rules:

service iptables-persistent reload

5 Monitoring capabilities Zabbix installation is provided with the support for the following:

• SNMP
• IPMI
• Web monitoring
• VMware monitoring
• Jabber notifications
• EZ Texting notifications
• ODBC
• SSH2
• IPv6
• SNMP Traps
• Zabbix Java Gateway

6 SNMP traps Zabbix appliance uses snmptrapfmt to handle SNMP traps. It is configured to receive all traps from everywhere.

Authentication is not required. If you would like to enable authentication, you need to change the /etc/snmp/snmptrapd.conf file
and specify required auth settings.

All traps are stored in the /var/log/zabbix/snmptrapfmt.log file. It is rotated by logrotate before reaching 2GB file size.

7 Upgrading The appliance Zabbix packages may be upgraded. To do so, run:

sudo apt-get --only-upgrade install zabbix*

91

8 Naming, init and other scripts Appropriate init scripts are provided. To control Zabbix server, use any of these:

service zabbix-server status

Replace server with agent for Zabbix agent daemon or with proxy for Zabbix proxy daemon.

8.1 Increasing available diskspace

Warning:
Create a backup of all data before attempting any of the steps.

Available diskspace on the appliance might not be sufficient. In that case it is possible to expand the disk. To do so, first expand
the block device in your virtualization environment, then follow these steps.

Start fdisk to change the partition size. As root, execute:

fdisk /dev/sda

This will start fdisk on disk sda. Next, switch to sectors by issuing:

u

Attention:
Don’t disable DOS compatibility mode by entering c. Proceeding with it disabled will damage the partition.

Then delete the existing partition and create a new one with the desired size. In the majority of cases you will accept the available
maximum, which will expand the filesystem to whatever size you made available for the virtual disk. To do so, enter the following
sequence in fdisk prompt:

d
n
p
1
(accept default 63)
(accept default max)

If you wish to leave some space for additional partitions (swap etc), you can enter another value for last sector. When done, save
the changes by issuing:

w

After partition creation (new disk or extended existing) create physical volume:

pvcreate /dev/sdb1

Warning:
Partition name /dev/sdb1 is used in the example; in your case disk name and partition number could be different. You can
check partition number using fdisk -l /dev/sdb command.

Check newly created physical volume:

pvdisplay /dev/sdb1

Check available physical volumes. There must be 2 volumes zabbix-vg and newly created:

pvs

Extend your existing volume group with the newly created physical volume:

vgextend zabbix-vg /dev/sdb1

Check ”zabbix-vg” volume group:

vgdisplay

Now extend your logical volume with the free PE space:

lvextend -l +100%FREE /dev/mapper/zabbix--vg-root

Resize your root volume (can be done on a live sysyem):

resize2fs /dev/mapper/zabbix--vg-root

92

Reboot the virtual machine (as the partition we modified is in use currently). That’s it, filesystem should be grown to the partition
size now. Check ”/dev/mapper/zabbix--vg-root” volume:

df -h

9 Format-specific notes 9.1 Xen

Converting image for XenServer

To use Xen images with Citrix Xenserver you have to convert the disk image. To do so:

• Create a virtual disk, which is at least as large as the image
• Find out the UUID for this disk

xe vdi-list params=all

• If there are lots of disks, they can be filtered by the name parameter name-label, as assigned when creating the virtual disk
• Import the image

xe vdi-import filename="image.raw" uuid="<UUID>"

Instructions from Brian Radford blog.

9.2 VMware

The images in vmdk format are usable directly in VMware Player, Server and Workstation products. For use in ESX, ESXi and
vSphere they must be converted using VMware converter.

9.3 HDD/flash image (raw)

dd if=./zabbix_appliance_3.2.0_x86_64.raw of=/dev/sdc bs=4k conv=fdatasync

Replace /dev/sdc with your Flash/HDD disk device.

10 Known issues

6. Configuration

Please use the sidebar to access content in the Configuration section.

1 Configuring a template

Overview

Configuring a template requires that you first create a template by defining its general parameters and then you add entities
(items, triggers, graphs etc.) to it.

Creating a template

To create a template, do the following:

• Go to Configuration → Templates
• Click on Create template
• Edit template attributes

The Template tab contains general template attributes.

93

http://www.vmware.com/products/converter/

Template attributes:

Parameter Description

Template name Unique template name.
Visible name If you set this name, it will be the one visible in lists, maps, etc.
Groups Host/template groups the template belongs to.
New group A new group can be created to hold the template.

Ignored, if empty.
Hosts/Templates List of hosts/templates the template is applied to.
Description Enter the template description.

The Linked templates tab allows you to link one or more ”nested” templates to this template. All entities (items, triggers, graphs
etc.) will be inherited from the linked templates.

To link a new template, start typing in the Link new templates field until a list of templates corresponding to the entered letter(s)
appear. Scroll down to select. When all templates to be linked are selected, click on Add.

To unlink a template, use one of the two options in the Linked templates block:

• Unlink - unlink the template, but preserve its items, triggers and graphs

94

• Unlink and clear - unlink the template and remove all its items, triggers and graphs

TheMacros tab allows you to define template-level user macros. You may also view here macros from linked templates and global
macros if you select the Inherited and template macros option. That is where all defined user macros for the template are displayed
with the value they resolve to as well as their origin.

For convenience, links to respective templates and global macro configuration are provided. It is also possible to edit a nested
template/global macro on the template level, effectively creating a copy of the macro on the template.

Buttons:

Add the template. The added template should appear in the
list.

Update the properties of an existing template.

Create another template based on the properties of the
current template, including the entities (items, triggers, etc)
inherited from linked templates.

Create another template based on the properties of the
current template, including the entities (items, triggers, etc)
both inherited from linked templates and directly attached
to the current template.

Delete the template; entities of the template (items,
triggers, etc) remain with the linked hosts.

Delete the template and all its entities from linked hosts.

Cancel the editing of template properties.

With a template created, it is time to add some entities to it.

Attention:
Items have to be added to a template first. Triggers and graphs cannot be added without the corresponding item.

Adding items, triggers, graphs

To add items to the template, do the following:

• Go to Configuration → Hosts (or Templates)
• Click on Items in the row of the required host/template
• Mark the checkboxes of items you want add to the template
• Click on Copy below the item list
• Select the template (or group of templates) the items should be copied to and click on Copy

All the selected items should be copied to the template.

95

Adding triggers and graphs is done in similar fashion (from the list of triggers and graphs respectively), again, keeping in mind that
they can only be added if the required items are added first.

Adding screens

To add screens to a template in Configuration → Templates, do the following:

• Click on Screens in the row of the template
• Configure a screen following the usual method of configuring screens

Attention:
The elements that can be included in a template screen are: simple graph, custom graph, clock, plain text, URL.

Configuring low-level discovery rules

See the low-level discovery section of the manual.

Adding web scenarios

To add web scenarios to a template in Configuration → Templates, do the following:

• Click on Web in the row of the template
• Configure a web scenario following the usual method of configuring web scenarios

2 Linking/unlinking

Overview

Linking is a process whereby templates are applied to hosts, whereas unlinking removes the association with the template from a
host.

Attention:
Templates are linked directly to individual hosts and not to host groups. Simply adding a template to a host group will not
link it. Host groups are used only for logical grouping of hosts and templates.

Linking a template

To link a template to the host, do the following:

• Go to Configuration → Hosts
• Click on the required host and switch to the Templates tab
• Click on Add next to Link new templates
• Select one or several templates in the popup window
• Click on Add/Update in the host attributes form

The host will now have all the entities (items, triggers, graphs, etc) of the template.

Attention:
Linking multiple templates to the same host will fail if in those templates there are items with the same item key. And, as
triggers and graphs use items, they cannot be linked to a single host from multiple templates either, if using identical item
keys.

When entities (items, triggers, graphs etc.) are added from the template:

• previously existing identical entities on the host are updated as entities of the template
• entities from the template are added
• any directly linked entities that, prior to template linkage, existed only on the host remain untouched

In the lists, all entities from the template now are prefixed by the template name, indicating that these belong to the particular
template. The template name itself (in grey text) is a link allowing to access the list of those entities on the template level.

If some entity (item, trigger, graph etc.) is not prefixed by the template name, it means that it existed on the host before and was
not added by the template.

Entity uniqueness criteria

When adding entities (items, triggers, graphs etc.) from a template it is important to know what of those entities already exist on
the host and need to be updated and what entities differ. The uniqueness criteria for deciding upon the sameness/difference are:

• for items - the item key

96

• for triggers - trigger name and expression
• for custom graphs - graph name and its items
• for applications - application name

Linking templates to several hosts

There are some ways of mass-applying templates (to many hosts at once):

• To link a template to many hosts, in Configuration → Templates, click on the template, then select hosts from the respective
group in the Other box, click on « and update the template.

Vice versa, if you select the linked hosts in the In box, click on » and update the template, you unlink the template from these
hosts (while the hosts will still inherit the items, triggers, graphs etc. from the template).

• To update template linkage of many hosts, in Configuration → Hosts select some hosts by marking their checkboxes, then
click on Mass update below the list and then in the Templates tab select to link additional templates:

Select Link templates and start typing the template name in the auto-complete field until a dropdown appears offering thematching
templates. Just scroll down to select the template to link.

The Replace option will allow to link a new template while unlinking any template that was linked to the hosts before. The Clear
when unlinking option will allow to not only unlink any previously linked templates, but also remove all elements inherited from
them (items, triggers, etc.).

Note:
Zabbix offers a sizable set of predefined templates. You can use these for reference, but beware of using them unchanged
in production as they may contain too many items and poll for data too often. If you feel like using them, finetune them to
fit you real needs.

Editing linked entities

If you try to edit an item or trigger that was linked from the template, you may realize that many key options are disabled for
editing. This makes sense as the idea of templates is that things are edited in one-touch manner on the template level. However,
you still can, for example, enable/disable an item on the individual host and set the update interval, history length and some other
parameters.

If you want to edit the entity fully, you have to edit it on the template level (template level shortcut is displayed in the form name),
keeping in mind that these changes will affect all hosts that have this template linked to them.

Unlinking a template

To unlink a template from a host, do the following:

• Go to Configuration → Hosts
• Click on the required host and switch to the Templates tab
• Click on Unlink or Unlink and clear next to the template to unlink
• Click on Update in the host attributes form

Choosing the Unlink option will simply remove association with the template, while leaving all its entities (items, triggers, graphs
etc.) with the host.

Choosing the Unlink and clear option will remove both the association with the template and all its entities (items, triggers, graphs
etc.).

97

3 Nesting

Overview

Nesting is a way of one template encompassing one or more other templates.

As it makes sense to separate out on individual templates entities for various services, applications etc. you may end up with quite
a few templates all of which may need to be linked to quite a few hosts. To simplify the picture, it is possible to link some templates
together, in one ”nested” template.

The benefit of nesting is that then you have to link only the one template to the host and the host will inherit all entities of the
linked templates automatically.

Configuring a nested template

If you want to link some templates, to begin with you can take an existing template or a new one, then:

• Open the template properties form
• Look for the Linked templates tab
• Click on Select to select templates in the popup window
• Click on Add to list selected templates
• Click on Add/Update in the template properties form

Now the template should have all the entities (items, triggers, custom graphs etc.) of the linked templates.

To unlink any of the linked templates, in the same form use the Unlink or Unlink and clear buttons and click on Update.

Choosing the Unlink option will simply remove the association with the other template, while not removing all its entities (items,
triggers, graphs etc).

Choosing the Unlink and clear option will remove both the association with the other template and all its entities (items, triggers,
graphs etc).

Permission issues

• You may have a setup where an Admin level user has Read-write access to some Template A while not having Read-write
access to Template B that holds Template A in a nested setup. In this case, an item created on Template A, while inherited
by the hosts of Template A, will not be inherited by the hosts of Template B. Thus, creating a trigger for such an item will
fail altogether, because of missing corresponding items on hosts of Template B.

1 Hosts and host groups

What is a ”host”?

Typical Zabbix hosts are the devices you wish to monitor (servers, workstations, switches, etc).

Creating hosts is one of the first monitoring tasks in Zabbix. For example, if you want to monitor some parameters on a server ”x”,
you must first create a host called, say, ”Server X” and then you can look to add monitoring items to it.

Hosts are organized into host groups.

Proceed to creating and configuring a host.

1 Configuring a host

Overview

To configure a host in Zabbix frontend, do the following:

• Go to: Configuration → Hosts
• Click on Create host to the right (or on the host name to edit an existing host)
• Enter parameters of the host in the form

You can also use the Clone and Full clone buttons in the form of an existing host to create a new host. Clicking on Clone will retain
all host parameters and template linkage (keeping all entities from those templates). Full clone will additionally retain directly
attached entities (applications, items, triggers, graphs, low-level discovery rules and web scenarios).

Note: When a host is cloned, it will retain all template entities as they are originally on the template. Any changes to those entities
made on the existing host level (such as changed item interval, modified regular expression or added prototypes to the low-level
discovery rule) will not be cloned to the new host; instead they will be as on the template.

98

Configuration

The Host tab contains general host attributes:

Parameter Description

Host name Enter a unique host name. Alphanumerics, spaces, dots, dashes
and underscores are allowed.
Note: With Zabbix agent running on the host you are configuring,
the agent configuration file parameter Hostname must have the
same value as the host name entered here. The name in the
parameter is needed in the processing of active checks.

Visible name If you set this name, it will be the one visible in lists, maps, etc.
This attribute has UTF-8 support.

Groups Select host groups the host belongs to. A host must belong to at
least one host group.

New host group A new group can be created and linked to the host. Ignored, if
empty.

99

Parameter Description

Interfaces Several host interface types are supported for a host: Agent,
SNMP, JMX and IPMI.
To add a new interface, click on Add in the Interfaces block and
enter IP/DNS, Connect to and Port info.
Note: Interfaces that are used in any items cannot be removed and
link Remove is greyed out for them.
Use bulk requests option for SNMP interfaces allows to
enable/disable bulk processing of SNMP requests per interface.

IP address Host IP address (optional).
DNS name Host DNS name (optional).
Connect to Clicking the respective button will tell Zabbix server what to use to

retrieve data from agents:
IP - Connect to the host IP address (recommended)
DNS - Connect to the host DNS name

Port TCP/UDP port number. Default values are: 10050 for Zabbix agent,
161 for SNMP agent, 12345 for JMX and 623 for IPMI.

Default Check the radio button to set the default interface.
Description Enter the host description.
Monitored by proxy The host can be monitored either by Zabbix server or one of

Zabbix proxies:
(no proxy) - host is monitored by Zabbix server
Proxy name - host is monitored by Zabbix proxy ”Proxy name”

Enabled Mark the checkbox to make the host active, ready to be monitored.
If unchecked, the host is not active, thus not monitored.

The Templates tab allows you to link templates to the host. All entities (items, triggers, graphs and applications) will be inherited
from the template.

To link a new template, start typing in the Link new templates field until a list of matching templates appear. Scroll down to select.
When all templates to be linked are selected, click on Add.

To unlink a template, use one of the two options in the Linked templates block:

• Unlink - unlink the template, but preserve its items, triggers and graphs
• Unlink and clear - unlink the template and remove all its items, triggers and graphs

Listed template names are clickable links leading to the template configuration form.

See also known issues about template linkage.

The IPMI tab contains IPMI management attributes.

Parameter Description

Authentication algorithm Select the authentication algorithm.
Privilege level Select the privilege level.
Username User name for authentication.
Password Password for authentication.

TheMacros tab allows you to define host-level user macros. You may also view here template-level and global macros if you select
the Inherited and host macros option. That is where all defined user macros for the host are displayed with the value they resolve
to as well as their origin.

100

For convenience, links to respective templates and global macro configuration are provided. It is also possible to edit a tem-
plate/global macro on the host level, effectively creating a copy of the macro on the host.

The Host inventory tab allows you to manually enter inventory information for the host. You can also select to enable Automatic
inventory population, or disable inventory population for this host.

The Encryption tab allows you to require encrypted connections with the host.

Parameter Description

Connections to host How Zabbix server or proxy connects to Zabbix agent on a host: no
encryption (default), using PSK (pre-shared key) or certificate.

Connections from host Select what type of connections are allowed from the host (i.e.
from Zabbix agent and Zabbix sender). Several connection types
can be selected at the same time (useful for testing and switching
to other connection type). Default is ”No encryption”.

Issuer Allowed issuer of certificate. Certificate is first validated with CA
(certificate authority). If it is valid, signed by the CA, then the
Issuer field can be used to further restrict allowed CA. This field is
intended to be used if your Zabbix installation uses certificates
from multiple CAs. If this field is empty then any CA is accepted.

Subject Allowed subject of certificate. Certificate is first validated with CA.
If it is valid, signed by the CA, then the Subject field can be used to
allow only one value of Subject string. If this field is empty then
any valid certificate signed by the configured CA is accepted.

PSK identity Pre-shared key identity string.
PSK Pre-shared key (hex-string). Maximum length: 512 hex-digits

(256-byte PSK) if Zabbix uses GnuTLS or OpenSSL library, 64
hex-digits (32-byte PSK) if Zabbix uses mbed TLS (PolarSSL)
library. Example:
1f87b595725ac58dd977beef14b97461a7c1045b9a1c963065002c5473194952

Configuring a host group

To configure a host group in Zabbix frontend, do the following:

• Go to: Configuration → Host groups
• Click on Create Group in the upper right corner of the screen
• Enter parameters of the group in the form

101

Parameter Description

Group name Enter a unique host group name.
To create a nested host group, use the ’/’ forward slash separator,
for example Europe/Latvia/Riga/Zabbix servers. You can
create this group even if none of the three parent host groups
(Europe/Latvia/Riga) exist. In this case creating these parent
host groups is up to the user; they will not be created automatically.
Leading and trailing slashes, several slashes in a row are not
allowed. Asterisks are not allowed in Zabbix 3.2.0, 3.2.1. Escaping
of ’/’ is not supported.
Nested representation of host groups is supported since Zabbix
3.2.0.

Hosts Select hosts, members of the group. A host group may have zero,
one or more hosts.

Permissions to nested host groups

• When creating a child host group to an existing parent host group, user group permissions to the child are inherited from
the parent (for example, when creating Riga/Zabbix servers if Riga already exists)

• When creating a parent host group to an existing child host group, no permissions to the parent are set (for example, when
creating Riga if Riga/Zabbix servers already exists)

2 Inventory

Overview

You can keep the inventory of networked devices in Zabbix.

There is a special Inventory menu in the Zabbix frontend. However, you will not see any data there initially and it is not where you
enter data. Building inventory data is done manually when configuring a host or automatically by using some automatic population
options.

Building inventory

Manual mode

102

When configuring a host, in the Host inventory tab you can enter such details as the type of device, serial number, location,
responsible person, etc - data that will populate inventory information.

If a URL is included in host inventory information and it starts with ’http’ or ’https’, it will result in a clickable link in the Inventory
section.

Automatic mode

Host inventory can also be populated automatically. For that to work, when configuring a host the inventory mode in the Host
inventory tab must be set to Automatic.

Then you can configure host items to populate any host inventory field with their value, indicating the destination field with the
respective attribute (called Item will populate host inventory field) in item configuration.

Items that are especially useful for automated inventory data collection:

• system.hw.chassis[full|type|vendor|model|serial] - default is [full], root permissions needed
• system.hw.cpu[all|cpunum,full|maxfreq|vendor|model|curfreq] - default is [all,full]
• system.hw.devices[pci|usb] - default is [pci]
• system.hw.macaddr[interface,short|full] - default is [all,full], interface is regexp
• system.sw.arch
• system.sw.os[name|short|full] - default is [name]
• system.sw.packages[package,manager,short|full] - default is [all,all,full], package is regexp

Inventory mode selection

Inventory mode can be selected in the host configuration form.

Inventory mode by default for new hosts is selected based on the Default host inventory mode setting in Administration → General
→ Other.

For hosts added by network discovery or auto registration actions, it is possible to define a Set host inventory mode operation
selecting manual or automatic mode. This operation overrides the Default host inventory mode setting.

Inventory overview

The details of all existing inventory data are available in the Inventory menu.

In Inventory → Overview you can get a host count by various fields of the inventory.

In Inventory → Hosts you can see all hosts that have inventory information. Clicking on the host name will reveal the inventory
details in a form.

The Overview tab shows:

Parameter Description

Host name Name of the host.
Clicking on the name opens a menu with the
scripts defined for the host.
Host name is displayed with an orange icon, if
the host is in maintenance.

Visible name Visible name of the host (if defined).
Host (Agent, SNMP, JMX,
IPMI)
interfaces

This block provides details of the interfaces
configured for the host.

103

Parameter Description

OS Operating system inventory field of the host (if
defined).

Hardware Host hardware inventory field (if defined).
Software Host software inventory field (if defined).
Description Host description.
Monitoring Links to monitoring sections with data for this

host: Web, Latest data, Triggers, Problems,
Graphs, Screens.

Configuration Links to configuration sections for this host:
Host, Applications, Items, Triggers, Graphs,
Discovery, Web.
The amount of configured entities is listed in
parenthesis after each link.

The Details tab shows all inventory fields that are populated (are not empty).

Inventory macros

There are host inventory macros {INVENTORY.*} available for use in notifications, for example:

”Server in {INVENTORY.LOCATION1} has a problem, responsible person is {INVENTORY.CONTACT1}, phone number {INVEN-
TORY.POC.PRIMARY.PHONE.A1}.”

For more details, see the Macros supported by location page.

3 Mass update

Overview

Sometimes you may want to change some attribute for a number of hosts at once. Instead of opening each individual host for
editing, you may use the mass update function for that.

Using mass update

To mass-update some hosts, do the following:

• Mark the checkboxes before the hosts you want to update in the host list
• Click on Mass update below the list
• Navigate to the desired tab of attributes (Host, Templates, IPMI or Inventory)
• Mark the checkboxes of any attribute to update and enter a new value for them

104

Replace host groups will remove the host from any existing host groups and replace those with the one(s) specified in this field.

Add new or existing host groups allows to specify additional host groups from the existing ones or enter completely new host
groups for the hosts.

Both these fields are auto-complete - starting to type in them offers a dropdown of matching host groups. If the host group is new,
it also appears in the dropdown and it is indicated by (new) after the string. Just scroll down to select.

To update template linkage in the Templates tab, select Link templates and start typing the template name in the auto-complete
field until a dropdown appears offering the matching templates. Just scroll down to select the template to link.

The Replace option will allow to link a new template while unlinking any template that was linked to the hosts before. The Clear
when unlinking option will allow to not only unlink any previously linked templates, but also remove all elements inherited from
them (items, triggers, etc.).

105

To be able to mass update inventory fields, the Inventory mode should be set to ’Manual’ or ’Automatic’.

When done with all required changes, click on Update. The attributes will be updated accordingly for all the selected hosts.

2 Items

Overview

Items are the ones that gather data from a host.

Once you have configured a host, you need to add some monitoring items to start getting actual data.

An item is an individual metric. One way of quickly adding many items is to attach one of the predefined templates to a host.
For optimized system performance though, you may need to fine-tune the templates to have only as many items and as frequent
monitoring as is really necessary.

In an individual item you specify what sort of data will be gathered from the host.

For that purpose you use the item key. Thus an item with the key name system.cpu.load will gather data of the processor load,
while an item with the key name net.if.in will gather incoming traffic information.

To specify further parameters with the key, you include those in square brackets after the key name. Thus, system.cpu.load[avg5]
will return processor load average for the last 5 minutes, while net.if.in[eth0] will show incoming traffic in the interface eth0.

106

Note:
For all supported item types and item keys, see individual sections of item types.

Proceed to creating and configuring an item.

1 Creating an item

Overview

To create an item in Zabbix frontend, do the following:

• Go to: Configuration → Hosts
• Click on Items in the row of the host
• Click on Create item in the upper right corner of the screen
• Enter parameters of the item in the form

Configuration

107

108

Item attributes:

Parameter Description

Name This is how the item will be named.
The following macros can be used:
$1, $2...$9 - referring to the first, second... ninth parameter of the
item key
For example: Free disk space on $1
If the item key is ”vfs.fs.size[/,free]”, the description will
automatically change to ”Free disk space on /”

Type Item type. See individual item type sections.
Key Item key.

The supported item keys can be found in individual item type
sections.
The key must be unique within a single host.
If key type is ’Zabbix agent’, ’Zabbix agent (active)’, ’Simple check’
or ’Zabbix aggregate’, the key value must be supported by Zabbix
agent or Zabbix server.
See also: the correct key format.

Host interface Select the host interface. This field is available when editing an
item on the host level.

Type of information Type of data as stored in the database after performing
conversions, if any.
Numeric (unsigned) - 64bit unsigned integer
Numeric (float) - floating point number
Negative values can be stored.
Allowed range: -999999999999.9999 to 999999999999.9999.
Starting with Zabbix 2.2, receiving values in scientific notation is
also supported. E.g. 1e+7, 1e-4.
Character - short text data
Log - long text data with optional log related properties
(timestamp, source, severity, logeventid)
Text - long text data
Limits of text data are described in the table below.

Data type Data type is used for integer items in order to specify the expected
data type:
Boolean - textual representation translated into either 0 or 1.
Thus, ’TRUE’ is stored as 1 and ’FALSE’ is stored as 0. All values are
matched in a case-insensitive way. Currently recognized values
are, for:
TRUE - true, t, yes, y, on, up, running, enabled, available
FALSE - false, f, no, n, off, down, unused, disabled, unavailable
Additionally, any non-zero numeric value is considered to be TRUE
and zero is considered to be FALSE.
Octal - data in octal format
Decimal - data in decimal format
Hexadecimal - data in hexadecimal format
Zabbix will automatically perform the conversion to numeric.
The conversion is done by Zabbix server (even when a host is
monitored by Zabbix proxy).

109

Parameter Description

Units If a unit symbol is set, Zabbix will add post processing to the
received value and display it with the set unit postfix.
By default, if the raw value exceeds 1000, it is divided by 1000 and
displayed accordingly. For example, if you set bps and receive a
value of 881764, it will be displayed as 881.76 Kbps.
Special processing is used for B (byte), Bps (bytes per second)
units, which are divided by 1024. Thus, if units are set to B or Bps
Zabbix will display:
1 as 1B/1Bps
1024 as 1KB/1KBps
1536 as 1.5KB/1.5KBps
Special processing is used if the following time-related units are
used:
unixtime - translated to ”yyyy.mm.dd hh:mm:ss”. To translate
correctly, the received value must be a Numeric (unsigned) type of
information.
uptime - translated to ”hh:mm:ss” or ”N days, hh:mm:ss”
For example, if you receive the value as 881764 (seconds), it will
be displayed as ”10 days, 04:56:04”
s - translated to ”yyy mmm ddd hhh mmm sss ms”; parameter is
treated as number of seconds.
For example, if you receive the value as 881764 (seconds), it will
be displayed as ”10d 4h 56m”
Only 3 upper major units are shown, like ”1m 15d 5h” or ”2h 4m
46s”. If there are no days to display, only two levels are displayed -
”1m 5h” (no minutes, seconds or milliseconds are shown). Will be
translated to ”< 1 ms” if the value is less than 0.001.
See also the unit blacklist.

Use custom multiplier If you enable this option, all received values will be multiplied by
the integer or floating-point value set in the value field.
Use this option to convert values received in KB, MBps, etc into B,
Bps. Otherwise Zabbix cannot correctly set prefixes (K, M, G etc).
Starting with Zabbix 2.2, using scientific notation is also supported.
E.g. 1e+70.

Update interval (in sec) Retrieve a new value for this item every N seconds. Maximum
allowed update interval is 86400 seconds (1 day).
Note: If set to ’0’, the item will not be polled. However, if a custom
interval (flexible/scheduling) also exists with a non-zero value, the
item will be polled during the custom interval duration.

Custom intervals You can create custom rules for checking the item:
Flexible - create an exception to the Update interval (interval with
different frequency)
Scheduling - create a custom polling schedule.
For detailed information see Custom intervals. Scheduling is
supported since Zabbix 3.0.0.
Note: Not available for Zabbix agent active items.

History storage period
(in days) Number of days to keep detailed history in the database. Older
data will be removed by the housekeeper.
Starting with Zabbix 2.2, this value can be overridden globally in
Administration → General → Housekeeper. If the global setting
exists, a warning message is displayed:

It is recommended to keep the recorded values for the smallest
possible number of days to reduce the size of value history in the
database. Instead of keeping long history of values, you can keep
longer data of trends.
See also History and trends.

110

Parameter Description

Trend storage period
(in days) Keep aggregated (hourly min, max, avg, count) detailed history for
N days in the database. Older data will be removed by the
housekeeper.
Starting with Zabbix 2.2, this value can be overridden globally in
Administration → General → Housekeeper. If the global setting
exists, a warning message is displayed:

Note: Keeping trends is not available for non-numeric data -
character, log and text.
See also History and trends.

Store value As is - no pre-processing
Delta (speed per second) - evaluate value as
(value-prev_value)/(time-prev_time), where
value - current value
value_prev - previously received value
time - current timestamp
prev_time - timestamp of previous value
This setting is extremely useful to get speed per second for a
constantly growing value.
If current value is smaller than the previous value, Zabbix discards
that difference (stores nothing) and waits for another value. This
helps to work correctly with, for instance, a wrapping (overflow) of
32-bit SNMP counters.
Note: As this calculation may produce floating point numbers, it is
recommended to set the ’Type of information’ to Numeric (float),
even if the incoming raw values are integers. This is especially
relevant for small numbers where the decimal part matters. If the
floating point values are large and may exceed the ’float’ field
length in which case the entire value may be lost, it is actually
suggested to use Numeric (unsigned) and thus trim only the
decimal part.
Delta (simple change) - evaluate as (value-prev_value), where
value - current value
value_prev - previously received value
This setting can be useful to measure a constantly growing value.
If the current value is smaller than the previous value, Zabbix
discards that difference (stores nothing) and waits for another
value.

Show value Apply value mapping to this item. Value mapping does not change
received values, it is for displaying data only.
It works with Numeric(unsigned), Numeric(float) and Character
items.
For example, ”Windows service states”.

Log time format Available for items of type Log only. Supported placeholders:
* y: Year (1970-2038)
* M: Month (01-12)
* d: Day (01-31)
* h: Hour (00-23)
* m: Minute (00-59)
* s: Second (00-59)
If left blank the timestamp will not be parsed.
For example, consider the following line from the Zabbix agent log
file:
” 23480:20100328:154718.045 Zabbix agent started. Zabbix 1.8.2
(revision 11211).”
It begins with six character positions for PID, followed by date,
time, and the rest of the line.
Log time format for this line would be
”pppppp:yyyyMMdd:hhmmss”.
Note that ”p” and ”:” chars are just placeholders and can be
anything but ”yMdhms”.

111

Parameter Description

New application Enter the name of a new application for the item.
Applications Link item to one or more existing applications.
Populates host inventory field You can select a host inventory field that the value of item will

populate. This will work if automatic inventory population is
enabled for the host.

Description Enter an item description.
Enabled Mark the checkbox to enable the item so it will be processed.

You can also create an item by opening an existing one, pressing the Clone button and then saving under a different name.

Note:
When editing an existing template level item on a host level, a number of fields are read-only. You can use the link in the
form header and go to the template level and edit them there, keeping in mind that the changes on a template level will
change the item for all hosts that the template is linked to.

Note:
If you use a custom multiplier or store value as Delta (speed per second) for items with the type of information set to
Numeric (unsigned) and the resulting calculated value is actually a float number, the calculated value is still accepted as
a correct one by trimming the decimal part and storing the value as integer.

Text data limits

Text data limits depend on the database backend. Before storing text values in the database they get truncated to match the
database value type limit:

Database Type of information

Character Log Text
MySQL 255 characters 65536 bytes 65536 bytes
PostgreSQL 255 characters 65536 characters 65536 characters
Oracle 255 characters 65536 characters 65536 characters
IBM DB2 255 bytes 2048 bytes 2048 bytes

Unit blacklist

By default, specifying a unit for an item will result in a multiplier prefix being added - for example, value 2048 with unit B would
be displayed as 2KB. For a pre-defined, hardcoded list of units this is prevented:

• ms
• RPM
• rpm
• %

Note that both lowercase and uppercase rpm (rpm and RPM) strings are blacklisted.

Unsupported items

An item can become unsupported if its value cannot be retrieved for some reason. Such items are still rechecked at a fixed interval,
configurable in Administration section.

1 Item key

1.1 Flexible and non-flexible parameters

A flexible parameter is a parameter which accepts an argument. For example, in vfs.fs.size[*] the asterisk symbol ’*’ indicates a
flexible parameter. ’*’ is any string that will be passed as an argument to the parameter. Correct definition examples:

• vfs.fs.size[/]
• vfs.fs.size[/opt]

1.2 Key format

112

Item key format, including key parameters, must follow syntax rules. The following illustrations depict the supported syntax.
Allowed elements and characters at each point can be determined by following the arrows - if some block can be reached through
the line, it is allowed, if not - it is not allowed.

To construct a valid item key, one starts with specifying the key name, then there’s a choice to either have parameters or not - as
depicted by the two lines that could be followed.

Key name

The key name itself has a limited range of allowed characters, which just follow each other. Allowed characters are:

0-9a-zA-Z_-.

Which means:

• all numbers;
• all lowercase letters;
• all uppercase letters;
• underscore;
• dash;
• dot.

Key parameters

An item key can have multiple parameters that are comma separated.

Each key parameter can be either a quoted string, an unquoted string or an array.

113

The parameter can also be left empty, thus using the default value. In that case, the appropriate number of commas must
be added if any further parameters are specified. For example, item key icmpping[„200„500] would specify that the interval
between individual pings is 200 milliseconds, timeout - 500 milliseconds, and all other parameters are left at their defaults.

Parameter - quoted string

If the key parameter is a quoted string, any Unicode character is allowed, and included double quotes must be backslash escaped.

Warning:
To quote item key parameters, use double quotes only. Single quotes are not supported.

Parameter - unquoted string

If the key parameter is an unquoted string, any Unicode character is allowed except comma and right square bracket (]).

Parameter - array

If the key parameter is an array, it is again enclosed in square brackets, where individual parameters come in line with the rules
and syntax of specifying multiple parameters.

114

2 Custom intervals

Overview

It is possible to create custom rules regarding the times when an item is checked. The two methods for that are Flexible intervals,
which allow to redefine the default update interval, and Scheduling, whereby an item check can be executed at a specific time or
sequence of times.

Flexible intervals

Flexible intervals allow to redefine the default update interval for specific time periods. A flexible interval is defined with Interval
and Period where:

• Interval – the update interval for the specified time period
• Period – the time period when the flexible interval is active (see the time periods for detailed description of the Period format)

Up to seven flexible intervals can be defined. If multiple flexible intervals overlap, the smallest Interval value is used for the
overlapping period. Note that if the smallest value of overlapping flexible intervals is ’0’, no polling will take place. Outside the
flexible intervals the default update interval is used.

Note that if the flexible interval equals the length of the period, the item will be checked exactly once. If the flexible interval is
greater than the period, the item might be checked once or it might not be checked at all (thus such configuration is not advisable).
If the flexible interval is less than the period, the item will be checked at least once.

If the flexible interval is set to ’0’, the item is not polled during the flexible interval period and resumes polling according to the
default Update interval once the period is over. Examples:

Interval Period Description

10 1-5,09:00-18:00 Item will be checked every 10 seconds during
working hours.

0 1-7,00:00-7:00 Item will not be checked during the night.
0 7-7,00:00-24:00 Item will not be checked on Sundays.
60 1-7,12:00-12:01 Item will be checked at 12:00 every day. Note that

this was used as a workaround for scheduled
checks and starting with Zabbix 3.0 it is
recommended to use scheduling intervals for such
checks.

Scheduling intervals

Scheduling intervals are used to check items at specific times. While flexible intervals are designed to redefine the default item
update interval, the scheduling intervals are used to specify an independent checking schedule, which is executed in parallel.

A scheduling interval is defined as: md<filter>wd<filter>h<filter>m<filter>s<filter> where:

• md - month days
• wd - week days
• h - hours
• m - minutes
• s – seconds

<filter> is used to specify values for its prefix (days, hours, minutes, seconds) and is defined as: [<from>[-<to>]][/<step>][,<filter>]
where:

• <from> and <to> define the range of matching values (included). If <to> is omitted then the filter matches a <from> -
<from> range. If <from> is also omitted then the filter matches all possible values.

• <step> defines the skips of the number value through the range. By default <step> has the value of 1, which means that
all values of the defined range are matched.

115

While the filter definitions are optional, at least one filter must be used. A filter must either have a range or the <step> value
defined.

An empty filter matches either ’0’ if no lower-level filter is defined or all possible values otherwise. For example, if the hour filter
is omitted then only ’0’ hour will match, provided minute and seconds filters are omitted too, otherwise an empty hour filter will
match all hour values.

Valid <from> and <to> values for their respective filter prefix are:

Prefix Description <from> <to>

md Month days 1-31 1-31
wd Week days 1-7 1-7
h Hours 0-23 0-23
m Minutes 0-59 0-59
s Seconds 0-59 0-59

The <from> value must be less or equal to <to> value. The <step> value must be greater or equal to 1 and less or equal to <to>
- <from>.

Single digit month days, hours, minutes and seconds values can be prefixed with 0. For example md01-31 and h/02 are valid
intervals, but md01-031 and wd01-07 are not.

In Zabbix frontend, multiple scheduling intervals are entered in separate rows. In Zabbix API, they are concatenated into a single
string with a semicolon ; as a separator.

If a time is matched by several intervals it is executed only once. For example, wd1h9;h9 will be executed only once on Monday
at 9am.

Examples:

Interval Description

m0-59 execute every minute
h9-17/2 execute every 2 hours starting with 9:00 (9:00, 11:00 ...)
m0,30 or m/30 execute hourly at hh:00 and hh:30
m0,5,10,15,20,25,30,35,40,45,50,55 or m/5 every five minutes
wd1-5h9 every Monday till Friday at 9:00
wd1-5h9-18 every Monday till Friday at 9:00,10:00,...,18:00
h9,10,11 or h9-11 every day at 9:00, 10:00 and 11:00
md1h9m30 every 1st day of each month at 9:30
md1wd1h9m30 every 1st day of each month at 9:30 if it is Monday
h9m/30 execute at 9:00, 9:30
h9m0-59/30 execute at 9:00, 9:30
h9,10m/30 execute at 9:00, 9:30, 10:00, 10:30
h9-10m30 execute at 9:30, 10:30
h9m10-40/30 execute at 9:10, 9:40
h9,10m10-40/30 execute at 9:10, 9:40, 10:10, 10:40
h9-10m10-40/30 execute at 9:10, 9:40, 10:10, 10:40
h9m10-40 execute at 9:10, 9:11, 9:12, ... 9:40
h9m10-40/1 execute at 9:10, 9:11, 9:12, ... 9:40
h9-12,15 execute at 9:00, 10:00, 11:00, 12:00, 15:00
h9-12,15m0 execute at 9:00, 10:00, 11:00, 12:00, 15:00
h9-12,15m0s30 execute at 9:00:30, 10:00:30, 11:00:30, 12:00:30, 15:00:30
h9-12s30 execute at 9:00:30, 9:01:30, 9:02:30 ... 12:58:30, 12:59:30
h9m/30;h10 (API-specific syntax) every day at 9:00, 9:30, 10:00
h9m/30
h10 (add this as another row in frontend)

every day at 9:00, 9:30, 10:00

2 Item types

Overview

Item types cover various methods of acquiring data from your system. Each item type comes with its own set of supported item
keys and required parameters.

116

The following items types are currently offered by Zabbix:

• Zabbix agent checks
• SNMP agent checks
• SNMP traps
• IPMI checks
• Simple checks
• VMware monitoring
• Log file monitoring
• Calculated items
• Zabbix internal checks
• SSH checks
• Telnet checks
• External checks
• Aggregate checks
• Trapper items
• JMX monitoring
• ODBC checks

Details for all item types are included in the subpages of this section. Even though item types offer a lot of options for data
gathering, there are further options through user parameters or loadable modules.

Some checks are performed by Zabbix server alone (as agent-less monitoring) while others require Zabbix agent or even Zabbix
Java gateway (with JMX monitoring).

Attention:
If a particular item type requires a particular interface (like an IPMI check needs an IPMI interface on the host) that interface
must exist in the host definition.

Multiple interfaces can be set in the host definition: Zabbix agent, SNMP agent, JMX and IPMI. If an item can use more than one
interface, it will search the available host interfaces (in the order: Agent→SNMP→JMX→IPMI) for the first appropriate one to be
linked with.

All items that return text (character, log, text types of information) can return whitespace only as well (where applicable) setting
the return value to an empty string (supported since 2.0).

1 Zabbix agent

Overview

These checks use the communication with Zabbix agent for data gathering.

There are passive and active agent checks. When configuring an item, you can select the required type:

• Zabbix agent - for passive checks
• Zabbix agent (active) - for active checks

Supported item keys

The table provides details on the item keys that you can use with Zabbix agent items.

See also:

• Items supported by platform
• Item keys specific for Windows agent

** Mandatory and optional parameters **

Parameters without angle brackets are mandatory. Parameters marked with angle brackets < > are optional.

Key

Description Return value Parameters Comments
agent.hostname

117

Key

Agent host
name.

String Returns the
actual value of
the agent
hostname from
a configuration
file.

agent.ping
Agent
availability
check.

Nothing -
unavailable

1 - available

Use the
nodata()
trigger function
to check for
host
unavailability.

agent.version
Version of
Zabbix agent.

String Example of
returned value:
1.8.2

kernel.maxfiles
Maximum
number of
opened files
supported by
OS.

Integer

kernel.maxproc
Maximum
number of
processes
supported by
OS.

Integer

log[file,<regexp>,<encoding>,<maxlines>,<mode>,<output>,<maxdelay>]

118

Key

Log file
monitoring.

Log file - full path
and name of
log file
regexp -
regular
expression
describing the
required
pattern
encoding -
code page
identifier
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items).
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
text while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).
maxdelay -
maximum
delay in
seconds. Type:
float. Values: 0
- (default)
never ignore
log file lines; >
0.0 - ignore
older lines in
order to get the
most recent
lines analyzed
within
”maxdelay”
seconds. Read
the maxdelay
notes before
using it!

The item must
be configured
as an active
check.
If file is missing
or permissions
do not allow
access, item
turns
unsupported.

If output is
left empty - the
whole line
containing the
matched text is
returned. Note
that all global
regular
expression
types except
’Result is TRUE’
always return
the whole
matched line
and the
output
parameter is
ignored.

Content
extraction
using the
output
parameter
takes place on
the agent.

Examples:
=>
log[/var/log/syslog]
=>
log[/var/log/syslog,error]
=>
log[/home/zabbix/logs/logfile„,100]

The mode
parameter is
supported
since Zabbix
2.0.
The output
parameter is
supported
since Zabbix
2.2.
The maxdelay
parameter is
supported
since Zabbix
3.2.

See also
additional
information on
log monitoring.

119

Key

log.count[file,<regexp>,<encoding>,<maxproclines>,<mode>,<maxdelay>]
Count of
matched lines
in log file
monitoring.

Integer file - full path
and name of
log file
regexp -
regular
expression
describing the
required
pattern
encoding -
code page
identifier
maxproclines
- maximum
number of new
lines per
second the
agent will
analyze.
Default value is
4*’MaxLines-
PerSecond’ in
zab-
bix_agentd.conf.
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items).
maxdelay -
maximum
delay in
seconds. Type:
float. Values: 0
- (default)
never ignore
log file lines; >
0.0 - ignore
older lines in
order to get the
most recent
lines analyzed
within
”maxdelay”
seconds. Read
the maxdelay
notes before
using it!

The item must
be configured
as an active
check.
If file is missing
or permissions
do not allow
access, item
turns
unsupported.

See also
additional
information on
log monitoring.

Supported
since Zabbix
3.2.0.

logrt[file_regexp,<regexp>,<encoding>,<maxlines>,<mode>,<output>,<maxdelay>]

120

Key

Log file
monitoring
with log
rotation
support.

Log file_regexp -
absolute path
to file and
regexp
describing the
file name
pattern
regexp -
regular
expression
describing the
required
content pattern
encoding -
code page
identifier
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items).
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
text while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).
maxdelay -
maximum
delay in
seconds. Type:
float. Values: 0
- (default)
never ignore
log file lines; >
0.0 - ignore
older lines in
order to get the
most recent
lines analyzed
within
”maxdelay”
seconds. Read
the maxdelay
notes before
using it!

The item must
be configured
as an active
check.
Log rotation is
based on the
last
modification
time of files.

If output is
left empty - the
whole line
containing the
matched text is
returned. Note
that all global
regular
expression
types except
’Result is TRUE’
always return
the whole
matched line
and the
output
parameter is
ignored.

Content
extraction
using the
output
parameter
takes place on
the agent.

Examples:
=> lo-
grt[”/home/zabbix/logs/^logfile[0-
9]{1,3}$”„,100]
→ will match a
file like
”logfile1” (will
not match
”.logfile1”)
=> lo-
grt[”/home/user/^logfile_.*_[0-
9]{1,3}$”,”pattern_to_match”,”UTF-
8”,100] → will
collect data
from files such
”logfile_abc_1”
or
”logfile__001”.

The mode
parameter is
supported
since Zabbix
2.0.
The output
parameter is
supported
since Zabbix
2.2.
The maxdelay
parameter is
supported
since Zabbix
3.2.

See also
additional
information on
log monitoring.

121

Key

logrt.count[file_regexp,<regexp>,<encoding>,<maxproclines>,<mode>,<maxdelay>]
Count of
matched lines
in log file
monitoring
with log
rotation
support.

Integer file_regexp -
absolute path
to file and
regexp
describing the
file name
pattern
regexp -
regular
expression
describing the
required
content pattern
encoding -
code page
identifier
maxproclines
- maximum
number of new
lines per
second the
agent will
analyze.
Default value is
4*’MaxLines-
PerSecond’ in
zab-
bix_agentd.conf.
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items).
maxdelay -
maximum
delay in
seconds. Type:
float. Values: 0
- (default)
never ignore
log file lines; >
0.0 - ignore
older lines in
order to get the
most recent
lines analyzed
within
”maxdelay”
seconds. Read
the maxdelay
notes before
using it!

The item must
be configured
as an active
check.
Log rotation is
based on the
last
modification
time of files.

See also
additional
information on
log monitoring.

Supported
since Zabbix
3.2.0.

net.dns[<ip>,name,<type>,<timeout>,<count>,<protocol>]

122

Key

Checks if DNS
service is up.

0 - DNS is down
(server did not
respond or
DNS resolution
failed)

1 - DNS is up

ip - IP address
of DNS server
(leave empty
for the default
DNS server,
ignored on
Windows)
name - DNS
name to query
type - record
type to be
queried
(default is SOA)
timeout
(ignored on
Windows) -
timeout for the
request in
seconds
(default is 1
second)
count (ignored
on Windows) -
number of tries
for the request
(default is 2)
protocol - the
protocol used
to perform DNS
queries: udp
(default) or tcp

Example:
=>
net.dns[8.8.8.8,zabbix.com,MX,2,1]

The possible
values for
type are:
ANY, A, NS,
CNAME, MB,
MG, MR, PTR,
MD, MF, MX,
SOA, NULL,
WKS (except
for Windows),
HINFO, MINFO,
TXT, SRV

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

The protocol
parameter is
supported
since Zabbix
3.0.
SRV record
type is
supported
since Zabbix
agent versions
1.8.6 (Unix)
and 2.0.0
(Windows).

Naming before
Zabbix 2.0 (still
supported):
net.tcp.dns

net.dns.record[<ip>,name,<type>,<timeout>,<count>,<protocol>]

123

Key

Performs a
DNS query.

Character
string with the
required type
of information

ip - IP address
of DNS server
(leave empty
for the default
DNS server,
ignored on
Windows)
name - DNS
name to query
type - record
type to be
queried
(default is SOA)
timeout
(ignored on
Windows) -
timeout for the
request in
seconds
(default is 1
second)
count (ignored
on Windows) -
number of tries
for the request
(default is 2)
protocol - the
protocol used
to perform DNS
queries: udp
(default) or tcp

Example:
=>
net.dns.record[8.8.8.8,zabbix.com,MX,2,1]

The possible
values for
type are:
ANY, A, NS,
CNAME, MB,
MG, MR, PTR,
MD, MF, MX,
SOA, NULL,
WKS (except
for Windows),
HINFO, MINFO,
TXT, SRV

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

The protocol
parameter is
supported
since Zabbix
3.0.
SRV record
type is
supported
since Zabbix
agent versions
1.8.6 (Unix)
and 2.0.0
(Windows).

Naming before
Zabbix 2.0 (still
supported):
net.tcp.dns.query

net.if.collisions[if]
Number of
out-of-window
collisions.

Integer if - network
interface name

net.if.discovery

124

Key

List of network
interfaces.
Used for
low-level
discovery.

JSON object Supported
since Zabbix
agent version
2.0.

On FreeBSD,
OpenBSD and
NetBSD
supported
since Zabbix
agent version
2.2.

Some Windows
versions (for
example,
Server 2008)
might require
the latest
updates
installed to
support
non-ASCII
characters in
interface
names.

net.if.in[if,<mode>]

125

Key

Incoming
traffic statistics
on network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

On Windows,
the item gets
values from
64-bit counters
if available.
64-bit interface
statistic
counters were
introduced in
Windows Vista
and Windows
Server 2008. If
64-bit counters
are not
available, the
agent uses
32-bit
counters.

Multi-byte
interface
names on
Windows are
supported
since Zabbix
agent version
1.8.6.

Examples:
=>
net.if.in[eth0,errors]
=>
net.if.in[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

net.if.out[if,<mode>]

126

Key

Outgoing
traffic statistics
on network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

On Windows,
the item gets
values from
64-bit counters
if available.
64-bit interface
statistic
counters were
introduced in
Windows Vista
and Windows
Server 2008. If
64-bit counters
are not
available, the
agent uses
32-bit
counters.

Multi-byte
interface
names on
Windows are
supported
since Zabbix
agent 1.8.6
version.

Examples:
=>
net.if.out[eth0,errors]
=>
net.if.out[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

net.if.total[if,<mode>]

127

Key

Sum of
incoming and
outgoing traffic
statistics on
network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

On Windows,
the item gets
values from
64-bit counters
if available.
64-bit interface
statistic
counters were
introduced in
Windows Vista
and Windows
Server 2008. If
64-bit counters
are not
available, the
agent uses
32-bit
counters.

Examples:
=>
net.if.total[eth0,errors]
=>
net.if.total[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

Note that
dropped
packets are
supported only
if both net.if.in
and net.if.out
work for
dropped
packets on
your platform.

net.tcp.listen[port]

128

Key

Checks if this
TCP port is in
LISTEN state.

0 - it is not in
LISTEN state

1 - it is in
LISTEN state

port - TCP port
number

Example:
=>
net.tcp.listen[80]

On Linux
supported
since Zabbix
agent version
1.8.4

Since Zabbix
3.0.0, on Linux
kernels 2.6.14
and above,
information
about listening
TCP sockets is
obtained from
the kernel’s
NETLINK
interface, if
possible.
Otherwise, the
information is
retrieved from
/proc/net/tcp
and
/proc/net/tcp6
files.

net.tcp.port[<ip>,port]
Checks if it is
possible to
make TCP
connection to
specified port.

0 - cannot
connect

1 - can connect

ip - IP address
(default is
127.0.0.1)
port - port
number

Example:
=>
net.tcp.port[,80]
→ can be used
to test
availability of
web server
running on port
80.

For simple TCP
performance
testing use
net.tcp.service.perf[tcp,<ip>,<port>]

Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).

Old naming:
check_port[*]

net.tcp.service[service,<ip>,<port>]

129

Key

Checks if
service is
running and
accepting TCP
connections.

0 - service is
down

1 - service is
running

service -
either of:
ssh, ldap,
smtp, ftp, http,
pop, nntp,
.imap, tcp,
https, telnet
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
=>
net.tcp.service[ftp„45]
→ can be used
to test the
availability of
FTP server on
TCP port 45.

Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).

Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.port for
checks like
these.

Checking of
LDAP and
HTTPS by
Windows agent
is currently not
supported.

Note that the
telnet check
looks for a
login prompt
(’:’ at the end).

See also known
issues of
checking
HTTPS service.

https and
telnet services
are supported
since Zabbix
2.0.

Old naming:
check_service[*]

130

Key

net.tcp.service.perf[service,<ip>,<port>]
Checks
performance of
TCP service.

0 - service is
down

seconds - the
number of
seconds spent
while
connecting to
the service

service -
either of:
ssh, ldap,
smtp, ftp, http,
pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
=>
net.tcp.service.perf[ssh]
→ can be used
to test the
speed of initial
response from
SSH server.

Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service.perf[tcp,<ip>,<port>]
for checks like
these.

Checking of
LDAP and
HTTPS by
Windows agent
is currently not
supported.

Note that the
telnet check
looks for a
login prompt
(’:’ at the end).

See also known
issues of
checking
HTTPS service.

https and
telnet services
are supported
since Zabbix
2.0.

Old naming:
check_service_perf[*]

net.udp.listen[port]
Checks if this
UDP port is in
LISTEN state.

0 - it is not in
LISTEN state

1 - it is in
LISTEN state

port - UDP port
number

Example:
=>
net.udp.listen[68]

On Linux
supported
since Zabbix
agent version
1.8.4

net.udp.service[service,<ip>,<port>]

131

Key

Checks if
service is
running and
responding to
UDP requests.

0 - service is
down

1 - service is
running

service - ntp
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
=>
net.udp.service[ntp„45]
→ can be used
to test the
availability of
NTP service on
UDP port 45.

This item is
supported
since Zabbix
3.0.0, but ntp
service was
available for
net.tcp.service[]
item in prior
versions.

net.udp.service.perf[service,<ip>,<port>]
Checks
performance of
UDP service.

0 - service is
down

seconds - the
number of
seconds spent
waiting for
response from
the service

service - ntp
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example:
=>
net.udp.service.perf[ntp]
→ can be used
to test
response time
from NTP
service.

This item is
supported
since Zabbix
3.0.0, but ntp
service was
available for
net.tcp.service[]
item in prior
versions.

proc.cpu.util[<name>,<user>,<type>,<cmdline>,<mode>,<zone>]

132

Key

Process CPU
utilisation
percentage.

Float name -
process name
(default is all
processes)
user - user
name (default
is all users)
type - CPU
utilisation type:
total (default),
user, system
cmdline - filter
by command
line (it is a
regular
expression)
mode - data
gathering
mode: avg1
(default), avg5,
avg15
zone - target
zone: current
(default), all.
This parameter
is supported
only on Solaris
platform. Since
Zabbix 3.0.3 if
agent has been
compiled on
Solaris without
zone support
but is running
on a newer
Solaris where
zones are
supported and
<zone>
parameter is
default or
current then
the agent will
return NOTSUP-
PORTED (the
agent cannot
limit results to
only current
zone).
However,
<zone>
parameter
value all is
supported in
this case.

Examples:
=>
proc.cpu.util[,root]
→ CPU
utilisation of all
processes
running under
the ”root” user
=>
proc.cpu.util[zabbix_server,zabbix]
→ CPU
utilisation of all
zabbix_server
processes
running under
the zabbix user

The returned
value is based
on single CPU
core utilisation
percentage.
For example
CPU utilisation
of a process
fully using two
cores is 200%.

The process
CPU utilisation
data is
gathered by a
collector which
supports the
maximum of
1024 unique
(by name, user
and command
line) queries.
Queries not
accessed
during the last
24 hours are
removed from
the collector.

This key is
supported
since Zabbix
3.0.0 and is
available on
several
platforms (see
Items
supported by
platform).

proc.mem[<name>,<user>,<mode>,<cmdline>,<memtype>]

133

Key

Memory used
by process in
bytes.

Integer - with
mode as max,
min, sum

Float - with
mode as avg

name -
process name
(default is all
processes)
user - user
name (default
is all users)
mode -
possible
values:
avg, max, min,
sum (default)
cmdline - filter
by command
line (it is a
regular
expression)
memtype -
type of
memory used
by process

Examples:
=>
proc.mem[,root]
→ memory
used by all
processes
running under
the ”root” user
=>
proc.mem[zabbix_server,zabbix]
→ memory
used by all
zabbix_server
processes
running under
the zabbix user
=>
proc.mem[,oracle,max,oracleZABBIX]
→ memory
used by the
most memory-
hungry process
running under
oracle having
oracleZABBIX
in its command
line

Note: When
several
processes use
shared
memory, the
sum of
memory used
by processes
may result in
large,
unrealistic
values.

See notes on
selecting
processes with
name and
cmdline
parameters
(Linux-
specific).

The memtype
parameter is
supported on
several
platforms since
Zabbix 3.0.0.

proc.num[<name>,<user>,<state>,<cmdline>]

134

Key

The number of
processes.

Integer name -
process name
(default is all
processes)
user - user
name (default
is all users)
state -
possible
values: all
(default), run,
sleep, zomb
cmdline - filter
by command
line (it is a
regular
expression)

Examples:
=>
proc.num[,mysql]
→ number of
processes
running under
the mysql user
=>
proc.num[apache2,www-
data] →
number of
apache2
processes
running under
the www-data
user
=>
proc.num[,oracle,sleep,oracleZABBIX]
→ number of
processes in
sleep state
running under
oracle having
oracleZABBIX
in its command
line

See notes on
selecting
processes with
name and
cmdline
parameters
(Linux-
specific).

On Windows,
only the name
and user
parameters are
supported.

sensor[device,sensor,<mode>]
Hardware
sensor reading.

Float device -
device name
sensor -
sensor name
mode -
possible
values:
avg, max, min
(if this
parameter is
omitted, device
and sensor are
treated
verbatim).

Reads
/proc/sys/dev/sensors
on Linux 2.4.

Example:
=> sen-
sor[w83781d-
i2c-0-
2d,temp1]

Prior to Zabbix
1.8.4, the
sensor[temp1]
format was
used.

135

Key

Reads
/sys/class/hwmon
on Linux 2.6+.

See a more
detailed
description of
sensor item on
Linux.
Reads the
hw.sensors MIB
on OpenBSD.

Examples:
=> sen-
sor[cpu0,temp0]
→ temperature
of one CPU
=>
sensor[”cpu[0-
2]$”,temp,avg]
→ average
temperature of
the first three
CPU’s

Supported on
OpenBSD since
Zabbix 1.8.4.

system.boottime
System boot
time.

Integer (Unix
timestamp)

system.cpu.discovery
List of detected
CPUs/CPU
cores. Used for
low-level
discovery.

JSON object Supported on
all platforms
since 2.4.0.

system.cpu.intr
Device
interrupts.

Integer

system.cpu.load[<cpu>,<mode>]
CPU load. Float cpu - possible

values:
all (default),
percpu (total
load divided by
online CPU
count)
mode -
possible
values:
avg1
(one-minute
average,
default), avg5,
avg15

Example:
=> sys-
tem.cpu.load[,avg5]

percpu is
supported
since Zabbix
2.0.0.

Old naming:
sys-
tem.cpu.loadX

system.cpu.num[<type>]
Number of
CPUs.

Integer type - possible
values:
online
(default), max

Example:
=> sys-
tem.cpu.num

136

http://en.wikipedia.org/wiki/Load_(computing)

Key

system.cpu.switches
Count of
context
switches.

Integer Old naming:
sys-
tem[switches]

system.cpu.util[<cpu>,<type>,<mode>]
CPU utilisation
percentage.

Float cpu - <CPU
number> or all
(default)
type - possible
values:
idle, nice, user
(default),
system
(default for
Windows),
iowait,
interrupt,
softirq, steal,
guest (on Linux
kernels 2.6.24
and above),
guest_nice (on
Linux kernels
2.6.33 and
above)
mode -
possible
values:
avg1
(one-minute
average,
default), avg5,
avg15

Example:
=> sys-
tem.cpu.util[0,user,avg5]

Old naming:
sys-
tem.cpu.idleX,
sys-
tem.cpu.niceX,
sys-
tem.cpu.systemX,
sys-
tem.cpu.userX

system.hostname[<type>]

137

Key

System host
name.

String type (Windows
only, must not
be used on
other systems)
- possible
values: netbios
(default) or
host

The value is
acquired by
either GetCom-
puterName()
(for netbios)
or
gethostname()
(for host)
functions on
Windows and
by ”hostname”
command on
other systems.

Examples of
returned
values:
on Linux:
=> sys-
tem.hostname
→ linux-w7x1
=> sys-
tem.hostname
→
www.zabbix.com
on Windows:
=> sys-
tem.hostname
→ WIN-
SERV2008-I6
=> sys-
tem.hostname[host]
→
Win-Serv2008-
I6LonG

The type
parameter for
this item is
supported
since Zabbix
1.8.6.

See also a
more detailed
description.

system.hw.chassis[<info>]

138

Key

Chassis
information.

String info - one of
full (default),
model, serial,
type or vendor

Example: sys-
tem.hw.chassis[full]
Hewlett-
Packard HP Pro
3010 Small
Form Factor PC
CZXXXXXXXX
Desktop]

This key
depends on the
availability of
the SMBIOS
table.
Will try to read
the DMI table
from sysfs, if
sysfs access
fails then try
reading
directly from
memory.

Root
permissions
are required
because the
value is
acquired by
reading from
sysfs or
memory.

Supported
since Zabbix
agent version
2.0.

system.hw.cpu[<cpu>,<info>]

139

http://en.wikipedia.org/wiki/System_Management_BIOS

Key

CPU
information.

String or
integer

cpu - <CPU
number> or all
(default)
info - possible
values:
full (default),
curfreq,
maxfreq,
model or
vendor

Example:
=> sys-
tem.hw.cpu[0,vendor]
→
AuthenticAMD

Gathers info
from
/proc/cpuinfo
and
/sys/devices/system/cpu/[cpunum]/cpufreq/cpuinfo_max_freq.

If a CPU
number and
curfreq or
maxfreq is
specified, a
numeric value
is returned
(Hz).

Supported
since Zabbix
agent version
2.0.

system.hw.devices[<type>]
Listing of PCI or
USB devices.

Text type - pci
(default) or usb

Example:
=> sys-
tem.hw.devices[pci]
→ 00:00.0 Host
bridge:
Advanced
Micro Devices
[AMD] RS780
Host Bridge
[..]

Returns the
output of
either lspci or
lsusb utility
(executed
without any
parameters)

Supported
since Zabbix
agent version
2.0.

system.hw.macaddr[<interface>,<format>]

140

Key

Listing of MAC
addresses.

String interface - all
(default) or a
regular
expression
format - full
(default) or
short

Lists MAC
adresses of the
interfaces
whose name
matches the
given
interface
regexp (all lists
for all
interfaces).

Example:
=> sys-
tem.hw.macaddr[”eth0$”,full]
→ [eth0]
00:11:22:33:44:55

If format is
specified as
short, interface
names and
identical MAC
addresses are
not listed.

Supported
since Zabbix
agent version
2.0.

system.localtime[<type>]
System time. Integer - with

type as utc

String - with
type as local

type - possible
values:
utc - (default)
the time since
the Epoch
(00:00:00 UTC,
January 1,
1970),
measured in
seconds.
local - the time
in the
’yyyy-mm-
dd,hh:mm:ss.nnn,+hh:mm’
format

Parameters for
this item are
supported
since Zabbix
agent version
2.0.

Example:
=> sys-
tem.localtime[local]
→ create an
item using this
key and then
use it to
display host
time in the
Clock screen
element.

system.run[command,<mode>]

141

Key

Run specified
command on
the host.

Text result of
the command

1 - with mode
as nowait
(regardless of
command
result)

command -
command for
execution
mode -
possible
values:
wait - wait end
of execution
(default),
nowait - do not
wait

Up to 512KB of
data can be
returned,
including
trailing
whitespace
that is
truncated.
To be
processed
correctly, the
output of the
command
must be text.

Example:
=>
system.run[ls -l
/] → detailed
file list of root
directory.

Note: To
enable this
functionality,
agent
configuration
file must
contain
EnableRe-
moteCom-
mands=1
option.
Note: The
return value of
the item is
standard
output
together with
standard error
produced by
command.
Note: Empty
result is
allowed
starting with
Zabbix 2.4.0.

See also:
Command
execution.

system.stat[resource,<type>]

142

Key

System
statistics.

Integer or float ent - number
of processor
units this
partition is
entitled to
receive (float)
kthr,<type> -
information
about kernel
thread states:
r - average
number of
runnable
kernel threads
(float)
b - average
number of
kernel threads
placed in the
Virtual Memory
Manager wait
queue (float)
memory,<type>
- information
about the
usage of virtual
and real
memory:
avm - active
virtual pages
(integer)
fre - size of the
free list
(integer)
page,<type>
- information
about page
faults and
paging activity:
fi - file page-ins
per second
(float)
fo - file
page-outs per
second (float)
pi - pages
paged in from
paging space
(float)
po - pages
paged out to
paging space
(float)
fr - pages freed
(page
replacement)
(float)
sr - pages
scanned by
page-
replacement
algorithm
(float)
faults,<type>
- trap and
interrupt rate:
in - device
interrupts
(float)
sy - system
calls (float)
cs - kernel
thread context
switches (float)
cpu,<type> -
breakdown of
percentage
usage of
processor time:
us - user time
(float)
sy - system
time (float)
id - idle time
(float)
wa - idle time
during which
the system had
outstanding
disk/NFS I/O
request(s)
(float)
pc - number of
physical
processors
consumed
(float)
ec - the
percentage of
entitled
capacity
consumed
(float)
lbusy -
indicates the
percentage of
logical
processor(s)
utilization that
occurred while
executing at
the user and
system level
(float)
app - indicates
the available
physical
processors in
the shared pool
(float)
disk,<type> -
disk statistics:
bps - indicates
the amount of
data
transferred
(read or
written) to the
drive in bytes
per second
(integer)
tps - indicates
the number of
transfers per
second that
were issued to
the physical
disk/tape
(float)
This item is
supported
since Zabbix
1.8.1.

143

Key

system.sw.arch
Software
architecture
information.

String Example:
=>
system.sw.arch
→ i686

Info is acquired
from uname()
function.

Supported
since Zabbix
agent version
2.0.

system.sw.os[<info>]
Operating
system
information.

String info - possible
values:
full (default),
short or name

Example:
=> sys-
tem.sw.os[short]→
Ubuntu 2.6.35-
28.50-generic
2.6.35.11

Info is acquired
from (note that
not all files and
options are
present in all
distributions):
/proc/version
(full)
/proc/version_signature
(short)
PRETTY_NAME
parameter
from
/etc/os-release
on systems
supporting it,
or
/etc/issue.net
(name)

Supported
since Zabbix
agent version
2.0.

system.sw.packages[<package>,<manager>,<format>]

144

Key

Listing of
installed
packages.

Text package - all
(default) or a
regular
expression
manager - all
(default) or a
package
manager
format - full
(default) or
short

Lists
(alphabetically)
installed
packages
whose name
matches the
given package
regexp (all lists
them all).

Example:
=> sys-
tem.sw.packages[mini,dpkg,short]
→ python-
minimal,
python2.6-
minimal,
ubuntu-
minimal

Supported
package
managers
(executed
command):
dpkg (dpkg --
get-selections)
pkgtool (ls
/var/log/packages)
rpm (rpm -qa)
pacman
(pacman -Q)

If format is
specified as
full, packages
are grouped by
package
managers
(each manager
on a seperate
line beginning
with its name
in square
brackets).
If format is
specified as
short,
packages are
not grouped
and are listed
on a single line.

Supported
since Zabbix
agent version
2.0.

system.swap.in[<device>,<type>]

145

Key

Swap in (from
device into
memory)
statistics.

Integer device -
device used for
swapping
(default is all)
type - possible
values:
count (number
of swapins),
sectors
(sectors
swapped in),
pages (pages
swapped in).
See supported
by platform for
details on
defaults.

Example:
=> sys-
tem.swap.in[,pages]

The source of
this
information is:
/proc/swaps,
/proc/partitions,
/proc/stat
(Linux 2.4)
/proc/swaps,
/proc/diskstats,
/proc/vmstat
(Linux 2.6)

system.swap.out[<device>,<type>]
Swap out (from
memory onto
device)
statistics.

Integer device -
device used for
swapping
(default is all)
type - possible
values:
count (number
of swapouts),
sectors
(sectors
swapped out),
pages (pages
swapped out).
See supported
by platform for
details on
defaults.

Example:
=> sys-
tem.swap.out[,pages]

The source of
this
information is:
/proc/swaps,
/proc/partitions,
/proc/stat
(Linux 2.4)
/proc/swaps,
/proc/diskstats,
/proc/vmstat
(Linux 2.6)

system.swap.size[<device>,<type>]

146

Key

Swap space
size in bytes or
in percentage
from total.

Integer - for
bytes

Float - for
percentage

device -
device used for
swapping
(default is all)
type - possible
values:
free (free swap
space, default),
pfree (free
swap space, in
percent),
pused (used
swap space, in
percent), total
(total swap
space), used
(used swap
space)

Example:
=> sys-
tem.swap.size[,pfree]
→ free swap
space
percentage

If device is not
specified
Zabbix agent
will only take
into account
swap devices
(files), physical
memory will be
ignored. For
example, on
Solaris systems
swap -s
command
includes a
portion of
physical
memory and
swap devices
(unlike swap
-l).

Note that this
key might
report incorrect
swap space
size/percentage
on virtualized
(VMware ESXi,
VirtualBox)
Windows
platforms. In
this case you
may use the
perf_counter[\700(_Total)\702]
key to obtain
correct swap
space
percentage.

Old naming:
sys-
tem.swap.free,
sys-
tem.swap.total

system.uname

147

Key

Identification
of the system.

String Example of
returned value
(Unix):
FreeBSD
localhost
4.2-RELEASE
FreeBSD
4.2-RELEASE
#0: Mon Nov
i386

Example of
returned value
(Windows):
Windows
ZABBIX-WIN
6.0.6001
Microsoft®
Windows
Server® 2008
Standard
Service Pack 1
x86

On Unix since
Zabbix 2.2.0
the value for
this item is
obtained with
uname()
system call.
Previously it
was obtained
by invoking
”uname -a”.
The value of
this item might
differ from the
output of
”uname -a”
and does not
include
additional
information
that ”uname
-a” prints
based on other
sources.

On Windows
since Zabbix
3.0 the value
for this item is
obtained from
Win32_OperatingSystem
and
Win32_Processor
WMI classes.
Previously it
was obtained
from volatile
Windows APIs
and
undocumented
registry keys.
The OS name
(including
edition) might
be translated
to the user’s
display
language. On
some versions
of Windows it
contains
trademark
symbols and
extra spaces.

Note that on
Windows the
item returns
OS
architecture,
whereas on
Unix it returns
CPU
architecture.

148

Key

system.uptime
System uptime
in seconds.

Integer In item
configuration,
use s or
uptime units
to get readable
values.

system.users.num
Number of
users logged
in.

Integer who command
is used on the
agent side to
obtain the
value.

vfs.dev.read[<device>,<type>,<mode>]

149

Key

Disk read
statistics.

Integer - with
type in
sectors,
operations,
bytes

Float - with
type in sps,
ops, bps

device - disk
device (default
is all)
type - possible
values:
sectors,
operations,
bytes, sps, ops,
bps
This parameter
must be
specified, since
defaults differ
under various
OSes.
sps, ops, bps
stand for:
sectors,
operations,
bytes per
second,
respectively.
mode -
possible
values: avg1
(one-minute
average,
default), avg5,
avg15.
This parameter
is supported
only with type
in: sps, ops,
bps.

Default values
of ’type’
parameter for
different OSes:
AIX -
operations
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example:
=>
vfs.dev.read[,operations]

sps, ops and
bps on
supported
platforms used
to be limited to
8 devices (7
individual and
one all). Since
Zabbix 2.0.1
this limit is
1024 devices
(1023
individual and
one for all).

If default all is
used for the
first parameter
then the key
will return
summary
statistics,
including all
block devices
like sda, sbd
and their
partitions
(sda1, sda2,
sdb3...) and
multiple
devices (MD
raid) based on
those block de-
vices/partitions
and logical
volumes (LVM)
based on those
block de-
vices/partitions.
In such cases
returned
values should
be considered
only as relative
value (dynamic
in time) but not
as absolute
values.

Supports LVM
since Zabbix
1.8.6.

Only relative
device names
could be used
(for example,
sda) until
Zabbix 1.8.6.
Since then, an
optional /dev/
prefix may be
used (for
example,
/dev/sda).

Old naming:
io[*]

150

Key

vfs.dev.write[<device>,<type>,<mode>]

151

Key

Disk write
statistics.

Integer - with
type in
sectors,
operations,
bytes

Float - with
type in sps,
ops, bps

device - disk
device (default
is all)
type - possible
values:
sectors,
operations,
bytes, sps, ops,
bps
This parameter
must be
specified, since
defaults differ
under various
OSes.
sps, ops, bps
stand for:
sectors,
operations,
bytes per
second,
respectively.
mode -
possible
values: avg1
(one-minute
average,
default), avg5,
avg15.
This parameter
is supported
only with type
in: sps, ops,
bps.

Default values
of ’type’
parameter for
different OSes:
AIX -
operations
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example:
=>
vfs.dev.write[,operations]

sps, ops and
bps on
supported
platforms used
to be limited to
8 devices (7
individual and
one all). Since
Zabbix 2.0.1
this limit is
1024 (1023
individual and
one for all).

If default all is
used for the
first parameter
then the key
will return
summary
statistics,
including all
block devices
like sda, sbd
and their
partitions
(sda1, sda2,
sdb3...) and
multiple
devices (MD
raid) based on
those block de-
vices/partitions
and logical
volumes (LVM)
based on those
block de-
vices/partitions.
In such cases
returned
values should
be considered
only as relative
value (dynamic
in time) but not
as absolute
values.

Supports LVM
since Zabbix
1.8.6.

Only relative
device names
could be used
(for example,
sda) until
Zabbix 1.8.6.
Since then, an
optional /dev/
prefix may be
used (for
example,
/dev/sda).

Old naming:
io[*]

152

Key

vfs.file.cksum[file]
File checksum,
calculated by
the UNIX
cksum
algorithm.

Integer file - full path
to file

Example:
=>
vfs.file.cksum[/etc/passwd]

Example of
returned value:
1938292000

Old naming:
cksum

The file size
limit depends
on large file
support.

vfs.file.contents[file,<encoding>]
Retrieving
contents of a
file.

Text file - full path
to file
encoding -
code page
identifier

Returns an
empty string if
the file is
empty or
contains LF/CR
characters
only.

Example:
=>
vfs.file.contents[/etc/passwd]

This item is
limited to files
no larger than
64 Kbytes.

Supported
since Zabbix
agent version
2.0.

vfs.file.exists[file]
Checks if file
exists.

0 - not found

1 - regular file
or a link
(symbolic or
hard) to
regular file
exists

file - full path
to file

Example:
=>
vfs.file.exists[/tmp/application.pid]

The return
value depends
on what
S_ISREG POSIX
macro returns.

The file size
limit depends
on large file
support.

vfs.file.md5sum[file]

153

Key

MD5 checksum
of file.

Character
string (MD5
hash of the file)

file - full path
to file

Example:
=>
vfs.file.md5sum[/usr/local/etc/zabbix_agentd.conf]

Example of
returned value:
b5052decb577e0fffd622d6ddc017e82

The file size
limit (64 MB)
for this item
was removed
in version
1.8.6.

The file size
limit depends
on large file
support.

vfs.file.regexp[file,regexp,<encoding>,<start
line>,<end line>,<output>]

Find string in a
file.

The line
containing the
matched
string, or as
specified by
the optional
output
parameter

file - full path
to file
regexp - GNU
regular
expression
encoding -
code page
identifier
start line - the
number of first
line to search
(first line of file
by default).
end line - the
number of last
line to search
(last line of file
by default).
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
text while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).

Only the first
matching line
is returned.
An empty
string is
returned if no
line matched
the expression.

Content
extraction
using the
output
parameter
takes place on
the agent.

The start
line, end
line and
output
parameters are
supported from
version 2.2.

Examples:
=>
vfs.file.regexp[/etc/passwd,zabbix]
=>
vfs.file.regexp[/path/to/some/file,”([0-
9]+)$”„3,5,\1]
=>
vfs.file.regexp[/etc/passwd,”^zabbix:.:([0-
9]+)”„„\1] →
getting the ID
of user zabbix

vfs.file.regmatch[file,regexp,<encoding>,<start
line>,<end line>]

154

Key

Find string in a
file.

0 - match not
found

1 - found

file - full path
to file
regexp - GNU
regular
expression
encoding -
code page
identifier
start line - the
number of first
line to search
(first line of file
by default).
end line - the
number of last
line to search
(last line of file
by default).

The start
line and end
line
parameters are
supported from
version 2.2.

Example:
=>
vfs.file.regmatch[/var/log/app.log,error]

vfs.file.size[file]
File size (in
bytes).

Integer file - full path
to file

The file must
have read
permissions for
user zabbix.

Example:
=>
vfs.file.size[/var/log/syslog]

The file size
limit depends
on large file
support.

vfs.file.time[file,<mode>]
File time
information.

Integer (Unix
timestamp)

file - full path
to the file
mode -
possible
values:
modify
(default) -
modification
time, access -
last access
time, change -
last change
time

Example:
=>
vfs.file.time[/etc/passwd,modify]

The file size
limit depends
on large file
support.

vfs.fs.discovery
List of mounted
filesystems.
Used for
low-level
discovery.

JSON object Supported
since Zabbix
agent version
2.0.

{#FSDRIVETYPE}
macro is
supported on
Windows since
Zabbix agent
version 3.0.

vfs.fs.inode[fs,<mode>]

155

Key

Number or
percentage of
inodes.

Integer - for
number

Float - for
percentage

fs - filesystem
mode -
possible
values:
total (default),
free, used,
//pfree // (free,
percentage),
pused (used,
percentage)

Example:
=>
vfs.fs.inode[/,pfree]

Old naming:
vfs.fs.inode.free[*],
vfs.fs.inode.pfree[*],
vfs.fs.inode.total[*]

vfs.fs.size[fs,<mode>]
Disk space in
bytes or in
percentage
from total.

Integer - for
bytes

Float - for
percentage

fs - filesystem
mode -
possible
values:
total (default),
free, used,
pfree (free,
percentage),
pused (used,
percentage)

In case of a
mounted
volume, disk
space for local
file system is
returned.

Example:
=>
vfs.fs.size[/tmp,free]

Reserved
space of a file
system is
taken into
account and
not included
when using the
free mode.

Old naming:
vfs.fs.free[*],
vfs.fs.total[*],
vfs.fs.used[*],
vfs.fs.pfree[*],
vfs.fs.pused[*]

vm.memory.size[<mode>]

156

Key

Memory size in
bytes or in
percentage
from total.

Integer - for
bytes

Float - for
percentage

mode -
possible
values:
total (default),
active, anon,
buffers,
cached, exec,
file, free,
inactive,
pinned, shared,
wired, used,
pused (used,
percentage),
available,
pavailable
(available,
percentage)

This item
accepts three
categories of
parameters:

1) total - total
amount of
memory;
2) platform-
specific
memory types:
active, anon,
buffers,
cached, exec,
file, free,
inactive,
pinned,
shared, wired;
3) user-level
estimates on
how much
memory is
used and
available:
used, pused,
available,
pavailable.

See a more
detailed
description of
vm.memory.size
parameters.

Old naming:
vm.memory.buffers,
vm.memory.cached,
vm.memory.free,
vm.memory.shared,
vm.memory.total

web.page.get[host,<path>,<port>]
Get content of
web page.

Web page
source as text
(including
headers)

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

Returns an
empty string
on fail.

Example:
=>
web.page.get[www.zabbix.com,index.php,80]

web.page.perf[host,<path>,<port>]
Loading time of
full web page
(in seconds).

Float host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

Returns 0 on
fail.

Example:
=>
web.page.perf[www.zabbix.com,index.php,80]

web.page.regexp[host,<path>,<port>,<regexp>,<length>,<output>]

157

Key

Find string on a
web page.

The matched
string, or as
specified by
the optional
output
parameter

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)
regexp - GNU
regular
expression
length -
maximum
number of
characters to
return
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
text while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).

Returns an
empty string if
no match was
found or on
fail.

Content
extraction
using the
output
parameter
takes place on
the agent.

The output
parameter is
supported from
version 2.2.

Example:
=>
web.page.regexp[www.zabbix.com,index.php,80,OK,2]

Note:
A Linux-specific note. Zabbix agentmust have read-only access to filesystem /proc. Kernel patches fromwww.grsecurity.org
limit access rights of non-privileged users.

Available encodings

The encoding parameter is used to specify encoding for processing corresponding item checks, so that data acquired will not be
corrupted. For a list of supported encodings (code page identifiers), please consult respective documentation, such as documen-
tation for libiconv (GNU Project) or Microsoft Windows SDK documentation for ”Code Page Identifiers”.

If empty encoding is passed, then UTF-8 (default locale for newer Unix/Linux distributions, see your system’s settings) or ANSI
with system-specific extension (Windows) is used by default.

Troubleshooting agent items

1. If used with passive agent, Timeout value in server configuration may need to be higher than Timeout in the agent configu-
ration file. Otherwise the item may not get any value because the server request to agent timed out first.

Windows-specific item keys

Item keys

158

http://www.gnu.org/software/libiconv/

The table provides details on the item keys that you can use with Zabbix Windows agent only.

Key

Description Return value Parameters Comments
eventlog[name,<regexp>,<severity>,<source>,<eventid>,<maxlines>,<mode>]

159

Key

Event log
monitoring.

Log name - name
of event log
regexp -
regular
expression
describing the
required
pattern
severity -
regular
expression
describing
severity
This parameter
accepts the
following
values:
”Information”,
”Warning”,
”Error”,
”Critical”,
”Verbose”
(since Zabbix
2.2.0 running
on Windows
Vista or newer)
source -
regular
expression
describing
source
identifier
(regular
expression is
supported
since Zabbix
2.2.0)
eventid -
regular
expression
describing the
event
identifier(s)
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.win.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items).

The item must
be configured
as an active
check.

Examples:
=> event-
log[Application]
=> event-
log[Security„”Failure
Au-
dit”„^(529|680)$]
=> event-
log[System„”Warning|Error”]
=> event-
log[System„„^1$]
=> event-
log[System„„@TWOSHORT]
- here a custom
regular
expression
named
TWOSHORT is
referenced
(defined as a
Result is TRUE
type, the
expression
itself being
^1$\|^70$).

Note that the
agent is unable
to send in
events from
the ”Forwarded
events” log.

The mode
parameter is
supported
since Zabbix
2.0.0.
”Windows
Eventing 6.0”
is supported
since Zabbix
2.2.0.

Note that
selecting a
non-Log type
of information
for this item
will lead to the
loss of local
timestamp, as
well as log
severity and
source
information.

See also
additional
information on
log monitoring.

160

Key

net.if.list
Network
interface list
(includes
interface type,
status, IPv4
address,
description).

Text Supported
since Zabbix
agent version
1.8.1.
Multi-byte
interface
names
supported
since Zabbix
agent version
1.8.6. Disabled
interfaces are
not listed.

Note that en-
abling/disabling
some
components
may change
their ordering
in the Windows
interface
name.

Some Windows
versions (for
example,
Server 2008)
might require
the latest
updates
installed to
support
non-ASCII
characters in
interface
names.

perf_counter[counter,<interval>]

161

Key

Value of any
Windows
performance
counter.

Integer, float,
string or text
(depending on
the request)

counter - path
to the counter
interval - last
N seconds for
storing the
average value.
The interval
must be
between 1 and
900 seconds
(included) and
the default
value is 1.

Performance
Monitor can be
used to obtain
list of available
counters. Until
version 1.6 this
parameter will
return correct
value only for
counters that
require just
one sample
(like \Sys-
tem\Threads).
It will not work
as expected for
counters that
require more
that one
sample - like
CPU utilisation.
Since 1.6,
interval is
used, so the
check returns
an average
value for last
”interval”
seconds every
time.

See also:
Windows
performance
counters.

proc_info[process,<attribute>,<type>]

162

Key

Various
information
about specific
process(es).

Float process -
process name
attribute -
requested
process
attribute
type -
representation
type
(meaningful
when more
than one
process with
the same
name exists)

The following
attributes
are supported:
vmsize
(default) - size
of process
virtual memory
in Kbytes
wkset - size of
process
working set
(amount of
physical
memory used
by process) in
Kbytes
pf - number of
page faults
ktime - process
kernel time in
milliseconds
utime - process
user time in
milliseconds
io_read_b -
number of
bytes read by
process during
I/O operations
io_read_op -
number of read
operation
performed by
process
io_write_b -
number of
bytes written
by process
during I/O
operations
io_write_op -
number of
write operation
performed by
process
io_other_b -
number of
bytes
transferred by
process during
operations
other than read
and write
operations
io_other_op -
number of I/O
operations
performed by
process, other
than read and
write
operations
gdiobj -
number of GDI
objects used
by process
userobj -
number of
USER objects
used by
process

Valid types
are:
avg (default) -
average value
for all
processes
named
<process>
min - minimum
value among
all processes
named
<process>
max -
maximum
value among
all processes
named
<process>
sum - sum of
values for all
processes
named
<process>

Examples:
=>
proc_info[iexplore.exe,wkset,sum]
- to get the
amount of
physical
memory taken
by all Internet
Explorer
processes
=>
proc_info[iexplore.exe,pf,avg]
- to get the
average
number of
page faults for
Internet
Explorer
processes

Note that on a
64-bit system,
a 64-bit Zabbix
agent is
required for
this item to
work correctly.

Note: io_*,
gdiobj and
userobj
attributes are
available only
on Windows
2000 and later
versions of
Windows, not
on Windows NT
4.0.

163

Key

service.discovery
List of Windows
services. Used
for low-level
discovery.

JSON object Supported
since Zabbix
agent version
3.0.

service.info[service,<param>]
Information
about a
service.

Integer - with
param as
state, startup

String - with
param as
displayname,
path, user

Text - with
param as
description

Specifically for
state:
0 - running,
1 - paused,
2 - start
pending,
3 - pause
pending,
4 - continue
pending,
5 - stop
pending,
6 - stopped,
7 - unknown,
255 - no such
service

Specifically for
startup:
0 - automatic,
1 - automatic
delayed,
2 - manual,
3 - disabled,
4 - unknown

service - a
real service
name or its
display name
as seen in MMC
Services
snap-in
param - state
(default),
displayname,
path, user,
startup or
description

Examples:
=> ser-
vice.info[SNMPTRAP]
- state of the
SNMPTRAP
service
=> ser-
vice.info[SNMP
Trap] - state of
the same
service, but
with display
name specified
=> ser-
vice.info[EventLog,startup]
- startup type
of the
EventLog
service

Items ser-
vice.info[service,state]
and ser-
vice.info[service]
will return the
same
information.

Note that only
with param as
state this item
returns a value
for
non-existing
services (255).

This item is
supported
since Zabbix
3.0.0. It should
be used
instead of the
deprecated ser-
vice_state[service]
item.

services[<type>,<state>,<exclude>]

164

Key

Listing of
services.

0 - if empty

Text - list of
services
separated by a
newline

type - all
(default),
automatic,
manual or
disabled
state - all
(default),
stopped,
started,
start_pending,
stop_pending,
running, con-
tinue_pending,
pause_pending
or paused
exclude -
services to
exclude from
the result.
Excluded
services should
be listed in
double quotes,
separated by
comma,
without spaces.

Examples:
=> ser-
vices[,started]
- list of started
services
=> ser-
vices[automatic,
stopped] - list
of stopped
services, that
should be run
=> ser-
vices[automatic,
stopped, ”ser-
vice1,service2,service3”]
- list of stopped
services, that
should be run,
excluding
services with
names
service1,
service2 and
service3

The exclude
parameter is
supported
since Zabbix
1.8.1.

wmi.get[<namespace>,<query>]
Execute WMI
query and
return the first
selected
object.

Integer, float,
string or text
(depending on
the request)

namespace -
WMI
namespace
query - WMI
query returning
a single object

Example:
=>
wmi.get[root\cimv2,select
status from
Win32_DiskDrive
where Name
like ’%PHYSI-
CALDRIVE0%’]
- returns the
status of the
first physical
disk.

This key is
supported
since Zabbix
2.2.0.

vm.vmemory.size[<type>]

165

Key

Virtual memory
size in bytes or
in percentage
from total.

Integer - for
bytes

Float - for
percentage

type - possible
values:
available
(available
virtual
memory),
pavailable
(available
virtual
memory, in
percent),
pused (used
virtual
memory, in
percent), total
(total virtual
memory,
default), used
(used virtual
memory)

Example:
=>
vm.vmemory.size[pavailable]
→ available
virtual
memory, in
percentage

Monitoring of
virtual memory
statistics is
based on:
* Total virtual
memory on
Windows (total
physical +
page file size);
* The
maximum
amount of
memory
Zabbix agent
can commit;
* The current
committed
memory limit
for the system
or Zabbix
agent,
whichever is
smaller.

This key is
supported
since Zabbix
3.2.3.

Monitoring Windows services

This tutorial provides step-by-step instructions for setting up the monitoring of Windows services. It is assumed that Zabbix server
and agent are configured and operational.

Step 1

Get the service name.

You can get that name by going to MMC Services snap-in and bringing up the properties of the service. In the General tab you
should see a field called ’Service name’. The value that follows is the name you will use when setting up an item for monitoring.

For example, if you wanted to monitor the ”workstation” service then your service might be: lanmanworkstation.

Step 2

Configure an item for monitoring the service.

The item service.info[service,<param>] retrieves the information about a particular service. Depending on the information you
need, specify the param option which accepts the following values: displayname, state, path, user, startup or description. The
default value is state if param is not specified (service.info[service]).

The type of return value depends on chosen param: integer for state and startup; character string for displayname, path and user;
text for description.

Example:

• Key: service.info[lanmanworkstation]
• Type of information: Numeric (unsigned)

166

• Show value: select the Windows service state value mapping

Two value maps are available Windows service state and Windows service startup type to map a numerical value to a text repre-
sentation in the Frontend.

Discovery of Windows services

Low-level discovery provides a way to automatically create items, triggers, and graphs for different entities on a computer. Zabbix
can automatically start monitoring Windows services on your machine, without the need to know the exact name of a service or
create items for each service manually. A filter can be used to generate real items, triggers, and graphs only for services of interest.

2 SNMP agent

Overview

You may want to use SNMP monitoring on devices such as printers, network switches, routers or UPS that usually are SNMP-enabled
and on which it would be impractical to attempt setting up complete operating systems and Zabbix agents.

To be able to retrieve data provided by SNMP agents on these devices, Zabbix server must be initially configured with SNMP support.

SNMP checks are performed over the UDP protocol only.

Since Zabbix 2.2.3 Zabbix server and proxy daemons query SNMP devices for multiple values in a single request. This affects all
kinds of SNMP items (regular SNMP items, SNMP items with dynamic indexes, and SNMP low-level discovery) and should make
SNMP processing much more efficient. Please see the technical detail section below on how it works internally. Since Zabbix 2.4
there is also a ”Use bulk requests” setting for each interface that allows to disable bulk requests for devices that cannot handle
them properly.

Since Zabbix 2.2.7 and Zabbix 2.4.2 Zabbix server and proxy daemons log lines similar to the following if they receive an in-
correct SNMP response:SNMP response from host "gateway" does not contain all of the requested variable
bindingsWhile they do not cover all the problematic cases, they are useful for identifying individual SNMP devices for which bulk
requests should be disabled.

Since Zabbix 2.2 Zabbix server and proxy daemons correctly use the Timeout configuration parameter when performing SNMP
checks. Additionally the daemons do not perform retries after a single unsuccessful SNMP request (timeout/wrong credentials).
Previously the SNMP library default timeout and retry values (1 second and 5 retries respectively) were actually used.

Since Zabbix 2.2.8 and Zabbix 2.4.2 Zabbix server and proxy daemons will always retry at least one time: either through the SNMP
library’s retrying mechanism or through the internal bulk processing mechanism.

Warning:
If monitoring SNMPv3 devices, make sure that msgAuthoritativeEngineID (also known as snmpEngineID or ”Engine ID”) is
never shared by two devices. According to RFC 2571 (section 3.1.1.1) it must be unique for each device.

Configuring SNMP monitoring

To start monitoring a device through SNMP, the following steps have to be performed:

Step 1

Create a host for the device with an SNMP interface.

Enter the IP address. You can use one of the provided SNMP templates (Template SNMP Device and others) that will automatically
add a set of items. However, the template may not be compatible with the host. Click on Add to save the host.

Note:
SNMP checks do not use Agent port, it is ignored.

Step 2

Find out the SNMP string (or OID) of the item you want to monitor.

To get a list of SNMP strings, use the snmpwalk command (part of net-snmp software which you should have installed as part of
the Zabbix installation) or equivalent tool:

shell> snmpwalk -v 2c -c public <host IP> .

As ’2c’ here stands for SNMP version, you may also substitute it with ’1’, to indicate SNMP Version 1 on the device.

This should give you a list of SNMP strings and their last value. If it doesn’t then it is possible that the SNMP ’community’ is different
from the standard ’public’ in which case you will need to find out what it is.

167

http://www.ietf.org/rfc/rfc2571.txt
http://www.net-snmp.org/

You can then go through the list until you find the string you want to monitor, e.g. if you wanted to monitor the bytes coming in to
your switch on port 3 you would use the IF-MIB::ifInOctets.3 string from this line:

IF-MIB::ifInOctets.3 = Counter32: 3409739121

You may now use the snmpget command to find out the numeric OID for ’IF-MIB::ifInOctets.3’:

shell> snmpget -v 2c -c public -On 10.62.1.22 IF-MIB::ifInOctets.3

Note that the last number in the string is the port number you are looking to monitor. See also: Dynamic indexes.

This should give you something like the following:

.1.3.6.1.2.1.2.2.1.10.3 = Counter32: 3472126941

Again, the last number in the OID is the port number.

Note:
3COM seem to use port numbers in the hundreds, e.g. port 1 = port 101, port 3 = port 103, but Cisco use regular numbers,
e.g. port 3 = 3.

Note:
Some of the most used SNMP OIDs are translated automatically to a numeric representation by Zabbix.

In the last example above value type is ”Counter32”, which internally corresponds to ASN_COUNTER type. The full list of sup-
ported types is ASN_COUNTER, ASN_COUNTER64, ASN_UINTEGER, ASN_UNSIGNED64, ASN_INTEGER, ASN_INTEGER64, ASN_FLOAT,
ASN_DOUBLE, ASN_TIMETICKS, ASN_GAUGE, ASN_IPADDRESS, ASN_OCTET_STR and ASN_OBJECT_ID (since 2.2.8, 2.4.3). These
types roughly correspond to ”Counter32”, ”Counter64”, ”UInteger32”, ”INTEGER”, ”Float”, ”Double”, ”Timeticks”, ”Gauge32”,
”IpAddress”, ”OCTET STRING”, ”OBJECT IDENTIFIER” in snmpget output, but might also be shown as ”STRING”, ”Hex-STRING”,
”OID” and other, depending on the presence of a display hint.

Step 3

Create an item for monitoring.

So, now go back to Zabbix and click on Items for the SNMP host you created earlier. Depending on whether you used a template or
not when creating your host, you will have either a list of SNMP items associated with your host or just an empty list. We will work
on the assumption that you are going to create the item yourself using the information you have just gathered using snmpwalk
and snmpget, so click on Create item. In the new item form, enter the item ’Name’. Make sure the ’Host interface’ field has your
switch/router in it and change the ’Type’ field to ”SNMPv* agent”. Enter the community (usually public) and enter the textual or
numeric OID that you retrieved earlier into the ’SNMP OID’ field, for example: .1.3.6.1.2.1.2.2.1.10.3

Enter the SNMP ’Port’ as 161 and the ’Key’ as something meaningful, e.g. SNMP-InOctets-Bps. Choose a custom multiplier if you
want one and enter an ’Update interval’ and ’History storage period’ if you want them to be different from the default. Set the ’Type
of information’ to Numeric (float) and the ’Store value’ to Delta (speed per second) (important, otherwise you will get cumulative
values from the SNMP device instead of the latest change).

168

Now save the item and go to Monitoring → Latest data for your SNMP data!

169

Take note of specific options available for SNMPv3 items:

Parameter Description

Context name Enter context name to identify item on SNMP subnet.
Context name is supported for SNMPv3 items since Zabbix 2.2.
User macros are resolved in this field.

Security name Enter security name.
User macros are resolved in this field.

Security level Select security level:
noAuthNoPriv - no authentication nor privacy protocols are used
AuthNoPriv - authentication protocol is used, privacy protocol is
not
AuthPriv - both authentication and privacy protocols are used

Authentication protocol Select authentication protocol - MD5 or SHA.
Authentication passphrase Enter authentication passphrase.

User macros are resolved in this field.
Privacy protocol Select privacy protocol - DES or AES.
Privacy passphrase Enter privacy passphrase.

User macros are resolved in this field.

Note:
Since Zabbix 2.2, SHA and AES protocols are supported for SNMPv3 authentication and privacy, in addition to MD5 and
DES supported before that.

Example 1

General example:

Parameter Description

Community public
OID 1.2.3.45.6.7.8.0 (or .1.2.3.45.6.7.8.0)
Key <Unique string to be used as reference to triggers>

For example, ”my_param”.

Note that OID can be given in either numeric or string form. However, in some cases, string OID must be converted to numeric
representation. Utility snmpget may be used for this purpose:

shell> snmpget -On localhost public enterprises.ucdavis.memory.memTotalSwap.0

Monitoring of SNMP parameters is possible if --with-net-snmp flag was specified while configuring Zabbix sources.

Example 2

Monitoring of uptime:

Parameter Description

Community public
Oid MIB::sysUpTime.0
Key router.uptime
Value type Float
Units uptime
Multiplier 0.01

Internal workings of bulk processing

Starting from 2.2.3 Zabbix server and proxy query SNMP devices for multiple values in a single request. This affects several types
of SNMP items:

• regular SNMP items;
• SNMP items with dynamic indexes;
• SNMP low-level discovery rules.

170

All SNMP items on a single interface with identical parameters are scheduled to be queried at the same time. The first two types of
items are taken by pollers in batches of at most 128 items, whereas low-level discovery rules are processed individually, as before.

On the lower level, there are two kinds of operations performed for querying values: getting multiple specified objects and walking
an OID tree.

For ”getting”, a GetRequest-PDU is used with at most 128 variable bindings. For ”walking”, a GetNextRequest-PDU is used for
SNMPv1 and GetBulkRequest with ”max-repetitions” field of at most 128 is used for SNMPv2 and SNMPv3.

Thus, the benefits of bulk processing for each SNMP item type are outlined below:

• regular SNMP items benefit from ”getting” improvements;
• SNMP items with dynamic indexes benefit from both ”getting” and ”walking” improvements: ”getting” is used for index
verification and ”walking” for building the cache;

• SNMP low-level discovery rules benefit from ”walking” improvements.

However, there is a technical issue that not all devices are capable of returning 128 values per request. Some always return a
proper response, but others either respond with a ”tooBig(1)” error or do not respond at all once the potential response is over a
certain limit.

In order to find an optimal number of objects to query for a given device, Zabbix uses the following strategy. It starts cautiously
with querying 1 value in a request. If that is successful, it queries 2 values in a request. If that is successful again, it queries 3
values in a request and continues similarly by multiplying the number of queried objects by 1.5, resulting in the following sequence
of request sizes: 1, 2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 128.

However, once a device refuses to give a proper response (for example, for 42 variables), Zabbix does two things.

First, for the current item batch it halves the number of objects in a single request and queries 21 variables. If the device is alive,
then the query should work in the vast majority of cases, because 28 variables were known to work and 21 is significantly less than
that. However, if that still fails, then Zabbix falls back to querying values one by one. If it still fails at this point, then the device is
definitely not responding and request size is not an issue.

The second thing Zabbix does for subsequent item batches is it starts with the last successful number of variables (28 in our
example) and continues incrementing request sizes by 1 until the limit is hit. For example, assuming the largest response size is
32 variables, the subsequent requests will be of sizes 29, 30, 31, 32, and 33. The last request will fail and Zabbix will never issue
a request of size 33 again. From that point on, Zabbix will query at most 32 variables for this device.

If large queries fail with this number of variables, it can mean one of two things. The exact criteria that a device uses for limiting
response size cannot be known, but we try to approximate that using the number of variables. So the first possibility is that this
number of variables is around the device’s actual response size limit in the general case: sometimes response is less than the limit,
sometimes it is greater than that. The second possibility is that a UDP packet in either direction simply got lost. For these reasons,
if Zabbix gets a failed query, it reduces the maximum number of variables to try to get deeper into the device’s comfortable range,
but (starting from 2.2.8) only up to two times.

In the example above, if a query with 32 variables happens to fail, Zabbix will reduce the count to 31. If that happens to fail, too,
Zabbix will reduce the count to 30. However, Zabbix will not reduce the count below 30, because it will assume that further failures
are due to UDP packets getting lost, rather than the device’s limit.

If, however, a device cannot handle bulk requests properly for other reasons and the heuristic described above does not work,
since Zabbix 2.4 there is a ”Use bulk requests” setting for each interface that allows to disable bulk requests for that device.

1 Dynamic indexes

Overview

While you may find the required index number (for example, of a network interface) among the SNMP OIDs, sometimes you may
not completely rely on the index number always staying the same.

Index numbers may be dynamic - they may change over time and your item may stop working as a consequence.

To avoid this scenario, it is possible to define an OID which takes into account the possibility of an index number changing.

For example, if you need to retrieve the index value to append to ifInOctets that corresponds to theGigabitEthernet0/1 interface
on a Cisco device, use the following OID:

ifInOctets["index","ifDescr","GigabitEthernet0/1"]

The syntax

A special syntax for OID is used:

171

<OID of data>[”index”,”<base OID of index>”,”<string to search for>”]

Parameter Description

OID of data Main OID to use for data retrieval on the item.
index Method of processing. Currently one method is supported:

index – search for index and append it to the data OID
base OID of index This OID will be looked up to get the index value corresponding to

the string.
string to search for The string to use for an exact match with a value when doing

lookup. Case sensitive.

Example

Getting memory usage of apache process.

If using this OID syntax:

HOST-RESOURCES-MIB::hrSWRunPerfMem["index","HOST-RESOURCES-MIB::hrSWRunPath", "/usr/sbin/apache2"]

the index number will be looked up here:

...
HOST-RESOURCES-MIB::hrSWRunPath.5376 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5377 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5388 = STRING: "/usr/sbin/apache2"
HOST-RESOURCES-MIB::hrSWRunPath.5389 = STRING: "/sbin/sshd"
...

Now we have the index, 5388. The index will be appended to the data OID in order to receive the value we are interested in:

HOST-RESOURCES-MIB::hrSWRunPerfMem.5388 = INTEGER: 31468 KBytes

Index lookup caching

When a dynamic index item is requested, Zabbix retrieves and caches whole SNMP table under base OID for index, even if a match
would be found sooner. This is done in case another item would refer to the same base OID later - Zabbix would look up index in
the cache, instead of querying the monitored host again. Note that each poller process uses separate cache.

In all subsequent value retrieval operations only the found index is verified. If it has not changed, value is requested. If it has
changed, cache is rebuilt - each poller that encounters a changed index walks the index SNMP table again.

2 Special OIDs

Some of the most used SNMP OIDs are translated automatically to a numeric representation by Zabbix. For example, ifIndex is
translated to 1.3.6.1.2.1.2.2.1.1, ifIndex.0 is translated to 1.3.6.1.2.1.2.2.1.1.0.

The table contains list of the special OIDs.

Special OID Identifier Description

ifIndex 1.3.6.1.2.1.2.2.1.1 A unique value for each interface.
ifDescr 1.3.6.1.2.1.2.2.1.2 A textual string containing information

about the interface.This string should
include the name of the manufacturer,
the product name and the version of
the hardware interface.

ifType 1.3.6.1.2.1.2.2.1.3 The type of interface, distinguished
according to the physical/link
protocol(s) immediately ’below’ the
network layer in the protocol stack.

ifMtu 1.3.6.1.2.1.2.2.1.4 The size of the largest datagram which
can be sent / received on the interface,
specified in octets.

ifSpeed 1.3.6.1.2.1.2.2.1.5 An estimate of the interface’s current
bandwidth in bits per second.

172

Special OID Identifier Description

ifPhysAddress 1.3.6.1.2.1.2.2.1.6 The interface’s address at the protocol
layer immediately ‘below’ the network
layer in the protocol stack.

ifAdminStatus 1.3.6.1.2.1.2.2.1.7 The current administrative state of the
interface.

ifOperStatus 1.3.6.1.2.1.2.2.1.8 The current operational state of the
interface.

ifInOctets 1.3.6.1.2.1.2.2.1.10 The total number of octets received on
the interface, including framing
characters.

ifInUcastPkts 1.3.6.1.2.1.2.2.1.11 The number of subnetwork-unicast
packets delivered to a higher-layer
protocol.

ifInNUcastPkts 1.3.6.1.2.1.2.2.1.12 The number of non-unicast (i.e.,
subnetwork- broadcast or
subnetwork-multicast) packets
delivered to a higher-layer protocol.

ifInDiscards 1.3.6.1.2.1.2.2.1.13 The number of inbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being deliverable to a
higher-layer protocol. One possible
reason for discarding such a packet
could be to free up buffer space.

ifInErrors 1.3.6.1.2.1.2.2.1.14 The number of inbound packets that
contained errors preventing them from
being deliverable to a higher-layer
protocol.

ifInUnknownProtos 1.3.6.1.2.1.2.2.1.15 The number of packets received via the
interface which were discarded because
of an unknown or unsupported protocol.

ifOutOctets 1.3.6.1.2.1.2.2.1.16 The total number of octets transmitted
out of the interface, including framing
characters.

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17 The total number of packets that
higher-level protocols requested be
transmitted, and which were not
addressed to a multicast or broadcast
address at this sub-layer, including
those that were discarded or not sent.

ifOutNUcastPkts 1.3.6.1.2.1.2.2.1.18 The total number of packets that
higher-level protocols requested be
transmitted, and which were addressed
to a multicast or broadcast address at
this sub-layer, including those that were
discarded or not sent.

ifOutDiscards 1.3.6.1.2.1.2.2.1.19 The number of outbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being transmitted. One
possible reason for discarding such a
packet could be to free up buffer space.

ifOutErrors 1.3.6.1.2.1.2.2.1.20 The number of outbound packets that
could not be transmitted because of
errors.

ifOutQLen 1.3.6.1.2.1.2.2.1.21 The length of the output packet queue
(in packets).

3 SNMP traps

173

Overview

Receiving SNMP traps is the opposite to querying SNMP-enabled devices.

In this case the information is sent from a SNMP-enabled device and is collected or ”trapped” by Zabbix.

Usually traps are sent upon some condition change and the agent connects to the server on port 162 (as opposed to port 161 on
the agent side that is used for queries). Using traps may detect some short problems that occur amidst the query interval and
may be missed by the query data.

Receiving SNMP traps in Zabbix is designed to work with snmptrapd and one of the built-in mechanisms for passing the traps to
Zabbix - either a perl script or SNMPTT.

The workflow of receiving a trap:

1. snmptrapd receives a trap
2. snmptrapd passes the trap to SNMPTT or calls Perl trap receiver
3. SNMPTT or Perl trap receiver parses, formats and writes the trap to a file
4. Zabbix SNMP trapper reads and parses the trap file
5. For each trap Zabbix finds all ”SNMP trapper” items with host interfaces matching the received trap address. Note that only
the selected ”IP” or ”DNS” in host interface is used during the matching.

6. For each found item, the trap is compared to regexp in ”snmptrap[regexp]”. The trap is set as the value of all matched
items. If no matching item is found and there is an ”snmptrap.fallback” item, the trap is set as the value of that.

7. If the trap was not set as the value of any item, Zabbix by default logs the unmatched trap. (This is configured by ”Log
unmatched SNMP traps” in Administration → General → Other.)

1 Configuring SNMP traps

Configuring the following fields in the frontend is specific for this item type:

• Your host must have an SNMP interface

In Configuration → Hosts, in the Host interface field set an SNMP interface with the correct IP or DNS address. The address from
each received trap is compared to the IP and DNS addresses of all SNMP interfaces to find the corresponding hosts.

• Configure the item

In the Key field use one of the SNMP trap keys:

Key

Description Return value Comments
snmptrap[regexp]
Catches all SNMP traps that match the regular expression specified in
regexp. If regexp is unspecified, catches any trap.

SNMP trap This item can be set
only for SNMP
interfaces.
This item is supported
since Zabbix 2.0.0.
Note: Starting with
Zabbix 2.0.5, user
macros and global
regular expressions
are supported in the
parameter of this item
key.

snmptrap.fallback
Catches all SNMP traps that were not caught by any of the snmptrap[]
items for that interface.

SNMP trap This item can be set
only for SNMP
interfaces.
This item is supported
since Zabbix 2.0.0.

Note:
Multi-line regexp matching is not supported at this time.

Set the Type of information to be ’Log’ for the timestamps to be parsed. Note that other formats such as ’Numeric’ are also
acceptable but might require a custom trap handler.

174

Note:
For SNMP trap monitoring to work, it must first be correctly set up.

2 Setting up SNMP trap monitoring

Configuring Zabbix server/proxy

To read the traps, Zabbix server or proxy must be configured to start the SNMP trapper process and point to the trap file that is
being written by SNMPTT or a perl trap receiver. To do that, edit the configuration file (zabbix_server.conf or zabbix_proxy.conf):

1. StartSNMPTrapper=1
2. SNMPTrapperFile=[TRAP FILE]

Warning:
If systemd parameter PrivateTmp is used, this file is unlikely to work in /tmp.

Configuring SNMPTT

At first, snmptrapd should be configured to use SNMPTT.

Note:
For the best performance, SNMPTT should be configured as a daemon using snmptthandler-embedded to pass the traps
to it. See instructions for configuring SNMPTT in its homepage:
http://snmptt.sourceforge.net/docs/snmptt.shtml

When SNMPTT is configured to receive the traps, configure SNMPTT to log the traps:

1. log traps to the trap file which will be read by Zabbix:
log_enable = 1
log_file = [TRAP FILE]

2. set the date-time format:
date_time_format = %H:%M:%S %Y/%m/%d = [DATE TIME FORMAT]

Now format the traps for Zabbix to recognise them (edit snmptt.conf):

1. Each FORMAT statement should start with ”ZBXTRAP [address]”, where [address] will be compared to IP and DNS addresses
of SNMP interfaces on Zabbix. E.g.:
EVENT coldStart .1.3.6.1.6.3.1.1.5.1 ”Status Events” Normal
FORMAT ZBXTRAP $aA Device reinitialized (coldStart)

2. See more about SNMP trap format below.

Attention:
Do not use unknown traps - Zabbix will not be able to recognise them. Unknown traps can be handled by defining a general
event in snmptt.conf:
EVENT general .* ”General event” Normal

Configuring Perl trap receiver

Requirements: Perl, Net-SNMP compiled with --enable-embedded-perl (done by default since Net-SNMP 5.4)

Perl trap receiver (look for misc/snmptrap/zabbix_trap_receiver.pl) can be used to pass traps to Zabbix server directly from
snmptrapd. To configure it:

• add the perl script to snmptrapd configuration file (snmptrapd.conf), e.g.:
perl do ”[FULL PATH TO PERL RECEIVER SCRIPT]”;

• configure the receiver, e.g:
$SNMPTrapperFile = ’[TRAP FILE]’;
$DateTimeFormat = ’[DATE TIME FORMAT]’;

Note:
If script name is not quoted, snmptrapd will refuse to start up with messages, similar to these:
Regexp modifiers "/l" and "/a" are mutually exclusive at (eval 2) line 1, at end of line
Regexp modifier "/l" may not appear twice at (eval 2) line 1, at end of line

SNMP trap format

175

http://www.freedesktop.org/software/systemd/man/systemd.exec.html#PrivateTmp=
http://snmptt.sourceforge.net/docs/snmptt.shtml

All customised perl trap receivers and SNMPTT trap configuration must format the trap in the following way: [timestamp] [the
trap, part 1] ZBXTRAP [address] [the trap, part 2], where

• [timestamp] - timestamp used for log items
• ZBXTRAP - header that indicates that a new trap starts in this line
• [address] - IP address used to find the host for this trap

Note that ”ZBXTRAP” and ”[address]” will be cut out from the message during processing. If the trap is formatted otherwise,
Zabbix might parse the traps unexpectedly.

Example trap:
11:30:15 2011/07/27 .1.3.6.1.6.3.1.1.5.3 Normal ”Status Events” localhost - ZBXTRAP 192.168.1.1 Link down on interface 2.
Admin state: 1. Operational state: 2
This will result in the following trap for SNMP interface with IP=192.168.1.1:
11:30:15 2011/07/27 .1.3.6.1.6.3.1.1.5.3 Normal ”Status Events” localhost - Link down on interface 2. Admin state: 1.

3 System requirements

Log rotation

Zabbix does not provide any log rotation system - that should be handled by the user. The log rotation should first rename the old
file and only later delete it so that no traps are lost:

1. Zabbix opens the trap file at the last known location and goes to step 3
2. Zabbix checks if the currently opened file has been rotated by comparing the inode number to the define trap file’s inode
number. If there is no opened file, Zabbix resets the last location and goes to step 1.

3. Zabbix reads the data from the currently opened file and sets the new location.
4. The new data are parsed. If this was the rotated file, the file is closed and goes back to step 2.
5. If there was no new data, Zabbix sleeps for 1 second and goes back to step 2.

Attention:
The maximum log file size supported by Zabbix is 2 gigabytes. The log file must be rotated before reaching this limit.

File system

Because of the trap file implementation, Zabbix needs the file system to support inodes to differentiate files (the information is
acquired by a stat() call).

4 Setup example

This example uses snmptrapd + SNMPTT to pass traps to Zabbix server. Setup:

1. zabbix_server.conf - configure Zabbix to start SNMP trapper and set the trap file:
StartSNMPTrapper=1
SNMPTrapperFile=/tmp/my_zabbix_traps.tmp

2. snmptrapd.conf - add SNMPTT as the trap handler:
traphandle default snmptt

3. snmptt.ini - configure output file and time format:
log_file = /tmp/my_zabbix_traps.tmp
date_time_format = %H:%M:%S %Y/%m/%d

4. snmptt.conf - define a default trap format:
EVENT general .* ”General event” Normal
FORMAT ZBXTRAP $aA $ar

5. Create an SNMP item TEST:
Host’s SNMP interface IP: 127.0.0.1
Key: snmptrap[”General”]
Log time format: hh:mm:ss yyyy/MM/dd

This results in:

1. Command used to send a trap:
snmptrap -v 1 -c public 127.0.0.1 ’.1.3.6.1.6.3.1.1.5.3’ ’0.0.0.0’ 6 33 ’55’ .1.3.6.1.6.3.1.1.5.3 s ”teststring000”

2. The received trap:
15:48:18 2011/07/26 .1.3.6.1.6.3.1.1.5.3.0.33 Normal ”General event” localhost - ZBXTRAP 127.0.0.1 127.0.0.1

3. Value for item TEST:
15:48:18 2011/07/26 .1.3.6.1.6.3.1.1.5.3.0.33 Normal ”General event” localhost - 127.0.0.1

176

Note:
This simple example uses SNMPTT as traphandle. For better performance on production systems, use embedded Perl to
pass traps from snmptrapd to SNMPTT or directly to Zabbix.

5 See also

• CentOS based SNMP trap tutorial on zabbix.org

4 IPMI checks

Overview

You can monitor the health and availability of Intelligent Platform Management Interface (IPMI) devices in Zabbix.
To perform IPMI checks Zabbix server must be initially configured with IPMI support.

IPMI is a standardized interface for remote ”lights-out” or ”out-of-band” management of computer systems. It allows to monitor
hardware status directly from the so-called ”out-of-band” management cards, independently from the operating system or whether
the machine is powered on at all.

Zabbix IPMI monitoring works only for devices having IPMI support (HP iLO, DELL DRAC, IBM RSA, Sun SSP, etc).

See also known issues for IPMI checks.

Configuration

Host configuration

A host must be configured to process IPMI checks. An IPMI interface must be added, with the respective IP and port numbers, and
IPMI authentication parameters must be defined.

See the configuration of hosts for more details.

Server configuration

By default, the Zabbix server is not configured to start any IPMI pollers, thus any added IPMI items won’t work. To change this,
open the Zabbix server configuration file (zabbix_server.conf) as root and look for the following line:

StartIPMIPollers=0

Uncomment it and set poller count to, say, 3, so that it reads:

StartIPMIPollers=3

Save the file and restart zabbix_server afterwards.

Item configuration

When configuring an item on a host level:

• For Host interface select the IPMI IP and port
• Select ’IPMI agent’ as the Type
• Specify the IPMI sensor (for example ’FAN MOD 1A RPM’ on Dell Poweredge)
• Enter an item key that is unique within the host (say, ipmi.fan.rpm)
• Select the respective type of information (’Numeric (float)’ in this case, for discrete sensors - ’Numeric (unsigned)’), units
(most likely ’rpm’) and any other required item attributes

Timeout and session termination

IPMI message timeouts and retry counts are defined in OpenIPMI library. Due to the current design of OpenIPMI, it is not possible
to make these values configurable in Zabbix, neither on interface nor item level.

IPMI session inactivity timeout for LAN is 60 +/-3 seconds. Currently it is not possible to implement periodic sending of Activate
Session command with OpenIPMI. If there are no IPMI item checks from Zabbix to a particular BMC for more than the session
timeout configured in BMC then the next IPMI check after the timeout expires will time out due to individual message timeouts,
retries or receive error. After that a new session is opened and a full rescan of the BMC is initiated. If you want to avoid unnecessary
rescans of the BMC it is advised to set the IPMI item polling interval below the IPMI session inactivity timeout configured in BMC.

Notes on IPMI discrete sensors

To find sensors on a host start Zabbix server with DebugLevel=4 enabled. Wait a few minutes and find sensor discovery records
in Zabbix server logfile:

177

https://www.zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix

$ grep 'Added sensor' zabbix_server.log
8358:20130318:111122.170 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:7 id:'CATERR' reading_type:0x3 ('discrete_state') type:0x7 ('processor') full_name:'(r0.32.3.0).CATERR'
8358:20130318:111122.170 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:15 id:'CPU Therm Trip' reading_type:0x3 ('discrete_state') type:0x1 ('temperature') full_name:'(7.1).CPU Therm Trip'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'System Event Log' reading_type:0x6f ('sensor specific') type:0x10 ('event_logging_disabled') full_name:'(7.1).System Event Log'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'PhysicalSecurity' reading_type:0x6f ('sensor specific') type:0x5 ('physical_security') full_name:'(23.1).PhysicalSecurity'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'IPMI Watchdog' reading_type:0x6f ('sensor specific') type:0x23 ('watchdog_2') full_name:'(7.7).IPMI Watchdog'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'Power Unit Stat' reading_type:0x6f ('sensor specific') type:0x9 ('power_unit') full_name:'(21.1).Power Unit Stat'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'P1 Therm Ctrl %' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(3.1).P1 Therm Ctrl %'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'P1 Therm Margin' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(3.2).P1 Therm Margin'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:13 id:'System Fan 2' reading_type:0x1 ('threshold') type:0x4 ('fan') full_name:'(29.1).System Fan 2'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:13 id:'System Fan 3' reading_type:0x1 ('threshold') type:0x4 ('fan') full_name:'(29.1).System Fan 3'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'P1 Mem Margin' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).P1 Mem Margin'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'Front Panel Temp' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).Front Panel Temp'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:15 id:'Baseboard Temp' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).Baseboard Temp'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:9 id:'BB +5.0V' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +5.0V'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'BB +3.3V STBY' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +3.3V STBY'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:9 id:'BB +3.3V' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +3.3V'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'BB +1.5V P1 DDR3' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.5V P1 DDR3'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'BB +1.1V P1 Vccp' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.1V P1 Vccp'
8358:20130318:111122.174 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'BB +1.05V PCH' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.05V PCH'

To decode IPMI sensor types and states, get a copy of IPMI 2.0 specifications at http://www.intel.com/content/www/us/en/servers/
ipmi/ipmi-specifications.html (At the time of writing the newest document was http://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/second-gen-interface-spec-v2.pdf)

The first parameter to start with is ”reading_type”. Use ”Table 42-1, Event/Reading Type Code Ranges” from the specifications
to decode ”reading_type” code. Most of the sensors in our example have ”reading_type:0x1” which means ”threshold” sensor.
”Table 42-3, Sensor Type Codes” shows that ”type:0x1” means temperature sensor, ”type:0x2” - voltage sensor, ”type:0x4” - Fan
etc. Threshold sensors sometimes are called ”analog” sensors as they measure continuous parameters like temperature, voltage,
revolutions per minute.

Another example - a sensor with ”reading_type:0x3”. ”Table 42-1, Event/Reading Type Code Ranges” says that reading type codes
02h-0Chmean ”Generic Discrete” sensor. Discrete sensors have up to 15 possible states (in other words - up to 15 meaningful bits).
For example, for sensor ’CATERR’ with ”type:0x7” the ”Table 42-3, Sensor Type Codes” shows that this type means ”Processor”
and the meaning of individual bits is: 00h (the least significant bit) - IERR, 01h - Thermal Trip etc.

There are few sensors with ”reading_type:0x6f” in our example. For these sensors the ”Table 42-1, Event/Reading Type Code
Ranges” advises to use ”Table 42-3, Sensor Type Codes” for decoding meanings of bits. For example, sensor ’Power Unit Stat’ has
type ”type:0x9” which means ”Power Unit”. Offset 00h means ”PowerOff/Power Down”. In other words if the least significant bit is
1, then server is powered off. To test this bit a function band with mask 1 can be used. The trigger expression could be like

{www.zabbix.com:Power Unit Stat.band(#1,1)}=1

to warn about a server power off.

Notes on discrete sensor names in OpenIPMI-2.0.16, 2.0.17, 2.0.18 and 2.0.19

Names of discrete sensors in OpenIPMI-2.0.16, 2.0.17 and 2.0.18 often have an additional ”0” (or some other digit or letter)
appended at the end. For example, while ipmitool and OpenIPMI-2.0.19 display sensor names as ”PhysicalSecurity” or
”CATERR”, in OpenIPMI-2.0.16, 2.0.17 and 2.0.18 the names are ”PhysicalSecurity0” or ”CATERR0”, respectively.

When configuring an IPMI item with Zabbix server using OpenIPMI-2.0.16, 2.0.17 and 2.0.18, use these names ending with ”0” in
the IPMI sensor field of IPMI agent items. When your Zabbix server is upgraded to a new Linux distribution, which uses OpenIPMI-
2.0.19 (or later), items with these IPMI discrete sensors will become ”NOT SUPPORTED”. You have to change their IPMI sensor
names (remove the ’0’ in the end) and wait for some time before they turn ”Enabled” again.

Notes on threshold and discrete sensor simultaneous availability

Some IPMI agents provide both a threshold sensor and a discrete sensor under the same name. In Zabbix versions prior to 2.2.8
and 2.4.3, the first provided sensor was chosen. Since versions 2.2.8 and 2.4.3, preference is always given to the threshold sensor.

Notes on connection termination

If IPMI checks are not performed (by any reason: all host IPMI items disabled/notsupported, host disabled/deleted, host in mainte-
nance etc.) the IPMI connection will be terminated from Zabbix server or proxy in 3 to 4 hours depending on the time when Zabbix
server/proxy was started.

5 Simple checks

178

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2.pdf

1 Overview

Simple checks are normally used for remote agent-less checks of services.

Note that Zabbix agent is not needed for simple checks. Zabbix server/proxy is responsible for the processing of simple checks
(making external connections, etc).

Examples of using simple checks:

net.tcp.service[ftp,,155]
net.tcp.service[http]
net.tcp.service.perf[http,,8080]
net.udp.service.perf[ntp]

Note:
User name and Password fields in simple check item configuration are used for VMware monitoring items; ignored other-
wise.

2 Supported simple checks

List of supported simple checks:

See also:

• VMware monitoring item keys

Key

Description Return value Parameters Comments
icmpping[<target>,<packets>,<interval>,<size>,<timeout>]

Host
accessibility by
ICMP ping.

0 - ICMP ping
fails

1 - ICMP ping
successful

target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds

Example:
=>
icmpping[,4] →
if at least one
packet of the
four is
returned, the
item will return
1.

See also: table
of default
values.

icmppingloss[<target>,<packets>,<interval>,<size>,<timeout>]
Percentage of
lost packets.

Float. target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds

See also: table
of default
values.

icmppingsec[<target>,<packets>,<interval>,<size>,<timeout>,<mode>]

179

Key

ICMP ping
response time
(in seconds).

Float. target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds
mode -
possible
values: min,
max, avg
(default)

If host is not
available
(timeout
reached), the
item will return
0.
If the return
value is less
than 0.0001
seconds, the
value will be
set to 0.0001
seconds.

See also: table
of default
values.

net.tcp.service[service,<ip>,<port>]

180

Key

Checks if
service is
running and
accepting TCP
connections.

0 - service is
down

1 - service is
running

service -
possible
values: ssh,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
or DNS name
(by default
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
=>
net.tcp.service[ftp„45]
→ can be used
to test the
availability of
FTP server on
TCP port 45.

Note that with
tcp service
indicating the
port is
mandatory.
These checks
may result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service[tcp,<ip>,port]
for checks like
these.
https and
telnet services
are supported
since Zabbix
2.0.

net.tcp.service.perf[service,<ip>,<port>]

181

Key

Checks
performance of
TCP service.

Float.

0.000000 -
service is down

seconds - the
number of
seconds spent
while
connecting to
the service

service -
possible
values: ssh,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
or DNS name
(by default,
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
=>
net.tcp.service.perf[ssh]
→ can be used
to test the
speed of initial
response from
SSH server.

Note that with
tcp service
indicating the
port is
mandatory.
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service.perf[tcp,<ip>,port]
for checks like
these.
https and
telnet services
are supported
since Zabbix
2.0.
Called tcp_perf
before Zabbix
2.0.

net.udp.service[service,<ip>,<port>]
Checks if
service is
running and
responding to
UDP requests.

0 - service is
down

1 - service is
running

service -
possible
values: ntp
(see details)
ip - IP address
or DNS name
(by default
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
=>
net.udp.service[ntp„45]
→ can be used
to test the
availability of
NTP service on
UDP port 45.

This item is
supported
since Zabbix
3.0, but ntp
service was
available for
net.tcp.service[]
item in prior
versions.

net.udp.service.perf[service,<ip>,<port>]

182

Key

Checks
performance of
UDP service.

Float.

0.000000 -
service is down

seconds - the
number of
seconds spent
waiting for
response from
the service

service -
possible
values: ntp
(see details)
ip - IP address
or DNS name
(by default,
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
=>
net.udp.service.perf[ntp]
→ can be used
to test
response time
from NTP
service.

This item is
supported
since Zabbix
3.0, but ntp
service was
available for
net.tcp.service[]
item in prior
versions.

Timeout processing

Zabbix will not process a simple check longer than the Timeout seconds defined in the Zabbix server/proxy configuration file.

3 ICMP pings

Zabbix uses external utility fping for processing of ICMP pings.

The utility is not part of Zabbix distribution and has to be additionally installed. If the utility is missing, has wrong permissions or
its location does not match the location set in the Zabbix server/proxy configuration file (’FpingLocation’ parameter), ICMP pings
(icmpping, icmppingloss, icmppingsec) will not be processed.

See also: known issues

fping must be executable by the user Zabbix daemons run as and setuid root. Run these commands as user root in order to set
up correct permissions:

shell> chown root:zabbix /usr/sbin/fping
shell> chmod 4710 /usr/sbin/fping

After performing the two commands above check ownership of the fping executable. In some cases the ownership can be reset
by executing the chmod command.

Also check, if user zabbix belongs to group zabbix by running:

shell> groups zabbix

and if it’s not add by issuing:

shell> usermod -a -G zabbix zabbix

Defaults, limits and description of values for ICMP check parameters:

Parameter Unit Description Fping’s flag Defaults set by
Allowed limits
by Zabbix

Warning:
Warning: fping defaults can differ depending on platform and version - if in doubt, check fping documentation.

Zabbix writes IP addresses to be checked by any of three icmpping* keys to a temporary file, which is then passed to fping. If
items have different key parameters, only ones with identical key parameters are written to a single file.
All IP addresses written to the single file will be checked by fping in parallel, so Zabbix icmp pinger process will spend fixed amount
of time disregarding the number of IP addresses in the file.

1 VMware monitoring item keys

183

Item keys

The table provides details on the simple checks that can be used to monitor VMware environments.

Key

Description Return value Parameters Comments
vmware.cluster.discovery[<url>]

Discovery of
VMware
clusters.

JSON object url - VMware
service URL

vmware.cluster.status[<url>, <name>]
VMware cluster
status.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
name -
VMware cluster
name

vmware.eventlog[<url>]
VMware event
log.

Log url - VMware
service URL

vmware.fullname[<url>]
VMware
service full
name.

String url - VMware
service URL

vmware.hv.cluster.name[<url>,<uuid>]
VMware
hypervisor
cluster name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.cpu.usage[<url>,<uuid>]
VMware
hypervisor
processor
usage (Hz).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.datacenter.name[<url>,<uuid>]
VMware
hypervisor
datacenter
name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.datastore.discovery[<url>,<uuid>]
Discovery of
VMware
hypervisor
datastores.

JSON object url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.datastore.read[<url>,<uuid>,<datastore>,<mode>]
Average
amount of time
for a read
operation from
the datastore
(milliseconds).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
datastore -
datastore
name
mode - latency
(default)

vmware.hv.datastore.size[<url>,<uuid>,<datastore>,<mode>]

184

Key

VMware
datastore
space in bytes
or in
percentage
from total.

Integer - for
bytes
Float - for
percentage

url - VMware
service URL
uuid - VMware
hypervisor host
name
datastore -
datastore
name
mode -
possible
values:
total (default),
free, pfree
(free,
percentage),
uncommitted

Available since
Zabbix
versions 3.0.6,
3.2.2

vmware.hv.datastore.write[<url>,<uuid>,<datastore>,<mode>]
Average
amount of time
for a write
operation to
the datastore
(milliseconds).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
datastore -
datastore
name
mode - latency
(default)

vmware.hv.discovery[<url>]
Discovery of
VMware
hypervisors.

JSON object url - VMware
service URL

vmware.hv.fullname[<url>,<uuid>]
VMware
hypervisor
name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.freq[<url>,<uuid>]
VMware
hypervisor
processor
frequency (Hz).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.model[<url>,<uuid>]
VMware
hypervisor
processor
model.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.num[<url>,<uuid>]
Number of
processor
cores on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.threads[<url>,<uuid>]
Number of
processor
threads on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

185

Key

vmware.hv.hw.memory[<url>,<uuid>]
VMware
hypervisor
total memory
size (bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.model[<url>,<uuid>]
VMware
hypervisor
model.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.uuid[<url>,<uuid>]
VMware
hypervisor
BIOS UUID.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.vendor[<url>,<uuid>]
VMware
hypervisor
vendor name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.memory.size.ballooned[<url>,<uuid>]
VMware
hypervisor
ballooned
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.memory.used[<url>,<uuid>]
VMware
hypervisor
used memory
size (bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.network.in[<url>,<uuid>,<mode>]
VMware
hypervisor
network input
statistics
(bytes per
second).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
mode - bps
(default)

vmware.hv.network.out[<url>,<uuid>,<mode>]
VMware
hypervisor
network output
statistics
(bytes per
second).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
mode - bps
(default)

vmware.hv.perfcounter[<url>,<uuid>,<path>,<instance>]

186

Key

VMware
hypervisor
performance
counter value.

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
path -
performance
counter path 1

instance -
performance
counter
instance. Use
empty instance
for aggregate
values
(default)

Available since
Zabbix
versions 2.2.9,
2.4.4

vmware.hv.sensor.health.state[<url>,<uuid>]
VMware
hypervisor
health state
rollup sensor.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
uuid - VMware
hypervisor host
name

Available since
Zabbix 3.2.2

vmware.hv.status[<url>,<uuid>]
VMware
hypervisor
status.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
uuid - VMware
hypervisor host
name

Uses health
state rollup
sensor before
Zabbix 3.2.2
and host
system overal
status property
since Zabbix
3.2.2

vmware.hv.uptime[<url>,<uuid>]
VMware
hypervisor
uptime
(seconds).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.version[<url>,<uuid>]
VMware
hypervisor
version.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.vm.num[<url>,<uuid>]
Number of
virtual
machines on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.version[<url>]
VMware
service
version.

String url - VMware
service URL

vmware.vm.cluster.name[<url>,<uuid>]
VMware virtual
machine name.

String url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.cpu.num[<url>,<uuid>]

187

Key

Number of
processors on
VMware virtual
machine.

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.cpu.ready[<url>,<uuid>]
Time (in
milliseconds)
that the virtual
machine was
ready, but
could not get
scheduled to
run on the
physical CPU.
CPU ready time
is dependent
on the number
of virtual
machines on
the host and
their CPU loads
(%).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name

Available since
Zabbix version
3.0.0

vmware.vm.cpu.usage[<url>,<uuid>]
VMware virtual
machine
processor
usage (Hz).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.datacenter.name[<url>,<uuid>]
VMware virtual
machine
datacenter
name.

String url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.discovery[<url>]
Discovery of
VMware virtual
machines.

JSON object url - VMware
service URL

vmware.vm.hv.name[<url>,<uuid>]
VMware virtual
machine
hypervisor
name.

String url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size[<url>,<uuid>]
VMware virtual
machine total
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.ballooned[<url>,<uuid>]
VMware virtual
machine
ballooned
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.compressed[<url>,<uuid>]

188

Key

VMware virtual
machine
compressed
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.private[<url>,<uuid>]
VMware virtual
machine
private
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.shared[<url>,<uuid>]
VMware virtual
machine
shared
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.swapped[<url>,<uuid>]
VMware virtual
machine
swapped
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.usage.guest[<url>,<uuid>]
VMware virtual
machine guest
memory usage
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.usage.host[<url>,<uuid>]
VMware virtual
machine host
memory usage
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.net.if.discovery[<url>,<uuid>]
Discovery of
VMware virtual
machine
network
interfaces.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.net.if.in[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine
network
interface input
statistics
(bytes/packets
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance -
network
interface
instance
mode - bps
(default)/pps -
bytes/packets
per second

vmware.vm.net.if.out[<url>,<uuid>,<instance>,<mode>]

189

Key

VMware virtual
machine
network
interface
output
statistics
(bytes/packets
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance -
network
interface
instance
mode - bps
(default)/pps -
bytes/packets
per second

vmware.vm.perfcounter[<url>,<uuid>,<path>,<instance>]
VMware virtual
machine
performance
counter value.

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
path -
performance
counter path 1

instance -
performance
counter
instance. Use
empty instance
for aggregate
values
(default)

Available since
Zabbix
versions 2.2.9,
2.4.4

vmware.vm.powerstate[<url>,<uuid>]
VMware virtual
machine power
state.

Integer:
0 - poweredOff;
1 - poweredOn;
2 - suspended

url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.committed[<url>,<uuid>]
VMware virtual
machine
committed
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.uncommitted[<url>,<uuid>]
VMware virtual
machine
uncommitted
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.unshared[<url>,<uuid>]
VMware virtual
machine
unshared
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.uptime[<url>,<uuid>]
VMware virtual
machine
uptime
(seconds).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.vfs.dev.discovery[<url>,<uuid>]

190

Key

Discovery of
VMware virtual
machine disk
devices.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.vfs.dev.read[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine disk
device read
statistics
(bytes/operations
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance - disk
device
instance
mode - bps
(default)/ops -
bytes/operations
per second

vmware.vm.vfs.dev.write[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine disk
device write
statistics
(bytes/operations
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance - disk
device
instance
mode - bps
(default)/ops -
bytes/operations
per second

vmware.vm.vfs.fs.discovery[<url>,<uuid>]
Discovery of
VMware virtual
machine file
systems.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

VMware Tools
must be
installed on the
guest virtual
machine.

vmware.vm.vfs.fs.size[<url>,<uuid>,<fsname>,<mode>]
VMware virtual
machine file
system
statistics
(bytes/percentages).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name
fsname - file
system name
mode - to-
tal/free/used/pfree/pused

VMware Tools
must be
installed on the
guest virtual
machine.

Footnotes
1 The VMware performance counter path has the group/counter[rollup] format where:

• group - the performance counter group, for example cpu
• counter - the performance counter name, for example usagemhz
• rollup - the peformance counter rollup type, for example average

So the above example would give the following counter path: cpu/usagemhz[average]

The performance counter group descriptions, counter names and rollup types can be found in VMware documentation.
2 The value of these items is obtained from VMware performance counters and the VMwarePerfFrequency parameter is used to
refresh their data in Zabbix VMware cache:

• vmware.hv.datastore.read

191

https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.PerformanceManager.html

• vmware.hv.datastore.write
• vmware.hv.network.in
• vmware.hv.network.out
• vmware.hv.perfcounter
• vmware.vm.cpu.ready
• vmware.vm.net.if.in
• vmware.vm.net.if.out
• vmware.vm.perfcounter
• vmware.vm.vfs.dev.read
• vmware.vm.vfs.dev.write

More info

See Virtual machine monitoring for detailed information how to configure Zabbix to monitor VMware environments.

6 Log file monitoring

Overview

Zabbix can be used for centralized monitoring and analysis of log files with/without log rotation support.

Notifications can be used to warn users when a log file contains certain strings or string patterns.

To monitor a log file you must have:

• Zabbix agent running on the host
• log monitoring item set up

Attention:
The size limit of a monitored log file depends on large file support.

Configuration

Verify agent parameters

Make sure that in the agent configuration file:

• ’Hostname’ parameter matches the host name in the frontend
• Servers in the ’ServerActive’ parameter are specified for the processing of active checks

Item configuration

Configure a log monitoring item:

Specifically for log monitoring items you enter:

Type Select Zabbix agent (active) here.

192

Key Use one of the following item keys:
log[] or logrt[]:
These two item keys allow to monitor logs and filter log
entries by the content regexp, if present.
For example: log[/var/log/syslog,error]. Make sure
that the file has read permissions for the ’zabbix’ user
otherwise the item status will be set to ’unsupported’.
log.count[] or logrt.count[]:
These two item keys allow to return the number of matching
lines only.
See supported Zabbix agent item key section for details on
using these item keys and their parameters.

Type of information Select:
For log[] or logrt[] items - Log;
For log.count[] or logrt.count[] items - Numeric
(unsigned).
If optionally using the output parameter, you may select
the appropriate type of information other than Log.
Note that choosing a non-Log type of information will lead to
the loss of local timestamp.

Update interval (in sec) The parameter defines how often Zabbix agent will check for
any changes in the log file. Setting it to 1 second will make
sure that you get new records as soon as possible.

Log time format In this field you may optionally specify the pattern for
parsing the log line timestamp.
If left blank the timestamp will not be parsed.
Supported placeholders:
* y: Year (0001-9999)
* M: Month (01-12)
* d: Day (01-31)
* h: Hour (00-23)
* m: Minute (00-59)
* s: Second (00-59)
For example, consider the following line from the Zabbix
agent log file:
” 23480:20100328:154718.045 Zabbix agent started.
Zabbix 1.8.2 (revision 11211).”
It begins with six character positions for PID, followed by
date, time, and the rest of the line.
Log time format for this line would be
”pppppp:yyyyMMdd:hhmmss”.
Note that ”p” and ”:” chars are just placeholders and can be
anything but ”yMdhms”.

Important notes

• The server and agent keep the trace of a monitored log’s size and last modification time (for logrt) in two counters. Addi-
tionally:

* The agent also internally uses inode numbers (on UNIX/GNU/Linux), file indexes (on Microsoft Windows) and MD5 sums of the first 512 log file bytes for improving decisions when logfiles get truncated and rotated.
* On UNIX/GNU/Linux systems it is assumed that the file systems where log files are stored report inode numbers, which can be used to track files.
* On Microsoft Windows Zabbix agent determines the file system type the log files reside on and uses:

* On NTFS file systems 64-bit file indexes.
* On ReFS file systems (only from Microsft Windows Server 2012) 128-bit file IDs.
* On file systems where file indexes change (e.g. FAT32, exFAT) a fall-back algorithm is used to take a sensible approach in uncertain conditions when log file rotation results in multiple log files with the same last modification time.

* The inode numbers, file indexes and MD5 sums are internally collected by Zabbix agent. They are not transmitted to Zabbix server and are lost when Zabbix agent is stopped.
* Do not modify the last modification time of log files with 'touch' utility, do not copy a log file with later restoration of the original name (this will change the file inode number). In both cases the file will be counted as different and will be analyzed from the start, which may result in duplicated alerts.
* If there are several matching log files for ''logrt[]'' item and Zabbix agent is following the most recent of them and this most recent log file is deleted, a warning message ''"there are no files matching "<regexp mask>" in "<directory>"'' is logged. Zabbix agent ignores log files with modification time less than the most recent modification time seen by the agent for the ''logrt[]'' item being checked.

* The agent starts reading the log file from the point it stopped the previous time.
* The number of bytes already analyzed (the size counter) and last modification time (the time counter) are stored in the Zabbix database and are sent to the agent to make sure the agent starts reading the log file from this point in cases when the agent is just started or has received items which were previously disabled or not supported.
* Whenever the log file becomes smaller than the log size counter known by the agent, the counter is reset to zero and the agent starts reading the log file from the beginning taking the time counter into account.
* If there are several matching files with the same last modification time in the directory, then the agent tries to correctly analyze all log files with the same modification time and avoid skipping data or analyzing the same data twice, although it cannot be guaranteed in all situations. The agent does not assume any particular log file rotation scheme nor determines one. When presented multiple log files with the same last modification time, the agent will process them in a lexicographically descending order. Thus, for some rotation schemes the log files will be analyzed and reported in their original order. For other rotation schemes the original log file order will not be honored, which can lead to reporting matched log file records in altered order (the problem does not happen if log files have different last modification times).
* Zabbix agent processes new records of a log file once per //Update interval// seconds.

193

* Zabbix agent does not send more than **maxlines** of a log file per second. The limit prevents overloading of network and CPU resources and overrides the default value provided by **MaxLinesPerSecond** parameter in the [[:manual:appendix:config:zabbix_agentd|agent configuration file]].
* To find the required string Zabbix will process 4 times more new lines than set in MaxLinesPerSecond. Thus, for example, if a ''log[]'' or ''logrt[]'' item has //Update interval// of 1 second, by default the agent will analyse no more than 80 log file records and will send no more than 20 matching records to Zabbix server in one check. By increasing **MaxLinesPerSecond** in the agent configuration file or setting **maxlines** parameter in the item key, the limit can be increased up to 4000 analysed log file records and 1000 matching records sent to Zabbix server in one check. If the //Update interval// is set to 2 seconds the limits for one check would be set 2 times higher than with //Update interval// of 1 second.
* Additionally, log and log.count values are always limited to 50% of the agent send buffer size, even if there are no non-log values in it. So for the **maxlines** values to be sent in one connection (and not in several connections), the agent [[:manual:appendix:config:zabbix_agentd|BufferSize]] parameter must be at least maxlines x 2.
* In the absence of log items all agent buffer size is used for non-log values. When log values come in they replace the older non-log values as needed, up to the designated 50%.
* For log file records longer than 256kB, only the first 256kB are matched against the regular expression and the rest of the record is ignored. However, if Zabbix agent is stopped while it is dealing with a long record the agent internal state is lost and the long record may be analysed again and differently after the agent is started again.
* Special note for "\" path separators: if file_format is "file\.log", then there should not be a "file" directory, since it is not possible to unambiguously define whether "." is escaped or is the first symbol of the file name.
* Regular expressions for ''logrt'' are supported in filename only, directory regular expression matching is not supported.
* On UNIX platforms a ''logrt[]'' item becomes NOTSUPPORTED if a directory where the log files are expected to be found does not exist.
* On Microsoft Windows, if a directory does not exist the item will not become NOTSUPPORTED (for example, if directory is misspelled in item key).
* An absence of log files for ''logrt[]'' item does not make it NOTSUPPORTED. Errors of reading log files for ''logrt[]'' item are logged as warnings into Zabbix agent log file but do not make the item NOTSUPPORTED.
* Zabbix agent log file can be helpful to find out why a ''log[]'' or ''logrt[]'' item became NOTSUPPORTED. Zabbix can monitor its agent log file except when at DebugLevel=4.

Extracting matching part of regular expression

Sometimes we may want to extract only the interesting value from a target file instead of returning the whole line when a regular
expression match is found.

Since Zabbix 2.2.0, log items have the ability to extract desired values from matched lines. This is accomplished by the additional
output parameter in log and logrt items.

Using the ’output’ parameter allows to indicate the subgroup of the match that we may be interested in.

So, for example

log[/path/to/the/file,"large result buffer allocation.*Entries: ([0-9]+)",,,,\1]

should allow returning the entry count as found in the content of:

Fr Feb 07 2014 11:07:36.6690 */ Thread Id 1400 (GLEWF) large result
buffer allocation - /Length: 437136/Entries: 5948/Client Ver: >=10/RPC
ID: 41726453/User: AUser/Form: CFG:ServiceLevelAgreement

The reason why Zabbix will return only the number is because ’output’ here is defined by \1 referring to the first and only subgroup
of interest: ([0-9]+)

And, with the ability to extract and return a number, the value can be used to define triggers.

Using maxdelay parameter

The ’maxdelay’ parameter in log items allows ignoring some older lines from log files in order to get the most recent lines analyzed
within the ’maxdelay’ seconds.

Warning:
Specifying ’maxdelay’ > 0 may lead to ignoring important log file records and missed alerts. Use it carefully at your
own risk only when necessary.

By default items for log monitoring follow all new lines appearing in the log files. However, there are applications which in some
situations start writing an enormous number of messages in their log files. For example, if a database or a DNS server is unavailable,
such applications flood log files with thousands of nearly identical error messages until normal operation is restored. By default,
all those messages will be dutifully analyzed and matching lines sent to server as configured in log and logrt items.

Built-in protection against overload consists of a configurable ’maxlines’ parameter (protects server from too many incoming
matching log lines) and a 4*’maxlines’ limit (protects host CPU and I/O from overloading by agent in one check). Still, there are
2 problems with the built-in protection. First, a large number of potentially not-so-informative messages are reported to server
and consume space in the database. Second, due to the limited number of lines analyzed per second the agent may lag behind
the newest log records for hours. Quite likely, you might prefer to be sooner informed about the current situation in the log files
instead of crawling through old records for hours.

The solution to both problems is using the ’maxdelay’ parameter. If ’maxdelay’ > 0 is specified, during each check the number of
processed bytes, the number of remaining bytes and processing time is measured. From these numbers the agent calculates an
estimated delay - how many seconds it would take to analyze all remaining records in a log file.

If the delay does not exceed ’maxdelay’ then the agent proceeds with analyzing the log file as usual.

If the delay is greater than ’maxdelay’ then the agent ignores a chunk of a log file by ”jumping” over it to a new estimated
position so that the remaining lines could be analyzed within ’maxdelay’ seconds.

Note that agent does not even read ignored lines into buffer, but calculates an approximate position to jump to in a file.

The fact of skipping log file lines is logged in the agent log file like this:

194

14287:20160602:174344.206 item:"logrt["/home/zabbix32/test[0-9].log",ERROR,,1000,,,120.0]"
logfile:"/home/zabbix32/test1.log" skipping 679858 bytes
(from byte 75653115 to byte 76332973) to meet maxdelay

The ”to byte” number is approximate because after the ”jump” the agent adjusts the position in the file to the beginning of a log
line which may be further in the file or earlier.

Depending on how the speed of growing compares with the speed of analyzing the log file you may see no ”jumps”, rare or often
”jumps”, large or small ”jumps”, or even a small ”jump” in every check. Fluctuations in the system load and network latency also
affect the calculation of delay and hence, ”jumping” ahead to keep up with the ”maxdelay” parameter.

Setting ’maxdelay’ < ’update interval’ is not recommended (it may result in frequent small ”jumps”).

Actions if communication fails between agent and server

Each matching line from log[] and logrt[] item and a result of each log.count[] and logrt.count[] item check requires
a free slot in the designated 50% area in the agent send buffer. The buffer elements are regularly sent to server (or proxy) and the
buffer slots are free again.

While there are free slots in the designated log area in the agent send buffer and communication fails between agent and server
(or proxy) the log monitoring results are accumulated in the send buffer. This helps to mitigate short communication failures.

During longer communication failures all log slots get occupied and the following actions are taken:

• log[] and logrt[] item checks are stopped. When communication is restored and free slots in the buffer are available
the checks are resumed from the previous position. No matching lines are lost, they are just reported later.

• log.count[] and logrt.count[] checks are stopped if maxdelay = 0 (default). Behaviour is similar to log[] and
logrt[] items as described above. Note that this can affect log.count[] and logrt.count[] results: for example,
one check counts 100 matching lines in a log file, but as there are no free slots in the buffer the check is stopped. When
communication is restored the agent counts the same 100 matching lines and also 70 new matching lines. The agent now
sends count = 170 as if they were found in one check.

• log.count[] and logrt.count[] checks with maxdelay > 0: if there was no ”jump” during the check, then behaviour
is similar to described above. If a ”jump” over log file lines took place then the position after ”jump” is kept and the counted
result is discarded. So, the agent tries to keep up with a growing log file even in case of communication failure.

7 Calculated items

1 Overview

With calculated items you can create calculations on the basis of other items.

Thus, calculated items are a way of creating virtual data sources. The values will be periodically calculated based on an arithmetical
expression. All calculations are done by the Zabbix server - nothing related to calculated items is performed on Zabbix agents or
proxies.

The resulting data will be stored in the Zabbix database as for any other item - this means storing both history and trend values
for fast graph generation. Calculated items may be used in trigger expressions, referenced by macros or other entities same as
any other item type.

To use calculated items, choose the item type Calculated.

2 Configurable fields

The key is a unique item identifier (per host). You can create any key name using supported symbols.

Calculation definition should be entered in the Formula field. There is virtually no connection between the formula and the key.
The key parameters are not used in formula in any way.

The correct syntax of a simple formula is:

func(<key>|<hostname:key>,<parameter1>,<parameter2>,...)

Where:

ARGUMENT DEFINITION

func One of the functions supported in trigger expressions: last, min,
max, avg, count, etc

195

ARGUMENT DEFINITION

key The key of another item whose data you want to use. It may be
defined as key or hostname:key.
Note: Putting the whole key in double quotes (”...”) is strongly
recommended to avoid incorrect parsing because of spaces or
commas within the key.
If there are also quoted parameters within the key, those double
quotes must be escaped by using the backslash (\). See Example
5 below.

parameter(s) Function parameter(s), if required.

Note:
All items that are referenced from the calculated item formula must exist and be collecting data (exceptions in functions
and unsupported items). Also, if you change the item key of a referenced item, you have to manually update any formulas
using that key.

Attention:
User macros in the formula will be expanded if used to reference a function parameter or a constant. User macros will NOT
be expanded if referencing a function, host name, item key, item key parameter or operator.

A more complex formula may use a combination of functions, operators and brackets. You can use all functions and operators
supported in trigger expressions. Note that the syntax is slightly different, however logic and operator precedence are exactly the
same.

Unlike trigger expressions, Zabbix processes calculated items according to the item update interval, not upon receiving a new
value.

Note:
If the calculation result is a float value it will be trimmed to an integer if the calculated item type of information is Numeric
(unsigned).

A calculated item may become unsupported in several cases:

1. referenced item(s)
• is not found
• is disabled
• belongs to a disabled host
• is not supported (see exceptions in functions and unsupported items, Expressions with unsupported items and unknown
values and Operators)

2. no data to calculate a function
3. division by zero
4. incorrect syntax used

Support for calculated items was introduced in Zabbix 1.8.1.
Starting from Zabbix 3.2 calculated items in some cases may involve unsupported items as described in functions and unsupported
items, Expressions with unsupported items and unknown values and Operators.

3 Usage examples

Example 1

Calculating percentage of free disk space on ’/’.

Use of function last:

100*last("vfs.fs.size[/,free]")/last("vfs.fs.size[/,total]")

Zabbix will take the latest values for free and total disk spaces and calculate percentage according to the given formula.

Example 2

Calculating a 10-minute average of the number of values processed by Zabbix.

Use of function avg:

avg("Zabbix Server:zabbix[wcache,values]",600)

196

Note that extensive use of calculated items with long time periods may affect performance of Zabbix server.

Example 3

Calculating total bandwidth on eth0.

Sum of two functions:

last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]")

Example 4

Calculating percentage of incoming traffic.

More complex expression:

100*last("net.if.in[eth0,bytes]")/(last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]"))

Example 5

Using aggregated items correctly within a calculated item.

Take note of how double quotes are escaped within the quoted key:

last("grpsum[\"video\",\"net.if.out[eth0,bytes]\",\"last\"]") / last("grpsum[\"video\",\"nginx_stat.sh[active]\",\"last\"]")

8 Internal checks

1 Overview

Internal checks allow to monitor the internal processes of Zabbix. In other words, you can monitor what goes on with Zabbix server
or Zabbix proxy.

Internal checks are calculated:

• on Zabbix server - if the host is monitored by server
• on Zabbix proxy - if the host is monitored by proxy

Internal checks are processed by server or proxy regardless of host maintenance status (since Zabbix 2.4.0).

To use this item, choose the Zabbix internal item type.

Note:
Internal checks are processed by Zabbix pollers.

2 Supported checks

• Parameters without angle brackets are constants - for example, ’host’ and ’available’ in zabbix[host,<type>,available].
Use them in the item key as is.

• Values for items and item parameters that are ”not supported on proxy” can only be gathered if the host is monitored by
server. And vice versa, values ”not supported on server” can only be gathered if the host is monitored by proxy.

Key

▲ Description Return value Comments
zabbix[boottime]

Startup time
of Zabbix
server or
Zabbix
proxy
process in
seconds.

Integer.

zabbix[history]

197

Key

Number of
values
stored in the
HISTORY
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

zabbix[history_log]
Number of
values
stored in the
HIS-
TORY_LOG
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[history_str]
Number of
values
stored in the
HIS-
TORY_STR
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

zabbix[history_text]
Number of
values
stored in the
HIS-
TORY_TEXT
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[history_uint]

198

Key

Number of
values
stored in the
HIS-
TORY_UINT
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[host„items]
Number of
enabled
items
(supported
and not
supported)
on the host.

Integer. This item is
supported
starting with
Zabbix
3.0.0.

zabbix[host„items_unsupported]
Number of
enabled
unsupported
items on the
host.

Integer. This item is
supported
starting with
Zabbix
3.0.0.

zabbix[host„maintenance]
Current
mainte-
nance status
of a host.

0 - host in
normal
state,
1 - host in
mainte-
nance with
data
collection,
2 - host in
mainte-
nance
without data
collection.

This item is
always
processed
by Zabbix
server
regardless of
host location
(on server or
proxy). The
proxy will
not receive
this item
with configu-
ration data.
The second
parameter
must be
empty and is
reserved for
future use.
This item is
supported
starting with
Zabbix
2.4.0.

zabbix[host,<type>,available]

199

Key

Availability
of a
particular
type of
checks on
the host.
The value of
this item
corresponds
to
availability
icons in the
host list.

0 - not
available, 1 -
available, 2 -
unknown.

Valid types
are: agent,
snmp, ipmi,
jmx.

The item
value is
calculated
according to
configura-
tion
parameters
regarding
host
unreachabil-
ity/unavailability.

This item is
supported
starting with
Zabbix
2.0.0.

zabbix[hosts]
Number of
monitored
hosts.

Integer. This item is
supported
starting with
Zabbix
2.2.0.

zabbix[items]
Number of
enabled
items
(supported
and not
supported).

Integer.

zabbix[items_unsupported]
Number of
not
supported
items.

Integer.

zabbix[java„<param>]

200

Key

Information
about
Zabbix Java
gateway.

If <param>
is ping, ”1”
is returned.
Can be used
to check
Java
gateway
availability
using
nodata()
trigger
function.

If <param>
is version,
version of
Java
gateway is
returned.
Example:
”2.0.0”.

Valid values
for
<param>
are: ping,
version

Second
parameter
must be
empty and is
reserved for
future use.

This item is
supported
starting with
Zabbix
2.0.0.

zabbix[process,<type>,<mode>,<state>]

201

Key

Time a
particular
Zabbix
process or a
group of
processes
(identified
by <type>
and
<mode>)
spent in
<state> in
percentage.
It is
calculated
for the last
minute only.

If <mode>
is Zabbix
process
number that
is not
running (for
example,
with 5
pollers
running
<mode> is
specified to
be 6), such
an item will
turn into
unsupported
state.
Minimum
and
maximum
refers to the
usage
percentage
for a single
process. So
if in a group
of 3 pollers
usage
percentages
per process
were 2, 18
and 66, min
would return
2 and max
would return
66.
Processes
report what
they are
doing in
shared
memory and
the self-
monitoring
process
summarizes
that data
each
second.
State
changes
(busy/idle)
are
registered
upon change
- thus a
process that
becomes
busy
registers as
such and
doesn’t
change or
update the
state until it
becomes
idle. This
ensures that
even fully
hung
processes
will be
correctly
registered as
100% busy.
Currently,
”busy”
means ”not
sleeping”,
but in the
future
additional
states might
be
introduced -
waiting for
locks,
performing
database
queries, etc.
On Linux
and most
other
systems,
resolution is
1/100 of a
second.

Percentage
of time.
Float.

The
following
process
types are
currently
supported:
alerter -
process for
sending
notifications
(not
supported
on proxy)
configuration
syncer -
process for
managing
in-memory
cache of
configura-
tion data
data
sender -
proxy data
sender (not
supported
on server)
db
watchdog -
sender of a
warning
message in
case DB is
not available
(not
supported
on proxy)
discoverer
- process for
discovery of
devices
escalator -
process for
escalation of
actions (not
supported
on proxy)
heartbeat
sender -
proxy
heartbeat
sender (not
supported
on server)
history
syncer -
history DB
writer
housekeeper
- process for
removal of
old historical
data
http poller
- web
monitoring
poller
icmp
pinger -
poller for
icmpping
checks
ipmi poller
- poller for
IPMI checks
java poller
- poller for
Java checks
poller -
normal
poller for
passive
checks
proxy
poller -
poller for
passive
proxies (not
supported
on proxy)
self-
monitoring
- process for
collecting
internal
server
statistics
snmp
trapper -
trapper for
SNMP traps
task
manager -
process for
manually
closing
problems
(not
supported
on proxy)
timer -
process for
evaluation
of
time-related
trigger
functions
and mainte-
nances (not
supported
on proxy)
trapper -
trapper for
active
checks,
traps, proxy
communica-
tion
unreachable
poller -
poller for
unreachable
devices
vmware
collector -
VMware data
collector
responsible
for data
gathering
from
VMware
services

Note: You
can also see
these
process
types in a
server log
file.

Valid modes
are:
avg -
average
value for all
processes of
a given type
(default)
count -
returns
number of
forks for a
given
process
type,
<state>
should not
be specified
max -
maximum
value
min -
minimum
value
<process
number> -
process
number
(between 1
and the
number of
pre-forked
instances).
For example,
if 4 trappers
are running,
the value is
between 1
and 4.

Valid states
are:
busy -
process is in
busy state,
for example,
processing
request
(default).
idle -
process is in
idle state
doing
nothing.

Examples:
=> zab-
bix[process,poller,avg,busy]
→ average
time of
poller
processes
spent doing
something
during the
last minute
=> zab-
bix[process,”icmp
pinger”,max,busy]
→ maximum
time spent
doing
something
by any ICMP
pinger
process
during the
last minute
=> zab-
bix[process,”history
syncer”,2,busy]
→ time spent
doing
something
by history
syncer
number 2
during the
last minute
=> zab-
bix[process,trapper,count]
→ amount of
currently
running
trapper
processes

This item is
supported
starting with
Zabbix
1.8.5.

202

Key

zabbix[proxy,<name>,<param>]
Information
about
Zabbix
proxy.

Integer. <name> -
proxy name
List of
supported
parameters
(<param>):
lastaccess -
timestamp
of last heart
beat
message
received
from proxy

Example:
=> zab-
bix[proxy,”Germany”,lastaccess]

fuzzytime()
trigger
function can
be used to
check
availability
of proxies.
Starting with
Zabbix 2.4.0
this item is
always
processed
by Zabbix
server
regardless of
host location
(on server or
proxy).

zabbix[proxy_history]
Number of
values in the
proxy
history table
waiting to be
sent to the
server.

Integer. This item is
supported
starting with
Zabbix
2.2.0.
(not
supported
on server)

zabbix[queue,<from>,<to>]

203

Key

Number of
monitored
items in the
queue which
are delayed
at least by
<from>
seconds but
less than by
<to>
seconds.

Integer. <from> -
default: 6
seconds
<to> -
default:
infinity
Time-unit
symbols
(s,m,h,d,w)
are
supported
for these
parameters.
Parameters
from and to
are
supported
starting with
Zabbix
1.8.3.

zabbix[rcache,<cache>,<mode>]
Availability
statistics of
Zabbix con-
figuration
cache.

Integer (for
size); float
(for
percentage).

Cache:
buffer
Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer

zabbix[requiredperformance]
Required
performance
of Zabbix
server or
Zabbix
proxy, in
new values
per second
expected.

Float. Approximately
correlates
with
”Required
server per-
formance,
new values
per second”
in Reports →
Status of
Zabbix.
This item is
supported
starting with
Zabbix
1.6.2.

zabbix[trends]
Number of
values
stored in the
TRENDS
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

204

Key

zabbix[trends_uint]
Number of
values
stored in the
TRENDS_UINT
table.

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[triggers]
Number of
enabled
triggers in
Zabbix
database,
with all
items
enabled on
enabled
hosts.

Integer. (not
supported
on proxy)

zabbix[uptime]
Uptime of
Zabbix
server or
Zabbix
proxy
process in
seconds.

Integer.

zabbix[vcache,buffer,<mode>]
Availability
statistics of
Zabbix value
cache.

Integer (for
size); float
(for
percentage).

Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer
pused -
percentage
of used
buffer

This item is
supported
starting with
Zabbix
2.2.0.
(not
supported
on proxy)

zabbix[vcache,cache,<parameter>]

205

Key

Effectiveness
statistics of
Zabbix value
cache.

Integer.

With the
mode
parameter:
0 - normal
mode,
1 - low
memory
mode

Parameter:
requests -
total number
of requests
hits -
number of
cache hits
(history
values taken
from the
cache)
misses -
number of
cache
misses
(history
values taken
from the
database)
mode -
value cache
operating
mode
This item is
supported
starting with
Zabbix
2.2.0 and
the mode
parameter
starting with
Zabbix
3.0.0.
(not
supported
on proxy)

You may use
this key with
a Delta
(speed per
second)
store value
in order to
get values
per second
statistics.

zabbix[vmware,buffer,<mode>]

206

Key

Availability
statistics of
Zabbix
vmware
cache.

Integer (for
size); float
(for
percentage).

Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer
pused -
percentage
of used
buffer

This item is
supported
starting with
Zabbix
2.2.0.

zabbix[wcache,<cache>,<mode>]
Statistics
and
availability
of Zabbix
write cache.

Specifying
<cache> is
mandatory.

Cache Mode
values all

(default)
Total number
of values
processed
by Zabbix
server or
Zabbix
proxy,
except
unsupported
items.

Integer. Counter.
You may use
this key with
a Delta
(speed per
second)
store value
in order to
get values
per second
statistics.

float Number of
processed
float values.

Integer. Counter.

uint Number of
processed
unsigned
integer
values.

Integer. Counter.

str Number of
processed
charac-
ter/string
values.

Integer. Counter.

log Number of
processed
log values.

Integer. Counter.

text Number of
processed
text values.

Integer. Counter.

207

Key

not
supported

Number of
times item
processing
resulted in
item
becoming
unsupported
or keeping
that state.

Integer. Counter.
Not
supported
mode is
supported
starting with
Zabbix
1.8.6.

history pfree
(default)

Percentage
of free
history
buffer.

Float. History
cache is
used to
store item
values. A
low number
indicates
performance
problems on
the
database
side.

free Size of free
history
buffer.

Integer.

total Total size of
history
buffer.

Integer.

used Size of used
history
buffer.

Integer.

index pfree
(default)

Percentage
of free
history index
buffer.

Float. History
index cache
is used to
index values
stored in
history
cache.
Index cache
is supported
starting with
Zabbix
3.0.0.

free Size of free
history index
history
buffer.

Integer.

total Total size of
history index
history
buffer.

Integer.

used Size of used
history index
history
buffer.

Integer.

208

Key

trend pfree
(default)

Percentage
of free trend
cache.

Float. Trend cache
stores
aggregate
for the
current hour
for all items
that receive
data.
(not
supported
on proxy)

free Size of free
trend buffer.

Integer. (not
supported
on proxy)

total Total size of
trend buffer.

Integer. (not
supported
on proxy)

used Size of used
trend buffer.

Integer. (not
supported
on proxy)

9 SSH checks

1 Overview

SSH checks are performed as agent-less monitoring. Zabbix agent is not needed for SSH checks.

To perform SSH checks Zabbix server must be initially configured with SSH2 support.

Attention:
The minimum supported libssh2 library version is 1.0.0.

2 Configuration

2.1 Passphrase authentication

SSH checks provide two authentication methods, a user/password pair and key-file based.

If you do not intend to use keys, no additional configuration is required, besides linking libssh2 to Zabbix, if you’re building from
source.

2.2 Key file authentication

To use key based authentication for SSH items, certain changes to the server configuration are required.

Open the Zabbix server configuration file (zabbix_server.conf) as root and look for the following line:

SSHKeyLocation=

Uncomment it and set full path to a folder where public and private keys will be located:

SSHKeyLocation=/home/zabbix/.ssh

Save the file and restart zabbix_server afterwards.

/home/zabbix here is the home directory for the zabbix user account and .ssh is a directory where by default public and private
keys will be generated by a ssh-keygen command inside the home directory.

Usually installation packages of zabbix-server from different OS distributions create the zabbix user account with a home directory
in not very well-known places (as for system accounts). For example, for CentOS it’s /var/lib/zabbix, for Debian it’s /var/run/zabbix.

Before starting to generate the keys, an approach to reallocate the home directory to a better known place (intuitively expected)
could be considered. This will correspond with the SSHKeyLocation Zabbix server configuration parameter mentioned above.

These steps can be skipped if zabbix account has been added manually according to the installation section because in this case
most likely the home directory is already located at /home/zabbix.

To change the setting for the zabbix user account all working processes which are using it have to be stopped:

209

http://en.wikipedia.org/wiki/Ssh-keygen

service zabbix-agent stop
service zabbix-server stop

To change the home directory location with an attempt to move it (if it exists) a command should be executed:

usermod -m -d /home/zabbix zabbix

It’s absolutely possible that a home directory did not exist in the old place (in the CentOS for example), so it should be created at
the new place. A safe attempt to do that is:

test -d /home/zabbix || mkdir /home/zabbix

To be sure that all is secure, additional commands could be executed to set permissions to the home directory:

chown zabbix:zabbix /home/zabbix
chmod 700 /home/zabbix

Previously stopped processes now can be started again:

service zabbix-agent start
service zabbix-server start

Now steps to generate public and private keys can be performed by a command:

sudo -u zabbix ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/zabbix/.ssh/id_rsa):
Created directory '/home/zabbix/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/zabbix/.ssh/id_rsa.
Your public key has been saved in /home/zabbix/.ssh/id_rsa.pub.
The key fingerprint is:
90:af:e4:c7:e3:f0:2e:5a:8d:ab:48:a2:0c:92:30:b9 zabbix@it0
The key's randomart image is:
+--[RSA 2048]----+
| |
| . |
| o |
| . o |
|+ . S |
|.+ o = |
|E . * = |
|=o . ..* . |
|... oo.o+ |
+-----------------+

Note: public and private keys (id_rsa.pub and id_rsa respectively) have been generated by default in the /home/zabbix/.ssh direc-
tory which corresponds to the Zabbix server SSHKeyLocation configuration parameter.

Attention:
Key types other than ”rsa” may be supported by the ssh-keygen tool and SSH servers but they may not be supported by
libssh2, used by Zabbix.

2.3 Shell configuration form

This step should be performed only once for every host that will be monitored by SSH checks.

By using the following command the public key file can be installed on a remote host 10.10.10.10 so that then SSH checks can be
performed with a root account:

sudo -u zabbix ssh-copy-id root@10.10.10.10
The authenticity of host '10.10.10.10 (10.10.10.10)' can't be established.
RSA key fingerprint is 38:ba:f2:a4:b5:d9:8f:52:00:09:f7:1f:75:cc:0b:46.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.10.10.10' (RSA) to the list of known hosts.
root@10.10.10.10's password:
Now try logging into the machine, with "ssh 'root@10.10.10.10'", and check in:
.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

210

Now it’s possible to check the SSH login using the default private key (/home/zabbix/.ssh/id_rsa) for zabbix user account:

sudo -u zabbix ssh root@10.10.10.10

If the login is successful, then the configuration part in the shell is finished and remote SSH session can be closed.

2.4 Item configuration

Actual command(s) to be executed must be placed in the Executed script field in the item configuration.
Multiple commands can be executed one after another by placing them on a new line. In this case returned values also will be
formatted as multi lined.

The fields that require specific information for SSH items are:

Parameter Description Comments

Type Select SSH agent here.

211

Parameter Description Comments

Key Unique (per host) item key in format
ssh.run[<unique short
description>,<ip>,<port>,<encoding>]

<unique short description> is
required and should be unique
for all SSH items per host
Default port is 22, not the port
specified in the interface to
which this item is assigned

Authentication method One of the ”Password” or ”Public key”
User name User name to authenticate on remote host.

Required
Public key file File name of public key if Authentication

method is ”Public key”. Required
Example: id_rsa.pub - default
public key file name generated
by a command ssh-keygen

Private key file File name of private key if Authentication
method is ”Public key”. Required

Example: id_rsa - default private
key file name

Password or
Key passphrase

Password to authenticate or
Passphrase if it was used for the private key

Leave the Key passphrase field
empty if passphrase was not
used
See also known issues regarding
passphrase usage

Executed script Executed shell command(s) using SSH remote
session

Examples:
date +%s
service mysql-server status
ps auxww | grep httpd | wc -l

Attention:
libssh2 library may truncate executable scripts to ~32kB.

10 Telnet checks

1 Overview

Telnet checks are performed as agent-less monitoring. Zabbix agent is not needed for Telnet checks.

2 Configurable fields

Actual command(s) to be executed must be placed in the Executed script field in the item configuration.
Multiple commands can be executed one after another by placing them on a new line. In this case returned value also will be
formated as multi lined.

Supported characters that the shell prompt can end with:

• $

• #

•

• %

Note:
A telnet prompt line which ended with one of these characters will be removed from the returned value, but only for the
first command in the commands list, i.e. only at a start of the telnet session.

Key Description Comments

telnet.run[<unique
short descrip-
tion>,<ip>,<port>,<encoding>]

Run a command on a remote device using telnet
connection

212

http://en.wikipedia.org/wiki/Ssh-keygen

Attention:
If a telnet check returns a value with non-ASCII characters and in non-UTF8 encoding then the <encoding> parameter of
the key should be properly specified. See encoding of returned values page for more details.

11 External checks

1 Overview

External check is a check executed by Zabbix server by running a shell script or a binary. However, when hosts are monitored by
a Zabbix proxy, the external checks are executed by the proxy.

External checks do not require any agent running on a host being monitored.

The syntax of the item key is:

script[<parameter1>,<parameter2>,...]

Where:

ARGUMENT DEFINITION

script Name of a shell script or a binary.
parameter(s) Optional command line parameters.

If you don’t want to pass any parameters to the script you may use:

script[] or
script

Zabbix server will look in the directory defined as the location for external scripts (parameter ’ExternalScripts’ in Zabbix server
configuration file) and execute the command. The command will be executed as the user Zabbix server runs as, so any access
permissions or environment variables should be handled in a wrapper script, if necessary, and permissions on the command should
allow that user to execute it. Only commands in the specified directory are available for execution.

Warning:
Do not overuse external checks! As each script requires starting a fork process by Zabbix server, running many scripts
can decrease Zabbix performance a lot.

2 Usage example

Executing the script check_oracle.sh with the first parameters ”-h”. The second parameter will be replaced by IP address or DNS
name, depending on the selection in the host properties.

check_oracle.sh["-h","{HOST.CONN}"]

Assuming host is configured to use IP address, Zabbix will execute:

check_oracle.sh "-h" "192.168.1.4"

3 External check result

The return value of the check is standard output together with standard error (the full output with trimmed trailing whitespace is
returned since Zabbix 2.0).

Attention:
A text (character, log or text type of information) item will not become unsupported in case of standard error output.

In case the requested script is not found or Zabbix server has no permissions to execute it, item will become unsupported and
corresponding error message will be set. In case of a timeout, the item will be marked as unsupported as well, an according error
message will be displayed and the forked process for the script will be killed.

12 Aggregate checks

Overview

In aggregate checks Zabbix server collects aggregate information from items by doing direct database queries.

213

Aggregate checks do not require any agent running on the host being monitored.

Syntax

The syntax of the aggregate item key is:

groupfunc["host group","item key",itemfunc,timeperiod]

Supported group functions (groupfunc) are:

Group function Description

grpavg Average value
grpmax Maximum value
grpmin Minimum value
grpsum Sum of values

Multiple host groups may be included by inserting a comma-delimited array. Starting with Zabbix 3.2.2, specifying a parent host
group will include the parent group and all nested host groups with their items.

All items that are referenced from the aggregate item key must exist and be collecting data. Only enabled items on enabled hosts
are included in the calculations.

Attention:
The key of the aggregate item must be updated manually, if the item key of a referenced item is changed.

Supported item functions (itemfunc) are:

Item function Description

avg Average value
count Number of values
last Last value
max Maximum value
min Minimum value
sum Sum of values

The timeperiod parameter specifies a time period of latest collected values. Supported unit symbols can be used in this parameter
for convenience, for example ’5m’ (minutes) instead of ’300’ (seconds) or ’1d’ (day) instead of ’86400’ (seconds).

Warning:
An amount of values (prefixed with #) is not supported in the timeperiod.

Timeperiod is ignored by the server if the third parameter (item function) is last and can thus be omitted:

groupfunc["host group","item key",last]

Note:
If the aggregate results in a float value it will be trimmed to an integer if the aggregated item type of information is Numeric
(unsigned).

An aggregate item may become unsupported in several cases:

• none of the referenced items is found (which may happen if the item key is incorrect, none of the items exists or all included
groups are incorrect)

• no data to calculate a function

Usage examples

Examples of keys for aggregate checks:

Example 1

Total disk space of host group ’MySQL Servers’.

grpsum["MySQL Servers","vfs.fs.size[/,total]",last]

214

Example 2

Average processor load of host group ’MySQL Servers’.

grpavg["MySQL Servers","system.cpu.load[,avg1]",last]

Example 3

5-minute average of the number of queries per second for host group ’MySQL Servers’.

grpavg["MySQL Servers",mysql.qps,avg,5m]

Example 4

Average CPU load on all hosts in multiple host groups.

grpavg[["Servers A","Servers B","Servers C"],system.cpu.load,last]

13 Trapper items

Overview

Trapper items accept incoming data instead of querying for it.

It is useful for any data you might want to ”push” into Zabbix.

To use a trapper item you must:

• have a trapper item set up in Zabbix
• send in the data into Zabbix

Configuration

Item configuration

To configure a trapper item:

• Go to: Configuration → Hosts
• Click on Items in the row of the host
• Click on Create item
• Enter parameters of the item in the form

The fields that require specific information for trapper items are:

Type Select Zabbix trapper here.
Key Enter a key that will be used to recognize the item when

sending in data.
Type of information Select the type of information that will correspond the

format of data that will be sent in.

215

Allowed hosts If specified, the trapper will accept incoming data only from
this comma-delimited list of hosts.
Hosts are identified by IP address/DNS name. For example:
Single IP: 192.168.1.33
List of IP addresses: 192.168.56.5, 192.168.56.6,
192.168.56.7
Single DNS name: testzabbix.zabbix.com
List of DNS names: testzabbix, testzabbix.zabbix.com,
testzabbix1.zabbix.com
Spaces and user macros are allowed in this field since
Zabbix 2.2.0.

Note:
You may have to wait up to 60 seconds after saving the item until the server picks up the changes from a configuration
cache update, before you can send in values.

Sending in data

In the simplest of cases, we may use zabbix_sender utility to send in some ’test value’:

zabbix_sender -z <server IP address> -p 10051 -s "New host" -k trap -o "test value"

To send in the value we use these keys:

-z - to specify Zabbix server IP address

-p - to specify Zabbix server port number (10051 by default)

-s - to specify the host (make sure to use the ’technical’ host name here, instead of the ’visible’ name)

-k - to specify the key of the item we just defined

-o - to specify the actual value to send

Attention:
Zabbix trapper process does not expand macros used in the item key in attempt to check corresponding item key existence
for targeted host.

Display

This is the result in Monitoring → Latest data:

Timestamps

If values are sent using zabbix_sender from a file with timestamps, then these timestamps will be adjusted to match server
time. For instance, if an item’s timestamp is ”10:30:50”, the current time on zabbix_sender’s machine is ”10:40:03”, and the
current time on Zabbix server’s machine is ”10:40:05”, then the item’s value will be stored in the database with a timestamp of
”10:30:52”.

Similarly, if a value is first sent to Zabbix proxy, which later sends it to Zabbix server, the timestamp will be first adjusted to match
Zabbix proxy time, and then it will be adjusted to match Zabbix server time.

14 JMX monitoring

1 Overview

JMX monitoring can be used to monitor JMX counters of a Java application.

JMX monitoring has native support in Zabbix in the form of a Zabbix daemon called ”Zabbix Java gateway”, introduced since Zabbix
2.0.

216

To retrieve the value of a particular JMX counter on a host, Zabbix server queries the Zabbix Java gateway, which in turn uses the
JMX management API to query the application of interest remotely.

For more details and setup see the Zabbix Java gateway section.

Warning:
Communication between Java gateway and the monitored JMX application should not be firewalled.

2 Enabling remote JMX monitoring for Java application

A Java application does not need any additional software installed, but it needs to be started with the command-line options
specified below to have support for remote JMX monitoring.

As a bare minimum, if you just wish to get started by monitoring a simple Java application on a local host with no security enforced,
start it with these options:

java \
-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=12345 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false \
-jar /usr/share/doc/openjdk-6-jre-headless/demo/jfc/Notepad/Notepad.jar

This makes Java listen for incoming JMX connections on port 12345, from local host only, and tells it not to require authentication
or SSL.

If you want to allow connections on another interface, set the -Djava.rmi.server.hostname parameter to the IP of that interface.

If you wish to be more stringent about security, there are many other Java options available to you. For instance, the next example
starts the application with a more versatile set of options and opens it to a wider network, not just local host.

java \
-Djava.rmi.server.hostname=192.168.3.14 \
-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=12345 \
-Dcom.sun.management.jmxremote.authenticate=true \
-Dcom.sun.management.jmxremote.password.file=/etc/java-6-openjdk/management/jmxremote.password \
-Dcom.sun.management.jmxremote.access.file=/etc/java-6-openjdk/management/jmxremote.access \
-Dcom.sun.management.jmxremote.ssl=true \
-Djavax.net.ssl.keyStore=$YOUR_KEY_STORE \
-Djavax.net.ssl.keyStorePassword=$YOUR_KEY_STORE_PASSWORD \
-Djavax.net.ssl.trustStore=$YOUR_TRUST_STORE \
-Djavax.net.ssl.trustStorePassword=$YOUR_TRUST_STORE_PASSWORD \
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true \
-jar /usr/share/doc/openjdk-6-jre-headless/demo/jfc/Notepad/Notepad.jar

Most (if not all) of these settings can be specified in /etc/java-6-openjdk/management/management.properties (or wherever that
file is on your system).

Note that if you wish to use SSL, you have to modify startup.sh script by adding -Djavax.net.ssl.* options to Java gateway,
so that it knows where to find key and trust stores.

See Monitoring and Management Using JMX for a detailed description.

3 Configuring JMX interfaces and items in Zabbix GUI

With Java gateway running, server knowing where to find it and a Java application started with support for remote JMX monitoring,
it is time to configure the interfaces and items in Zabbix GUI.

Configuring JMX interface

You begin by creating a JMX-type interface on the host of interest:

217

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

Adding JMX agent item

For each JMX counter you are interested in you add an item of type JMX agent attached to that interface. If you have configured
authentication on your Java application, then you also specify username and password.

The key in the screenshot below says jmx["java.lang:type=Memory","HeapMemoryUsage.used"]. The key consists of 2
parameters:

• object name - which represents the object name of an MBean
• attribute name - an MBean attribute name with optional composite data field names separated by dots

See below for more detail on JMX item keys.

218

219

If you wish tomonitor a Boolean counter that is either ”true” or ”false”, then you specify type of information as ”Numeric (unsigned)”
and data type as ”Boolean”. Server will store Boolean values as 1 or 0, respectively.

JMX item keys in more detail

Simple attributes

An MBean object name is nothing but a string which you define in your Java application. An attribute name, on the other hand,
can be more complex. In case an attribute returns primitive data type (an integer, a string etc.) there is nothing to worry about,
the key will look like this:

jmx[com.example:Type=Hello,weight]

In this example an object name is ”com.example:Type=Hello”, attribute name is ”weight” and probably the returned value type
should be ”Numeric (float)”.

Attributes returning composite data

It becomes more complicated when your attribute returns composite data. For example: your attribute name is ”apple” and it
returns a hash representing its parameters, like ”weight”, ”color” etc. Your key may look like this:

jmx[com.example:Type=Hello,apple.weight]

This is how an attribute name and a hash key are separated, by using a dot symbol. Same way, if an attribute returns nested
composite data the parts are separated by a dot:

jmx[com.example:Type=Hello,fruits.apple.weight]

Problem with dots

So far so good. But what if an attribute name or a hash key contains dot symbol? Here is an example:

jmx[com.example:Type=Hello,all.fruits.apple.weight]

That’s a problem. How to tell Zabbix that attribute name is ”all.fruits”, not just ”all”? How to distinguish a dot that is part of the
name from the dot that separates an attribute name and hash keys?

Before 2.0.4 Zabbix Java gateway was unable to handle such situations and users were left with UNSUPPORTED items. Since 2.0.4
this is possible, all you need to do is to escape the dots that are part of the name with a backslash:

jmx[com.example:Type=Hello,all\.fruits.apple.weight]

Same way, if your hash key contains a dot you escape it:

jmx[com.example:Type=Hello,all\.fruits.apple.total\.weight]

Other issues

A backslash character should be escaped as well:

jmx[com.example:type=Hello,c:\\documents]

If the object name or attribute name contains spaces or commas double-quote it:

jmx["com.example:Type=Hello","fruits.apple.total weight"]

This is actually all there is to it. Happy JMX monitoring!

15 ODBC monitoring

1 Overview

ODBC monitoring corresponds to the Database monitor item type in the Zabbix frontend.

ODBC is a C programming language middle-ware API for accessing database management systems (DBMS). The ODBC concept
was developed by Microsoft and later ported to other platforms.

Zabbix may query any database, which is supported by ODBC. To do that, Zabbix does not directly connect to the databases, but
uses the ODBC interface and drivers set up in ODBC. This function allows for more efficient monitoring of different databases for
multiple purposes - for example, checking specific database queues, usage statistics and so on. Zabbix supports unixODBC, which
is one of the most commonly used open source ODBC API implementations.

2 Installing unixODBC

220

The suggested way of installing unixODBC is to use the Linux operating system default package repositories. In the most popular
Linux distributions unixODBC is included in the package repository by default. If it’s not available, it can be obtained at the
unixODBC homepage: http://www.unixodbc.org/download.html.

Installing unixODBC on RedHat/Fedora based systems using the yum package manager:

shell> yum -y install unixODBC unixODBC-devel

Installing unixODBC on SUSE based systems using the zypper package manager:

zypper in unixODBC-devel

Note:
The unixODBC-devel package is needed to compile Zabbix with unixODBC support.

3 Installing unixODBC drivers

A unixODBC database driver should be installed for the database, which will be monitored. unixODBC has a list of supported
databases and drivers: http://www.unixodbc.org/drivers.html. In some Linux distributions database drivers are included in package
repositories. Installing MySQL database driver on RedHat/Fedora based systems using the yum package manager:

shell> yum install mysql-connector-odbc

Installing MySQL database driver on SUSE based systems using the zypper package manager:

zypper in MyODBC-unixODBC

4 Configuring unixODBC

ODBC configuration is done by editing the odbcinst.ini and odbc.ini files. To verify the configuration file location, type:

shell> odbcinst -j

odbcinst.ini is used to list the installed ODBC database drivers:

[mysql]
Description = ODBC for MySQL
Driver = /usr/lib/libmyodbc5.so

Parameter details:

Attribute Description

mysql Database driver name.
Description Database driver description.
Driver Database driver library location.

odbc.ini is used to define data sources:

[test]
Description = MySQL test database
Driver = mysql
Server = 127.0.0.1
User = root
Password =
Port = 3306
Database = zabbix

Parameter details:

Attribute Description

test Data source name (DSN).
Description Data source description.
Driver Database driver name - as specified in odbcinst.ini
Server Database server IP/DNS.
User Database user for connection.
Password Database user password.
Port Database connection port.
Database Database name.

221

http://www.unixodbc.org/download.html
http://www.unixodbc.org/drivers.html

To verify if ODBC connection is working successfully, a connection to database should be tested. That can be done with the isql
utility (included in the unixODBC package):

shell> isql test
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL>

5 Compiling Zabbix with ODBC support

To enable ODBC support, Zabbix should be compiled with the following flag:

--with-unixodbc[=ARG] use odbc driver against unixODBC package

Note:
See more about Zabbix installation from the source code.

6 Item configuration in Zabbix frontend

Configure a database monitoring item:

Specifically for database monitoring items you must enter:

Type Select Database monitor here.
Key Enter

db.odbc.select[unique_description,data_source_name]
The unique description will serve to identify the item in
triggers etc.
The data source name (DSN) must be set as specified in
odbc.ini.

User name Enter the database user name (optional if user is specified in
odbc.ini)

Password Enter the database user password (optional if password is
specified in odbc.ini)

222

SQL query Enter the SQL query
Type of information It is important to know what type of information will be

returned by the query, so that it is selected correctly here.
With an incorrect type of information the item will turn
unsupported.

7 Important notes

• Zabbix does not limit the query execution time. It is up to the user to choose queries that can be executed in a reasonable
amount of time.

• The Timeout parameter value from Zabbix server is used as the ODBC login timeout (note that depending on ODBC drivers
the login timeout setting might be ignored).

• The query must return one value only.
• If a query returns more than one column, only the first column is read.
• If a query returns more than one line, only the first line is read.
• The SQL command must begin with select.
• The SQL command mustn’t contain any line breaks.
• See also known issues for ODBC checks

8 Error messages

Starting from Zabbix 2.0.8 the ODBC error messages are structured into fields to provide more detailed information. Example:

Cannot execute ODBC query:[SQL_ERROR]:[42601][7][ERROR: syntax error at or near ";"; Error while executing the query]|
------------------------- --------- ----- | --- |

| | | `- Native error code `- error message. `- Record separator
| | `-SQLState
`- Zabbix message `- ODBC return code

Note that the error message length is limited to 2048 bytes, so the message can be truncated. If there is more than one ODBC
diagnostic record Zabbix tries to concatenate them as far as the length limit allows.

3 History and trends

Overview

History and trends are the two ways of storing collected data in Zabbix.

Whereas history keeps each collected value, trends keep averaged information on hourly basis and therefore are less resource-
hungry.

Keeping history

You can set for how many days history will be kept:

• in the item properties form
• when mass-updating items
• when setting up housekeeper tasks

Any older data will be removed by the housekeeper.

The general strong advice is to keep history for the smallest possible number of days and that way not to overload the database
with lots of historical values.

Instead of keeping a long history, you can keep longer data of trends. For example, you could keep history for 14 days and trends
for 5 years.

You can get a good idea of how much space is required by history versus trends data by referring to the database sizing page.

While keeping shorter history, you will still be able to review older data in graphs, as graphs will use trend values for displaying
older data.

Attention:
If history is set to ’0’, the item will update only inventory. No trigger functions will be evaluated.

Note:
As an alternative way to preserve history consider to use history export functionality of loadable modules.

223

Keeping trends

Trends is a built-in historical data reduction mechanism which stores minimum, maximum, average and the total number of values
per every hour for numeric data types.

You can set for how many days trends will be kept:

• in the item properties form
• when mass-updating items
• when setting up Housekeeper tasks

Trends usually can be kept for much longer than history. Any older data will be removed by the housekeeper.

Attention:
If trends are set to ’0’, Zabbix server does not calculate or store trends at all.

Note:
The trends are calculated and stored with the same data type as the original values. As the result the average value
calculations of unsigned data type values are rounded and the less the value interval is the less precise the result will be.
For example if item has values 0 and 1, the average value will be 0, not 0.5.
Also restarting server might result in the precision loss of unsigned data type average value calculations for the current
hour.

4 User parameters

Overview

Sometimes you may want to run an agent check that does not come predefined with Zabbix. This is where user parameters come
to help.

You may write a command that retrieves the data you need and include it in the user parameter in the agent configuration file
(’UserParameter’ configuration parameter).

A user parameter has the following syntax:

UserParameter=<key>,<command>

As you can see, a user parameter also contains a key. The key will be necessary when configuring an item. Enter a key of your
choice that will be easy to reference (it must be unique within a host). Restart the agent.

Then, when configuring an item, enter the key to reference the command from the user parameter you want executed.

User parameters are commands executed by Zabbix agent. Up to 512KB of data can be returned. Note, however, that the text
value that can be eventually stored in database is limited to 64KB on MySQL.

/bin/sh is used as a command line interpreter under UNIX operating systems. User parameters obey the agent check timeout; if
timeout is reached the forked user parameter process is terminated.

See also:

• Step-by-step tutorial on making use of user parameters
• Command execution

Examples of simple user parameters

A simple command:

UserParameter=ping,echo 1

The agent will always return ’1’ for an item with ’ping’ key.

A more complex example:

UserParameter=mysql.ping,mysqladmin -uroot ping | grep -c alive

The agent will return ’1’, if MySQL server is alive, ’0’ - otherwise.

Flexible user parameters

Flexible user parameters accept parameters with the key. This way a flexible user parameter can be the basis for creating several
items.

Flexible user parameters have the following syntax:

224

UserParameter=key[*],command

Parameter Description

Key Unique item key. The [*] defines that this key accepts parameters
within the brackets.
Parameters are given when configuring the item.

Command Command to be executed to evaluate value of the key.
For flexible user parameters only:
You may use positional references $1…$9 in the command to refer
to the respective parameter in the item key.
Zabbix parses the parameters enclosed in [] of the item key and
substitutes $1,...,$9 in the command accordingly.
$0 will be substituted by the original command (prior to expansion
of $0,...,$9) to be run.
Positional references are interpreted regardless of whether they
are enclosed between double (”) or single (’) quotes.
To use positional references unaltered, specify a double dollar sign
- for example, awk ’{print $$2}’. In this case $$2 will actually turn
into $2 when executing the command.

Attention:
Positional references with the $ sign are searched for and replaced by Zabbix agent only for flexible user parameters. For
simple user parameters, such reference processing is skipped and, therefore, any $ sign quoting is not necessary.

Attention:
Certain symbols are not allowed in user parameters by default. See UnsafeUserParameters documentation for a full list.

Example 1

Something very simple:

UserParameter=ping[*],echo $1

We may define unlimited number of items for monitoring all having format ping[something].

• ping[0] - will always return ’0’
• ping[aaa] - will always return ’aaa’

Example 2

Let’s add more sense!

UserParameter=mysql.ping[*],mysqladmin -u$1 -p$2 ping | grep -c alive

This parameter can be used for monitoring availability of MySQL database. We can pass user name and password:

mysql.ping[zabbix,our_password]

Example 3

How many lines matching a regular expression in a file?

UserParameter=wc[*],grep -c "$2" $1

This parameter can be used to calculate number of lines in a file.

wc[/etc/passwd,root]
wc[/etc/services,zabbix]

Command result

The return value of the command is standard output together with standard error.

Attention:
A text (character, log or text type of information) item will not become unsupported in case of standard error output.

User parameters that return text (character, log, text type of information) can return whitespace. In case of invalid result item will
become unsupported.

225

1 Extending Zabbix agents

This tutorial provides step-by-step instructions on how to extend the functionality of Zabbix agent with the use of a user parameter.

Step 1

Write a script or command line to retrieve required parameter.

For example, we may write the following command in order to get total number of queries executed by a MySQL server:

mysqladmin -uroot status | cut -f4 -d":" | cut -f1 -d"S"

When executed, the command returns total number of SQL queries.

Step 2

Add the command to zabbix_agentd.conf:

UserParameter=mysql.questions,mysqladmin -uroot status | cut -f4 -d":" | cut -f1 -d"S"

mysql.questions is a unique identifier. It can be any valid key identifier, for example, queries.

Test this parameter by using Zabbix agent with ”-t” flag (if running under root, however, note that the agent may have different
permissions when launched as a daemon):

zabbix_agentd -t mysql.questions

Step 3

Restart Zabbix agent.

Agent will reload configuration file.

Test this parameter by using zabbix_get utility.

Step 4

Add new item with Key=mysql.questions to the monitored host. Type of the item must be either Zabbix Agent or Zabbix Agent
(active).

Be aware that type of returned values must be set correctly on Zabbix server. Otherwise Zabbix won’t accept them.

5 Loadable modules

1 Overview

Loadable modules offer a performance-minded option for extending Zabbix functionality.

There already are ways of extending Zabbix functionality by way of:

• user parameters (agent metrics)
• external checks (agent-less monitoring)
• system.run[] Zabbix agent item.

They work very well, but have one major drawback, namely fork(). Zabbix has to fork a new process every time it handles a user
metric, which is not good for performance. It is not a big deal normally, however it could be a serious issue when monitoring
embedded systems, having a large number of monitored parameters or heavy scripts with complex logic or long startup time.

Support of loadable modules offers ways for extending Zabbix agent, server and proxy without sacrificing performance.

A loadable module is basically a shared library used by Zabbix daemon and loaded on startup. The library should contain certain
functions, so that a Zabbix process may detect that the file is indeed a module it can load and work with.

Loadable modules have a number of benefits. Great performance and ability to implement any logic are very important, but
perhaps the most important advantage is the ability to develop, use and share Zabbix modules. It contributes to trouble-free
maintenance and helps to deliver new functionality easier and independently of the Zabbix core code base.

Module licensing and distribution in binary form is governed by the GPL license (modules are linking with Zabbix in runtime and
are using Zabbix headers; currently the whole Zabbix code is licensed under GPL license). Binary compatibility is not guaranteed
by Zabbix.

Module API stability is guaranteed during one Zabbix LTS (Long Term Support) release cycle. Stability of Zabbix API is not guaranteed
(technically it is possible to call Zabbix internal functions from a module, but there is no guarantee that such modules will work).

2 Module API

226

http://www.zabbix.com/life_cycle_and_release_policy

In order for a shared library to be treated as a Zabbix module, it should implement and export several functions. There are currently
six functions in the Zabbix module API, only one of which is mandatory and the other five are optional.

2.1 Mandatory interface

The only mandatory function is zbx_module_api_version():

int zbx_module_api_version(void);

This function should return the API version implemented by this module and in order for the module to be loaded this version must
match module API version supported by Zabbix. Version of module API supported by Zabbix is ZBX_MODULE_API_VERSION. So this
function should return this constant. Old constant ZBX_MODULE_API_VERSION_ONE used for this purpose is now defined to equal
ZBX_MODULE_API_VERSION to preserve source compatibility, but it’s usage is not recommended.

2.2 Optional interface

The optional functions are zbx_module_init(), zbx_module_item_list(), zbx_module_item_timeout(), zbx_module_history_write_cbs()
and zbx_module_uninit():

int zbx_module_init(void);

This function should perform the necessary initialization for the module (if any). If successful, it should return ZBX_MODULE_OK.
Otherwise, it should return ZBX_MODULE_FAIL. In the latter case Zabbix will not start.

ZBX_METRIC *zbx_module_item_list(void);

This function should return a list of items supported by the module. Each item is defined in a ZBX_METRIC structure, see the section
below for details. The list is terminated by a ZBX_METRIC structure with ”key” field of NULL.

void zbx_module_item_timeout(int timeout);

If module exports zbx_module_item_list() then this function is used by Zabbix to specify the timeout settings in Zabbix configu-
ration file that the item checks implemented by the module should obey. Here, the ”timeout” parameter is in seconds.

ZBX_HISTORY_WRITE_CBS zbx_module_history_write_cbs(void);

This function should return callback functions Zabbix server or proxy will use to export history of different data types. Callback
functions are provided as fields of ZBX_HISTORY_WRITE_CBS structure, fields can be NULL if module is not interested in the history
of certain type.

int zbx_module_uninit(void);

This function should perform the necessary uninitialization (if any) like freeing allocated resources, closing file descriptors, etc.

All functions are called once on Zabbix startup when the module is loaded, with the exception of zbx_module_uninit(), which is
called once on Zabbix shutdown when the module is unloaded.

2.3 Defining items

Each item is defined in a ZBX_METRIC structure:

typedef struct
{

char *key;
unsigned flags;
int (*function)();
char *test_param;

}
ZBX_METRIC;

Here, key is the item key (e.g., ”dummy.random”), flags is either CF_HAVEPARAMS or 0 (depending on whether the item accepts
parameters or not), function is a C function that implements the item (e.g., ”zbx_module_dummy_random”), and test_param is
the parameter list to be used when Zabbix agent is started with the ”-p” flag (e.g., ”1,1000”, can be NULL). An example definition
may look like this:

static ZBX_METRIC keys[] =
{

{ "dummy.random", CF_HAVEPARAMS, zbx_module_dummy_random, "1,1000" },
{ NULL }

}

Each function that implements an item should accept two pointer parameters, the first one of type AGENT_REQUEST and the
second one of type AGENT_RESULT:

227

int zbx_module_dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result)
{

...

SET_UI64_RESULT(result, from + rand() % (to - from + 1));

return SYSINFO_RET_OK;
}

These functions should return SYSINFO_RET_OK, if the item value was successfully obtained. Otherwise, they should return SYS-
INFO_RET_FAIL. See example ”dummy” module below for details on how to obtain information from AGENT_REQUEST and how to
set information in AGENT_RESULT.

2.4 Providing history export callbacks

Module can specify functions to export history data by type: Numeric (float), Numeric (unsigned), Character, Text and Log:

typedef struct
{

void (*history_float_cb)(const ZBX_HISTORY_FLOAT *history, int history_num);
void (*history_integer_cb)(const ZBX_HISTORY_INTEGER *history, int history_num);
void (*history_string_cb)(const ZBX_HISTORY_STRING *history, int history_num);
void (*history_text_cb)(const ZBX_HISTORY_TEXT *history, int history_num);
void (*history_log_cb)(const ZBX_HISTORY_LOG *history, int history_num);

}
ZBX_HISTORY_WRITE_CBS;

Each of them should take ”history” array of ”history_num” elements as arguments. Depending on history data type to be exported,
”history” is an array of the following structures, respectively:

typedef struct
{

zbx_uint64_t itemid;
int clock;
int ns;
double value;

}
ZBX_HISTORY_FLOAT;

typedef struct
{

zbx_uint64_t itemid;
int clock;
int ns;
zbx_uint64_t value;

}
ZBX_HISTORY_INTEGER;

typedef struct
{

zbx_uint64_t itemid;
int clock;
int ns;
const char *value;

}
ZBX_HISTORY_STRING;

typedef struct
{

zbx_uint64_t itemid;
int clock;
int ns;
const char *value;

}
ZBX_HISTORY_TEXT;

228

typedef struct
{

zbx_uint64_t itemid;
int clock;
int ns;
const char *value;
const char *source;
int timestamp;
int logeventid;
int severity;

}
ZBX_HISTORY_LOG;

Callbacks will be used by Zabbix server or proxy history syncer processes in the end of history sync procedure after data is written
into Zabbix database and saved in value cache.

Note:
Only raw values are available for export via proxy modules. (Custom multipliers won’t be applied, deltas won’t be calcu-
lated, etc.)

2.5 Building modules

Modules are currently meant to be built inside Zabbix source tree, because the module API depends on some data structures that
are defined in Zabbix headers.

Themost important header for loadable modules is include/module.h, which defines these data structures. Another useful header
is include/sysinc.h, which performs the inclusion of the necessary system headers, which itself helps include/module.h to work
properly.

In order for include/module.h and include/sysinc.h to be included, the ./configure command (without arguments) should first be
run in the root of Zabbix source tree. This will create include/config.h file, which include/sysinc.h relies upon. (If you obtained
Zabbix source code as a Subversion repository checkout, the ./configure script does not exist yet and the ./bootstrap.sh command
should first be run to generate it.)

With this information in mind, everything is ready for the module to be built. The module should include sysinc.h andmodule.h,
and the build script should make sure that these two files are in the include path. See example ”dummy” module below for details.

Another useful header is include/log.h, which defines zabbix_log() function, which can be used for logging and debugging
purposes.

3 Configuration parameters

Zabbix agent, server and proxy support two parameters to deal with modules:

• LoadModulePath – full path to the location of loadable modules
• LoadModule – module(s) to load at startup. The modules must be located in a directory specified by LoadModulePath. It is
allowed to include multiple LoadModule parameters.

For example, to extend Zabbix agent we could add the following parameters:

LoadModulePath=/usr/local/lib/zabbix/agent/
LoadModule=mariadb.so
LoadModule=apache.so
LoadModule=kernel.so
LoadModule=dummy.so

Upon agent startup it will load the mariadb.so, apache.so, kernel.so and dummy.so modules from the /usr/local/lib/zabbix/agent
directory. It will fail if a module is missing, in case of bad permissions or if a shared library is not a Zabbix module.

4 Frontend configuration

Loadable modules are supported by Zabbix agent, server and proxy. Therefore, item type in Zabbix frontend depends on where the
module is loaded. If the module is loaded into the agent, then the item type should be ”Zabbix agent” or ”Zabbix agent (active)”.
If the module is loaded into server or proxy, then the item type should be ”Simple check”.

History export through Zabbix modules does not need any frontend configuration. If the module is successfully loaded by server or
proxy and provides zbx_module_history_write_cbs() function which returns at least one non-NULL callback function then history
export will be enabled automatically.

5 Dummy module

229

Zabbix includes a sample module written in C language. The module is located under src/modules/dummy:

alex@alex:~trunk/src/modules/dummy$ ls -l
-rw-rw-r-- 1 alex alex 9019 Apr 24 17:54 dummy.c
-rw-rw-r-- 1 alex alex 67 Apr 24 17:54 Makefile
-rw-rw-r-- 1 alex alex 245 Apr 24 17:54 README

The module is well documented, it can be used as a template for your own modules.

After ./configure has been run in the root of Zabbix source tree as described above, just run make in order to build dummy.so.

/*
** Zabbix
** Copyright (C) 2001-2016 Zabbix SIA
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
**/

####include "sysinc.h"
####include "module.h"

/* the variable keeps timeout setting for item processing */
static int item_timeout = 0;

/* module SHOULD define internal functions as static and use a naming pattern different from Zabbix internal */
/* symbols (zbx_*) and loadable module API functions (zbx_module_*) to avoid conflicts */
static int dummy_ping(AGENT_REQUEST *request, AGENT_RESULT *result);
static int dummy_echo(AGENT_REQUEST *request, AGENT_RESULT *result);
static int dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result);

static ZBX_METRIC keys[] =
/* KEY FLAG FUNCTION TEST PARAMETERS */
{

{"dummy.ping", 0, dummy_ping, NULL},
{"dummy.echo", CF_HAVEPARAMS, dummy_echo, "a message"},
{"dummy.random", CF_HAVEPARAMS, dummy_random, "1,1000"},
{NULL}

};

/**
* *
* Function: zbx_module_api_version *
* *
* Purpose: returns version number of the module interface *
* *
* Return value: ZBX_MODULE_API_VERSION - version of module.h module is *
* compiled with, in order to load module successfully Zabbix *
* MUST be compiled with the same version of this header file *
* *
**/
int zbx_module_api_version(void)
{

return ZBX_MODULE_API_VERSION;

230

}

/**
* *
* Function: zbx_module_item_timeout *
* *
* Purpose: set timeout value for processing of items *
* *
* Parameters: timeout - timeout in seconds, 0 - no timeout set *
* *
**/
void zbx_module_item_timeout(int timeout)
{

item_timeout = timeout;
}

/**
* *
* Function: zbx_module_item_list *
* *
* Purpose: returns list of item keys supported by the module *
* *
* Return value: list of item keys *
* *
**/
ZBX_METRIC *zbx_module_item_list(void)
{

return keys;
}

static int dummy_ping(AGENT_REQUEST *request, AGENT_RESULT *result)
{

SET_UI64_RESULT(result, 1);

return SYSINFO_RET_OK;
}

static int dummy_echo(AGENT_REQUEST *request, AGENT_RESULT *result)
{

char *param;

if (1 != request→nparam)
{

/* set optional error message */
SET_MSG_RESULT(result, strdup("Invalid number of parameters."));
return SYSINFO_RET_FAIL;

}

param = get_rparam(request, 0);

SET_STR_RESULT(result, strdup(param));

return SYSINFO_RET_OK;
}

/**
* *
* Function: dummy_random *
* *
* Purpose: a main entry point for processing of an item *
* *
* Parameters: request - structure that contains item key and parameters *

231

* request→key - item key without parameters *
* request→nparam - number of parameters *
* request→timeout - processing should not take longer than *
* this number of seconds *
* request→params[N-1] - pointers to item key parameters *
* *
* result - structure that will contain result *
* *
* Return value: SYSINFO_RET_FAIL - function failed, item will be marked *
* as not supported by zabbix *
* SYSINFO_RET_OK - success *
* *
* Comment: get_rparam(request, N-1) can be used to get a pointer to the Nth *
* parameter starting from 0 (first parameter). Make sure it exists *
* by checking value of request→nparam. *
* *
**/
static int dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result)
{

char *param1, *param2;
int from, to;

if (2 != request→nparam)
{

/* set optional error message */
SET_MSG_RESULT(result, strdup("Invalid number of parameters."));
return SYSINFO_RET_FAIL;

}

param1 = get_rparam(request, 0);
param2 = get_rparam(request, 1);

/* there is no strict validation of parameters for simplicity sake */
from = atoi(param1);
to = atoi(param2);

if (from > to)
{

SET_MSG_RESULT(result, strdup("Invalid range specified."));
return SYSINFO_RET_FAIL;

}

SET_UI64_RESULT(result, from + rand() % (to - from + 1));

return SYSINFO_RET_OK;
}

/**
* *
* Function: zbx_module_init *
* *
* Purpose: the function is called on agent startup *
* It should be used to call any initialization routines *
* *
* Return value: ZBX_MODULE_OK - success *
* ZBX_MODULE_FAIL - module initialization failed *
* *
* Comment: the module won't be loaded in case of ZBX_MODULE_FAIL *
* *
**/
int zbx_module_init(void)
{

232

/* initialization for dummy.random */
srand(time(NULL));

return ZBX_MODULE_OK;
}

/**
* *
* Function: zbx_module_uninit *
* *
* Purpose: the function is called on agent shutdown *
* It should be used to cleanup used resources if there are any *
* *
* Return value: ZBX_MODULE_OK - success *
* ZBX_MODULE_FAIL - function failed *
* *
**/
int zbx_module_uninit(void)
{

return ZBX_MODULE_OK;
}

/**
* *
* Functions: dummy_history_float_cb *
* dummy_history_integer_cb *
* dummy_history_string_cb *
* dummy_history_text_cb *
* dummy_history_log_cb *
* *
* Purpose: callback functions for storing historical data of types float, *
* integer, string, text and log respectively in external storage *
* *
* Parameters: history - array of historical data *
* history_num - number of elements in history array *
* *
**/
static void dummy_history_float_cb(const ZBX_HISTORY_FLOAT *history, int history_num)
{

int i;

for (i = 0; i < history_num; i++)
{

/* do something with history[i].itemid, history[i].clock, history[i].ns, history[i].value, ... */
}

}

static void dummy_history_integer_cb(const ZBX_HISTORY_INTEGER *history, int history_num)
{

int i;

for (i = 0; i < history_num; i++)
{

/* do something with history[i].itemid, history[i].clock, history[i].ns, history[i].value, ... */
}

}

static void dummy_history_string_cb(const ZBX_HISTORY_STRING *history, int history_num)
{

int i;

for (i = 0; i < history_num; i++)

233

{
/* do something with history[i].itemid, history[i].clock, history[i].ns, history[i].value, ... */

}
}

static void dummy_history_text_cb(const ZBX_HISTORY_TEXT *history, int history_num)
{

int i;

for (i = 0; i < history_num; i++)
{

/* do something with history[i].itemid, history[i].clock, history[i].ns, history[i].value, ... */
}

}

static void dummy_history_log_cb(const ZBX_HISTORY_LOG *history, int history_num)
{

int i;

for (i = 0; i < history_num; i++)
{

/* do something with history[i].itemid, history[i].clock, history[i].ns, history[i].value, ... */
}

}

/**
* *
* Function: zbx_module_history_write_cbs *
* *
* Purpose: returns a set of module functions Zabbix will call to export *
* different types of historical data *
* *
* Return value: structure with callback function pointers (can be NULL if *
* module is not interested in data of certain types) *
* *
**/
ZBX_HISTORY_WRITE_CBS zbx_module_history_write_cbs(void)
{

static ZBX_HISTORY_WRITE_CBS dummy_callbacks =
{

dummy_history_float_cb,
dummy_history_integer_cb,
dummy_history_string_cb,
dummy_history_text_cb,
dummy_history_log_cb,

};

return dummy_callbacks;
}

The module exports three new items:

• dummy.ping - always returns ’1’
• dummy.echo[param1] - returns the first parameter as it is, for example, dummy.echo[ABC] will return ABC
• dummy.random[param1, param2] - returns a random number within the range of param1-param2, for example,
dummy.random[1,1000000]

6 Limitations

Support of loadable modules is implemented for the Unix platform only. It means that it does not work for Windows agents.

In some cases a module may need to read module-related configuration parameters from zabbix_agentd.conf. It is not supported
currently. If you need your module to use some configuration parameters you should probably implement parsing of a module-
specific configuration file.

234

6 Windows performance counters

Overview

You can effectively monitor Windows performance counters using the perf_counter[] key.

For example:

perf_counter["\Processor(0)\Interrupts/sec"]

or

perf_counter["\Processor(0)\Interrupts/sec", 10]

For more information on using this key, see Windows-specific item keys.

In order to get a full list of performance counters available for monitoring, you may run:

typeperf -qx

Numeric representation

As the naming of performance counters may differ on different Windows servers, depending on local settings, it introduces a certain
problem when creating a template for monitoring several Windows machines having different locales.

At the same time every performance counter can also be referred to by its numeric form, which is unique and exactly the same
regardless of language settings, so you might use the numeric representation instead of strings.

To find out the numeric equivalents, run regedit, then findHKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\009.

The registry entry contains information like this:

1
1847
2
System
4
Memory
6
% Processor Time
10
File Read Operations/sec
12
File Write Operations/sec
14
File Control Operations/sec
16
File Read Bytes/sec
18
File Write Bytes/sec
....

Here you can find the corresponding numbers for each string part of the performance counter, like in ’\System\% Processor Time’:

System → 2
% Processor Time → 6

Then you can use these numbers to represent the path in numbers:

\2\6

Performance counter parameters

You can deploy some PerfCounter parameters for the monitoring of Windows performance counters.

For example, you can add these to the Zabbix agent configuration file:

PerfCounter=UserPerfCounter1,"\Memory\Page Reads/sec",30
or
PerfCounter=UserPerfCounter2,"\4\24",30

With such parameters in place, you can then simply use UserPerfCounter1 or UserPerfCounter2 as the keys for creating the respec-
tive items.

235

Remember to restart Zabbix agent after making changes to the configuration file.

Troubleshooting

Sometimes Zabbix agent cannot retrieve performance counter values in Windows 2000-based systems, because the pdh.dll file is
outdated. It shows up as failure messages in Zabbix agent and server log files. In this case pdh.dll should be updated to a newer
5.0.2195.2668 version.

7 Mass update

Overview

Sometimes you may want to change some attribute for a number of items at once. Instead of opening each individual item for
editing, you may use the mass update function for that.

Using mass update

To mass-update some items, do the following:

• Mark the checkboxes of the items to update in the list
• Click on Mass update below the list
• Mark the checkboxes of the attributes to update
• Enter new values for the attributes and click on Update

236

237

Replace applications will remove the item from any existing applications and replace those with the one(s) specified in this field.

Add new or existing applications allows to specify additional applications from the existing ones or enter completely new applica-
tions for the items.

Both these fields are auto-complete - starting to type in them offers a dropdown of matching applications. If the application is new,
it also appears in the dropdown and it is indicated by (new) after the string. Just scroll down to select.

8 Value mapping

Overview

For a more ”human” representation of received values, you can use value maps that contain the mapping between numeric values
and string representations.

Value mappings can be used in both the Zabbix frontend and notifications sent by email/SMS/jabber etc.

For example, an item which has value ’0’ or ’1’ can use value mapping to represent the values in a human-readable form:

• ’0’ => ’Not Available’
• ’1’ => ’Available’

Or, a backup related value map could be:

• ’F’ → ’Full’
• ’D’ → ’Differential’
• ’I’ → ’Incremental’

Thus, when configuring items you can use a value map to ”humanize” the way an item value will be displayed. To do that, you
refer to the name of a previously defined value map in the Show value field.

Note:
Value mapping can be used with items having Numeric (unsigned), Numeric (float) and Character type of information.

Value mappings, starting with Zabbix 3.0, can be exported/imported, either separately, or with the respective template or host.

Configuration

To define a value map:

• Go to: Administration → General
• Select Value mapping from the dropdown
• Click on Create value map (or on the name of an existing map)

238

Parameters of a value map:

Parameter Description

Name Unique name of a set of value mappings.
Mappings Individual mappings - pairs of numeric values and their string

representations.

To add a new individual mapping, click on Add.

How this works

For example, one of the predefined agent items ’Ping to the server (TCP)’ uses an existing value map called ’Service state’ to
display its values.

239

In the item configuration form you can see a reference to this value map in the Show value field:

So in Monitoring → Latest data the mapping is put to use to display ’Up’ (with the raw value in parentheses).

In the Latest data section displayed values are shortened to 20 symbols. If value mapping is used, this shortening is not applied
to the mapped value, but only to the raw value separately (displayed in parenthesis).

Note:
A value being displayed in a human-readable form is also easier to understand when receiving notifications.

Without a predefined value map you would only get this:

So in this case you would either have to guess what the ’1’ stands for or do a search of documentation to find out.

9 Applications

Overview

Applications are used to group items in logical groups.

For example, the MySQL Server application can hold all items related to the MySQL server: availability of MySQL, disk space,
processor load, transactions per second, number of slow queries, etc.

Applications are also used for grouping web scenarios.

If you are using applications, then in Monitoring → Latest data you will see items and web scenarios grouped under their respective
applications.

Configuration

To work with applications you must first create them and then link items or web scenarios to them.

240

To create an application, do the following:

• Go to Configuration → Hosts or Templates
• Click on Applications next to the required host or template
• Click on Create application
• Enter the application name and click on Add to save it

You can also create a new application directly in the item properties form.

Items are linked to applications in the item properties form. Select one or more applications the item will belong to.

Web scenarios are linked to applications in the web scenario definition form. Select the application the scenario will belong to.

10 Queue

Overview

The queue displays items that are waiting for a refresh. The queue is just a logical representation of data. There is no IPC queue
or any other queue mechanism in Zabbix.

Items monitored by proxies are also included in the queue - they will be counted as queued for the proxy history data update
period.

Only items with scheduled refresh times are displayed in the queue. This means that the following item types are excluded from
the queue:

• log, logrt and event log active Zabbix agent items
• SNMP trap items
• trapper items
• web monitoring items

Statistics shown by the queue is a good indicator of the performance of Zabbix server.

The queue is retrieved directly from Zabbix server using JSON protocol. The information is available only if Zabbix server is running.

Reading the queue

To read the queue, go to Administration → Queue. Overview should be selected in the dropdown to the right.

241

The picture here is generally ”green” so we may assume that the server is doing fine.

The queue shows one item waiting for 5 seconds and five for 30 seconds. It would be great to know what items these are.

To do just that, select Details in the dropdown in the upper right corner. Now you can see a list of those delayed items.

With these details provided it may be possible to find out why these items might be delayed.

With one or two delayed items there perhaps is no cause for alarm. They might get updated in a second. However, if you see a
bunch of items getting delayed for too long, there might be a more serious problem.

Is the agent down?

Queue item

A special internal item zabbix[queue,<from>,<to>] can be used to monitor the health of the queue in Zabbix. It will return the
number of items delayed by the set amount of time. For more information see Internal items.

11 Value cache

Overview

242

To make the calculation of trigger expressions, calculated/aggregate items and some macros much faster, since Zabbix 2.2 a value
cache option is supported by the Zabbix server.

This in-memory cache can be used for accessing historical data, instead of making direct SQL calls to the database. If historical
values are not present in the cache, the missing values are requested from the database and the cache updated accordingly.

To enable the value cache functionality, an optional ValueCacheSize parameter is supported by the Zabbix server configuration
file.

Two internal items are supported formonitoring the value cache: zabbix[vcache,buffer,<mode>] and zabbix[vcache,cache,<parameter>].
See more details with internal items.

3 Triggers

Overview

Triggers are logical expressions that ”evaluate” data gathered by items and represent the current system state.

While items are used to gather system data, it is highly impractical to follow these data all the time waiting for a condition that is
alarming or deserves attention. The job of ”evaluating” data can be left to trigger expressions.

Trigger expressions allow to define a threshold of what state of data is ”acceptable”. Therefore, should the incoming data surpass
the acceptable state, a trigger is ”fired” - or changes status to PROBLEM.

A trigger may have the following status:

VALUE DESCRIPTION

OK This is a normal trigger state. Called FALSE in older Zabbix versions.
PROBLEM Normally means that something happened. For example, the processor load is too

high. Called TRUE in older Zabbix versions.

Trigger status (the expression) is recalculated every time Zabbix server receives a new value that is part of the expression.

Triggers are evaluated based on history data only; trend data are never considered.

If time-based functions (nodata(), date(), dayofmonth(), dayofweek(), time(), now()) are used in the expression, the trigger
is recalculated every 30 seconds by a Zabbix timer process. If both time-based and non-time-based functions are used in an
expression, it is recalculated when a new value is received and every 30 seconds.

You can build trigger expressions with different degrees of complexity.

1 Configuring a trigger

Overview

To configure a trigger, do the following:

• Go to: Configuration → Hosts
• Click on Triggers in the row of the host
• Click on Create trigger to the right (or on the trigger name to edit an existing trigger)
• Enter parameters of the trigger in the form

Configuration

The Trigger tab contains all the essential trigger attributes.

243

244

Parameter Description

Name Trigger name.
The name may contain the supported macros: {HOST.HOST},
{HOST.NAME}, {HOST.CONN}, {HOST.DNS}, {HOST.IP},
{ITEM.VALUE}, {ITEM.LASTVALUE} and {$MACRO}.
$1, $2...$9 macros can be used to refer to the first, second...ninth
constant of the expression.
Note: $1-$9 macros will resolve correctly if referring to constants in
relatively simple, straightforward expressions. For example, the
name ”Processor load above $1 on {HOST.NAME}” will
automatically change to ”Processor load above 5 on New host” if
the expression is {New
host:system.cpu.load[percpu,avg1].last()}>5

Severity Set the required trigger severity by clicking the buttons.
Problem expression Logical expression used to define the conditions of a problem.
OK event generation OK event generation options:

Expression - OK events are generated based on the same
expression as problem events;
Recovery expression - OK events are generated if the problem
expression evaluates to FALSE and the recovery expression
evaluates to TRUE;
None - in this case the trigger will never return to an OK state on
its own.
Supported since Zabbix 3.2.0.

Recovery expression Logical expression used to define the conditions when the problem
is resolved.
Recovery expression is evaluated only after the problem expression
evaluates to FALSE. It is not possible to resolve a problem by
recovery expression if the problem condition still persists.
This field is optional and only available if ’Recovery expression’ is
selected for OK event generation.
Supported since Zabbix 3.2.0.

PROBLEM event generation mode Mode for generating problem events:
Single - a single event is generated when a trigger goes into the
’Problem’ state for the first time;
Multiple - an event is generated upon every ’Problem’ evaluation
of the trigger.

OK event closes Select if OK event closes:
All problems - all problems of this trigger
All problems if tag values match - only those trigger problems
with matching event tag values
Supported since Zabbix 3.2.0.

Tag for matching Enter event tag name to use for event correlation.
This field is displayed if ’All problems if tag values match’ is
selected for the OK event closes property and is mandatory in this
case.
User macros and user macro context is supported since Zabbix
3.2.2. Low-level discovery macros can be used inside user macro
context.
Supported since Zabbix 3.2.0.

245

Parameter Description

Tags Set custom tags to mark trigger events.
Event tags can be used for event correlation, in action conditions
and will also be seen in Monitoring → Problems.
Tags are a pair of tag name and value. You can use only the name
or pair it with a value.
Both tag names and tag values may include low-level discovery
macros and macro functions:
{{ITEM.VALUE}.regsub(pattern, output)},
{{ITEM.VALUE}.iregsub(pattern, output)}. If the total
length of expanded value exceeds 255, it will be cut to 255
characters.
User macros and user macro context is supported since Zabbix
3.2.2. Low-level discovery macros can be used inside user macro
context.
Note that in Zabbix 3.2.0, 3.2.1 it is not allowed to use a forward
slash in the tag name.
Event tags are supported since Zabbix 3.2.0.

Allow manual close Check to allow manual closing of problem events generated by this
trigger. Manual closing is possible when acknowledging problem
events.
This field is available if event acknowledgement is activated in
Administration → General.
Supported since Zabbix 3.2.0.

URL If not empty, the URL entered here is available as a link when
clicking on the trigger name in Monitoring → Triggers.
Macros may be used in the trigger URL field - {TRIGGER.ID},
several {HOST.*} macros (since Zabbix 3.0.0) and user macros
(since Zabbix 3.0.0).

Description Text field used to provide more information about this trigger. May
contain instructions for fixing specific problem, contact detail of
responsible staff, etc.
Starting with Zabbix 2.2, the description may contain the same set
of macros as trigger name.

Enabled Unchecking this box will disable the trigger if required.

The Dependencies tab contains all the dependencies of the trigger.

Click on Add to add a new dependency.

Note:
You can also configure a trigger by opening an existing one, pressing the Clone button and then saving under a different
name.

2 Trigger expression

Overview

The expressions used in triggers are very flexible. You can use them to create complex logical tests regarding monitored statistics.

A simple useful expression might look like:

{<server>:<key>.<function>(<parameter>)}<operator><constant>

Functions

Trigger functions allow to reference the collected values, current time and other factors.

A complete list of supported functions is available.

Function parameters

Most of numeric functions accept the number of seconds as a parameter.

You may use the prefix # to specify that a parameter has a different meaning:

246

FUNCTION CALL MEANING

sum(600) Sum of all values in no more than the latest 600 seconds
sum(#5) Sum of all values in no more than the last 5 values

The function last uses a different meaning for values when prefixed with the hash mark - it makes it choose the n-th previous
value, so given the values 3, 7, 2, 6, 5 (from most recent to least recent), last(#2) would return 7 and last(#5) would return 5.

Several functions support an additional, second time_shift parameter. This parameter allows to reference data from a period
of time in the past. For example, avg(1h,1d) will return the average value for an hour one day ago.

You can use the supported unit symbols in trigger expressions, for example ’5m’ (minutes) instead of ’300’ seconds or ’1d’ (day)
instead of ’86400’ seconds. ’1K’ will stand for ’1024’ bytes.

Operators

The following operators are supported for triggers (in descending priority of execution):

PRIORITYOPERATORDEFINITIONNotes for unknown values

1 - Unary
minus

-Unknown → Unknown

2 not Logical
NOT

not Unknown → Unknown

3 * Multiplication0 * Unknown → Unknown
(yes, Unknown, not 0 - to not lose
Unknown in arithmetic operations)
1.2 * Unknown → Unknown

/ Division Unknown / 0 → error
Unknown / 1.2 → Unknown
0.0 / Unknown → Unknown

4 + Arithmetical
plus

1.2 + Unknown → Unknown

- Arithmetical
minus

1.2 - Unknown → Unknown

5 < Less
than.
The op-
erator
is
defined
as:
A<B ⇔
(A<=B-
0.000001)

1.2 < Unknown → Unknown

<= Less
than or
equal
to.

Unknown <= Unknown → Unknown

> More
than.
The op-
erator
is
defined
as:
A>B ⇔
(A>=B+0.000001)

>= More
than or
equal
to.

247

PRIORITYOPERATORDEFINITIONNotes for unknown values

6 = Is
equal.
The op-
erator
is
defined
as:
A=B ⇔
(A>B-
0.000001)
and
(A<B+0.000001)

<> Not
equal.
The op-
erator
is
defined
as:
A<>B
⇔
(A<=B-
0.000001)
or
(A>=B+0.000001)

7 and Logical
AND

0 and Unknown → 0
1 and Unknown → Unknown
Unknown and Unknown → Unknown

8 or Logical
OR

1 or Unknown → 1
0 or Unknown → Unknown
Unknown or Unknown → Unknown

not, and and or operators are case-sensitive and must be in lowercase. They also must be surrounded by spaces or parentheses.

All operators, except unary - and not, have left-to-right associativity. Unary - and not are non-associative (meaning -(-1) and not
(not 1) should be used instead of --1 and not not 1).

Evaluation result:

• <, <=, >, >=, =, <> operators shall yield ’1’ in the trigger expression if the specified relation is true and ’0’ if it is false. If
at least one operand is Unknown the result is Unknown;

• and for known operands shall yield ’1’ if both of its operands compare unequal to ’0’; otherwise, it yields ’0’; for unknown
operands and yields ’0’ only if one operand compares equal to ’0’; otherwise, it yields ’Unknown’;

• or for known operands shall yield ’1’ if either of its operands compare unequal to ’0’; otherwise, it yields ’0’; for unknown
operands or yields ’1’ only if one operand compares unequal to ’0’; otherwise, it yields ’Unknown’;

• The result of the logical negation operator not for a known operand is ’0’ if the value of its operand compares unequal to
’0’; ’1’ if the value of its operand compares equal to ’0’. For unknown operand not yields ’Unknown’.

Value caching

Values required for trigger evaluation are cached by Zabbix server. Because of this trigger evaluation causes a higher database
load for some time after the server restarts. The value cache is not cleared when item history values are removed (either manually
or by housekeeper), so the server will use the cached values until they are older than the time periods defined in trigger functions
or server is restarted.

Examples of triggers

Example 1

Processor load is too high on www.zabbix.com

{www.zabbix.com:system.cpu.load[all,avg1].last()}>5

’www.zabbix.com:system.cpu.load[all,avg1]’ gives a short name of the monitored parameter. It specifies that the server is
’www.zabbix.com’ and the key being monitored is ’system.cpu.load[all,avg1]’. By using the function ’last()’, we are referring to

248

the most recent value. Finally, ’>5’ means that the trigger is in the PROBLEM state whenever the most recent processor load
measurement from www.zabbix.com is greater than 5.

Example 2

www.zabbix.com is overloaded

{www.zabbix.com:system.cpu.load[all,avg1].last()}>5 or {www.zabbix.com:system.cpu.load[all,avg1].min(10m)}>2

The expression is true when either the current processor load is more than 5 or the processor load was more than 2 during last 10
minutes.

Example 3

/etc/passwd has been changed

Use of function diff:

{www.zabbix.com:vfs.file.cksum[/etc/passwd].diff()}=1

The expression is true when the previous value of checksum of /etc/passwd differs from the most recent one.

Similar expressions could be useful to monitor changes in important files, such as /etc/passwd, /etc/inetd.conf, /kernel, etc.

Example 4

Someone is downloading a large file from the Internet

Use of function min:

{www.zabbix.com:net.if.in[eth0,bytes].min(5m)}>100K

The expression is true when number of received bytes on eth0 is more than 100 KB within last 5 minutes.

Example 5

Both nodes of clustered SMTP server are down

Note use of two different hosts in one expression:

{smtp1.zabbix.com:net.tcp.service[smtp].last()}=0 and {smtp2.zabbix.com:net.tcp.service[smtp].last()}=0

The expression is true when both SMTP servers are down on both smtp1.zabbix.com and smtp2.zabbix.com.

Example 6

Zabbix agent needs to be upgraded

Use of function str():

{zabbix.zabbix.com:agent.version.str("beta8")}=1

The expression is true if Zabbix agent has version beta8 (presumably 1.0beta8).

Example 7

Server is unreachable

{zabbix.zabbix.com:icmpping.count(30m,0)}>5

The expression is true if host ”zabbix.zabbix.com” is unreachable more than 5 times in the last 30 minutes.

Example 8

No heartbeats within last 3 minutes

Use of function nodata():

{zabbix.zabbix.com:tick.nodata(3m)}=1

To make use of this trigger, ’tick’ must be defined as a Zabbix trapper item. The host should periodically send data for this item
using zabbix_sender. If no data is received within 180 seconds, the trigger value becomes PROBLEM.

Note that ’nodata’ can be used for any item type.

Example 9

CPU activity at night time

Use of function time():

{zabbix:system.cpu.load[all,avg1].min(5m)}>2 and {zabbix:system.cpu.load[all,avg1].time()}>000000 and {zabbix:system.cpu.load[all,avg1].time()}<060000

249

The trigger may change its status to true, only at night (00:00-06:00) time.

Example 10

Check if client local time is in sync with Zabbix server time

Use of function fuzzytime():

{MySQL_DB:system.localtime.fuzzytime(10)}=0

The trigger will change to the problem state in case when local time on server MySQL_DB and Zabbix server differs by more than
10 seconds.

Example 11

Comparing average load today with average load of the same time yesterday (using a second time_shift parameter).

{server:system.cpu.load.avg(1h)}/{server:system.cpu.load.avg(1h,1d)}>2

This expression will fire if the average load of the last hour tops the average load of the same hour yesterday more than two times.

Example 12

Using the value of another item to get a trigger threshold:

{Template PfSense:hrStorageFree[{#SNMPVALUE}].last()}<{Template PfSense:hrStorageSize[{#SNMPVALUE}].last()}*0.1

The trigger will fire if the free storage drops below 10 percent.

Example 13

Using evaluation result to get the number of triggers over a threshold:

({server1:system.cpu.load[all,avg1].last()}>5) + ({server2:system.cpu.load[all,avg1].last()}>5) + ({server3:system.cpu.load[all,avg1].last()}>5)>=2

The trigger will fire if at least two of the triggers in the expression are over 5.

Hysteresis

Sometimes we need an interval between an OK and Problem states, rather than a simple threshold. For example, we would like to
define a trigger which becomes Problem when server room temperature goes above 20C and we want it to stay in that state until
the temperature drops below 15C.

In order to do this, we first define the trigger expression for the problem event. Then select ’Recovery expression’ for OK event
generation and enter a recovery expression for the OK event.

Note that the recovery expression will be evaluated only when the problem event is resolved first. It is not possible to resolve a
problem by recovery expression if the problem condition still persists.

Example 1

Temperature in server room is too high.

Problem expression:

{server:temp.last()}>20

Recovery expression:

{server:temp.last()}<=15

Example 2

Free disk space is too low.

Problem expression: it is less than 10GB for last 5 minutes

{server:vfs.fs.size[/,free].max(5m)}<10G

Recovery expression: it is more than 40GB for last 10 minutes

{server:vfs.fs.size[/,free].min(10m)}>40G

Expressions with unsupported items and unknown values

Versions before Zabbix 3.2 are very strict about unsupported items in a trigger expression. Any unsupported item in the expression
immediately renders trigger value to Unknown.

Since Zabbix 3.2 there is a more flexible approach to unsupported items by admitting unknown values into expression evaluation:

250

• For some functions their values are not affected by whether an item is supported or unsupported. Such functions are now
evaluated even if they refer to unsupported items. See the list in functions and unsupported items.

• Logical expressions with OR and AND can be evaluated to known values in two cases regardless of unknown operands:
– ”1 or Unsuported_item1.some_function() or Unsuported_item2.some_function() or ...” can be evaluated to ’1’ (True),
– ”0 and Unsuported_item1.some_function() and Unsuported_item2.some_function() and ...” can be evaluated to ’0’
(False).
Zabbix tries to evaluate logical expressions taking unsupported items as Unknown values. In the two cases mentioned
above a known value will be produced; in other cases trigger value will be Unknown.

• If a function evaluation for supported item results in error, the function value is Unknown and it takes part in further expression
evaluation.

Note that unknown values may ”disappear” only in logical expressions as described above. In arithmetic expressions unknown
values always lead to result Unknown (except division by 0).

If a trigger expression with several unsupported items evaluates to Unknown the error message in the frontend refers to the last
unsupported item evaluated.

3 Trigger dependencies

Overview

Sometimes the availability of one host depends on another. A server that is behind some router will become unreachable if the
router goes down. With triggers configured for both, you might get notifications about two hosts down - while only the router was
the guilty party.

This is where some dependency between hosts might be useful. With dependency set notifications of the dependants could be
withheld and only the notification for the root problem sent.

While Zabbix does not support dependencies between hosts directly, they may be defined with another, more flexible method -
trigger dependencies. A trigger may have one or more triggers it depends on.

So in our simple example we open the server trigger configuration form and set that it depends on the respective trigger of the
router. With such dependency the server trigger will not change state as long as the trigger it depends on is in ’PROBLEM’ state -
and thus no dependant actions will be taken and no notifications sent.

If both the server and the router are down and dependency is there, Zabbix will not execute actions for the dependent trigger.

Actions on dependent triggers will not be executed if the trigger they depend on:

• changes its state from ’PROBLEM’ to ’UNKNOWN’
• is closed manually, by correlation or with the help of time- based functions
• is resolved by a value of an item not involved in dependent trigger
• is disabled, has disabled item or disabled item host

Note that ”secondary” (dependent) trigger in the above-mentioned cases will not be immediately updated.

Also:

• Trigger dependency may be added from any host trigger to any other host trigger, as long as it wouldn’t result in a circular
dependency.

• Trigger dependency may be added from a template to a template. If a trigger from template A depends on a trigger from
template B, template A may only be linked to a host (or another template) together with template B, but template B may be
linked to a host (or another template) alone.

• Trigger dependency may be added from template trigger to a host trigger. In this case, linking such a template to a host
will create a host trigger that depends on the same trigger template trigger was depending on. This allows to, for example,
have a template where some triggers depend on router (host) triggers. All hosts linked to this template will depend on that
specific router.

• Trigger dependency from a host trigger to a template trigger may not be added.
• Trigger dependency may be added from a trigger prototype to another trigger prototype (within the same low-level discovery
rule) or a real trigger. A trigger prototype may not depend on a trigger prototype from a different LLD rule or on a trigger
created from trigger prototype. Host trigger prototype cannot depend on a trigger from a template.

Configuration

To define a dependency, open the Dependencies tab in a trigger configuration form. Click on Add in the ’Dependencies’ block and
select one or more triggers that our trigger will depend on.

251

Click Update. Now the trigger has an indication of its dependency in the list.

Example of several dependencies

For example, a Host is behind a Router2 and the Router2 is behind a Router1.

Zabbix - Router1 - Router2 - Host

If Router1 is down, then obviously Host and Router2 are also unreachable yet we don’t want to receive three notifications about
Host, Router1 and Router2 all being down.

So in this case we define two dependencies:

'Host is down' trigger depends on 'Router2 is down' trigger
'Router2 is down' trigger depends on 'Router1 is down' trigger

Before changing the status of the ’Host is down’ trigger, Zabbix will check for corresponding trigger dependencies. If found, and
one of those triggers is in ’Problem’ state, then the trigger status will not be changed and thus actions will not be executed and
notifications will not be sent.

Zabbix performs this check recursively. If Router1 or Router2 is unreachable, the Host trigger won’t be updated.

4 Trigger severity

Trigger severity defines how important a trigger is. Zabbix supports the following trigger severities:

SEVERITY DEFINITION COLOUR

Not classified Unknown severity. Grey
Information For information purposes. Light blue
Warning Be warned. Yellow
Average Average problem. Orange
High Something important has happened. Light red
Disaster Disaster. Financial losses, etc. Red

The severities are used for:

• visual representation of triggers. Different colours for different severities.
• audio in global alarms. Different audio for different severities.
• user media. Different media (notification channel) for different severities. For example, SMS - high severity, email - other.
• limiting actions by conditions against trigger severities

It is possible to customise trigger severity names and colours.

5 Customising trigger severities

Trigger severity names and colours for severity related GUI elements can be configured in Administration → General → Trigger
severities. Colours are shared among all GUI themes.

252

Translating customised severity names

Attention:
If Zabbix frontend translations are used, custom severity names will override translated names by default.

Default trigger severity names are available for translation in all locales. If a severity name is changed, custom name is used in
all locales and additional manual translation is needed.

Custom severity name translation procedure:

• set required custom severity name, for example ’Important’
• edit <frontend_dir>/locale/<required_locale>/LC_MESSAGES/frontend.po
• add 2 lines:

msgid "Important"
msgstr "<translation string>"

and save file.

• create .mo files as described in <frontend_dir>/locale/README

Here msgid should match the new custom severity name and msgstr should be the translation for it in the specific language.

This procedure should be performed after each severity name change.

6 Unit symbols

Overview

Having to use some large numbers, for example ’86400’ to represent the number of seconds in one day, is both difficult and
error-prone. This is why you can use some appropriate unit symbols (or suffixes) to simplify Zabbix trigger expressions and item
keys.

Instead of ’86400’ you can simply enter ’1d’. Suffixes function as multipliers.

Trigger expressions

Time and memory size suffixes are supported in trigger expression constants and function parameters.

For time you can use:

• s - seconds (when used, works the same as the raw value)
• m - minutes
• h - hours
• d - days
• w - weeks

Time suffixes are also supported in parameters of the zabbix[queue,<from>,<to>] internal item and the last parameter of
aggregate checks.

For memory size you can use:

• K - kilobyte
• M - megabyte
• G - gigabyte
• T - terabyte

Other uses

Unit symbols are also used for a human-readable representation of data in the frontend.

In both Zabbix server and frontend these symbols are supported:

• K - kilo
• M - mega
• G - giga
• T - tera

When item values in B, Bps are displayed in the frontend, base 2 is applied (1K = 1024). Otherwise a base of 10 is used (1K =
1000).

Additionally the frontend also supports the display of:

• P - peta

253

• E - exa
• Z - zetta
• Y - yotta

Usage examples

By using some appropriate suffixes you can write trigger expressions that are easier to understand and maintain, for example
these expressions:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>120
{host:system.uptime[].last()}<86400
{host:system.cpu.load.avg(600)}<10
{host:vm.memory.size[available].last()}<20971520

could be changed to:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>2m
{host:system.uptime.last()}<1d
{host:system.cpu.load.avg(10m)}<10
{host:vm.memory.size[available].last()}<20M

7 Mass update

Overview

With mass update you may change some attribute for a number of triggers at once, saving you the need to open each individual
trigger for editing.

Using mass update

To mass-update some triggers, do the following:

• Mark the checkboxes of the triggers to update in the list
• Click on Mass update below the list
• Mark the checkboxes of the attributes to update
• Specify new values for the attributes and click on Update

Replace dependencies and Replace tags will replace existing trigger dependencies/tags (if any) with the ones specified in mass
update.

8 Predictive trigger functions

Overview

254

Sometimes there are signs of the upcoming problem. These signs can be spotted so that actions may be taken in advance to
prevent or at least minimize the impact of the problem.

Zabbix has tools to predict the future behaviour of the monitored system based on historic data. These tools are realized through
predictive trigger functions.

1 Functions

Two things one needs to know is how to define a problem state and how much time is needed to take action. Then there are two
ways to set up a trigger signalling about a potential unwanted situation. First: trigger must fire when the system after ”time to
act” is expected to be in problem state. Second: trigger must fire when the system is going to reach the problem state in less
than ”time to act”. Corresponding trigger functions to use are forecast and timeleft. Note that underlying statistical analysis is
basically identical for both functions. You may set up a trigger whichever way you prefer with similar results.

2 Parameters

Both functions use almost the same set of parameters. Use the list of supported functions for reference.

2.1 Time interval

First of all you should specify the historic period Zabbix should analyse to come up with prediction. You do it in a familiar way by
means of sec or #num parameter and optional time_shift like you do it with avg, count, delta,max,min and sum functions.

2.2 Forecasting horizon

(forecast only)
Parameter time specifies how far in the future Zabbix should extrapolate dependencies it finds in historic data. No matter if you
use time_shift or not, time is always counted starting from the current moment.

2.3 Threshold to reach

(timeleft only)
Parameter threshold specifies a value the analysed item has to reach, no difference if from above or from below. Once we have
determined f(t) (see below) we should solve equation f(t) = threshold and return the root which is closer to now and to the right
from now or 999999999999.9999 if there is no such root.

Note:
When item values approach the threshold and then cross it, timeleft assumes that intersection is already in the past and
therefore switches to the next intersection with threshold level, if any. Best practice should be to use predictions as a
complement to ordinary problem diagnostics, not as a substitution.a

aAccording to specification these are voltages on chip pins and generally speaking may need scaling.

2.4 Fit functions

Default fit is the linear function. But if your monitored system is more complicated you have more options to choose from.

fit x = f(t)

linear x = a + b*t
polynomialN1 x = a0 + a1*t + a2*t2 + ... + an*tn

exponential x = a*exp(b*t)
logarithmic x = a + b*log(t)
power x = a*tb

2.5 Modes

(forecast only)
Every time a trigger function is evaluated it gets data from the specified history period and fits a specified function to the data.
So, if the data is slightly different the fitted function will be slightly different. If we simply calculate the value of the fitted function
at a specified time in the future you will know nothing about how the analysed item is expected to behave between now and that
moment in the future. For some fit options (like polynomial) a simple value from the future may be misleading.

mode forecast result

value f(now + time)

1Polynomial degree can be from 1 to 6, polynomial1 is equivalent to linear. However, use higher degree polynomials with caution. If the evaluation period
contains less points than needed to determine polynomial coefficients, polynomial degree will be lowered (e.g polynomial5 is requested, but there are only 4
points, therefore polynomial3 will be fitted).

255

https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
https://en.wikipedia.org/wiki/Runge's_phenomenon

mode forecast result

max maxnow <= t <= now + time f(t)
min minnow <= t <= now + time f(t)
delta max - min
avg average of f(t) (now <= t <= now + time) according to definition

3 Details

To avoid calculations with huge numbers we consider the timestamp of the first value in specified period plus 1 ns as a new zero-
time (current epoch time is of order 109, epoch squared is 1018, double precision is about 10-16). 1 ns is added to provide all
positive time values for logarithmic and power fits which involve calculating log(t). Time shift does not affect linear, polynomial,
exponential (apart from easier and more precise calculations) but changes the shape of logarithmic and power functions.

4 Potential errors

Functions return -1 in such situations:

• specified evaluation period contains no data;

• result of mathematical operation is not defined2;

• numerical complications (unfortunately, for some sets of input data range and precision of double-precision floating-point
format become insufficient)3.

Note:
No warnings or errors are flagged if chosen fit poorly describes provided data or there is just too few data for accurate
prediction.

5 Examples and dealing with errors

To get a warning when you are about to run out of free disk space on your host you may use a trigger expression like this:

{host:vfs.fs.size[/,free].timeleft(1h,,0)}<1h

However, error code -1 may come into play and put your trigger in a problem state. Generally it’s good because you get a warning
that your predictions don’t work correctly and you should look at them more thoroughly to find out why. But sometimes it’s bad
because -1 can simply mean that there was no data about the host free disk space obtained in the last hour. If you are getting too
many false positive alerts consider using more complicated trigger expression4:

{host:vfs.fs.size[/,free].timeleft(1h,,0)}<1h and {host:vfs.fs.size[/,free].timeleft(1h,,0)}<>-1

Situation is a bit more difficult with forecast. First of all, -1 may or may not put the trigger in a problem state depending on
whether you have expression like {host:item.forecast(...)}<... or like {host:item.forecast(...)}>...

Furthermore, -1 may be a valid forecast if it’s normal for the item value to be negative. But probability of this situation in the
real world situation is negligible (see how operator = works). So add ... or {host:item.forecast(...)}=-1 or ... and
{host:item.forecast(...)}<>-1 if you want or don’t want to treat -1 as a problem respectively.

See also

1. Predictive trigger functions (pdf) on zabbix.org

9 Event tags

Overview

There is an option to define custom event tags in Zabbix. Event tags are defined on the trigger level. After the tags are defined,
corresponding new events get marked with tag data.

Having custom event tags allows for more flexibility. For example, actions can be defined based on event tags.

Event tags are realized as a pair of the tag name and value. You can use only the name or pair it with a value:
2For example fitting exponential or power functions involves calculating log() of item values. If data contains zeros or negative numbers you will get an error

since log() is defined for positive values only.
3For linear, exponential, logarithmic and power fits all necessary calculations can be written explicitly. For polynomial only value can be calculated without

any additional steps. Calculating avg involves computing polynomial antiderivative (analytically). Computing max, min and delta involves computing polynomial
derivative (analytically) and finding its roots (numerically). Solving f(t) = 0 involves finding polynomial roots (numerically).
4But in this case -1 can cause your trigger to recover from the problem state. To be fully protected use: {host:vfs.fs.size[/,free].timeleft(1h,,0)}<1h

and ({TRIGGER.VALUE}=0 and {host:vfs.fs.size[/,free].timeleft(1h,,0)}<>-1 or {TRIGGER.VALUE}=1)

256

https://en.wikipedia.org/wiki/Mean_of_a_function
http://zabbix.org/mw/images/1/18/Prediction_docs.pdf

MySQL, Service:MySQL, Services, Services:Customer, Applications, Application:Java, Priority:High

Use cases

Some use cases for this functionality are as follows:

1. Identify problems in a log file and close them separately

* Define tags in the log trigger that will identify events using value extraction by the %%{{%%ITEM.VALUE<N>}.regsub()} macro;
* In trigger configuration, have multiple problem event generation mode;
* In trigger configuration, use [[:manual/config/event_correlation|event correlation]]: select the option that OK event closes only matching events and choose the tag for matching;
* See problem events created with a tag and closed individually.

- Use it to filter notifications
* Define tags on the trigger level to mark events by different tags;
* Use tag filtering in action conditions to receive notifications only on the events that match tag data.

- See event tag information in the frontend
* Define tags on the trigger level to mark events by different tags;
* See this information in //Monitoring// → //Problems//.

- Use information extracted from item value as tag value
* Use an %%{{%%ITEM.VALUE<N>}.regsub()} macro in the tag value;
* See tag values in //Monitoring// → //Problems// as extracted data from item value.

- Identify problems better in notifications
* Define tags on the trigger level;
* Use an {EVENT.TAGS} macro in the problem notification;
* Easier identify which application/service the notification belongs to.

- Simplify configuration tasks by using tags on the template level
* Define tags on the template trigger level;
* See these tags on all triggers created from template triggers.

- Create triggers with tags from low-level discovery (LLD)
* Define tags on trigger prototypes;
* Use LLD macros in the tag name or value;
* See these tags on all triggers created from trigger prototypes.

Configuration

Event tags are defined in trigger configuration. Event tags can be defined for triggers, template triggers and trigger prototypes.

Macro support

{ITEM.VALUE} and {ITEM.LASTVALUE} macros can be used to populate the tag name or tag value.

User macros and user macro context is supported for the tag name/value since Zabbix 3.2.2. User macro context may include
low-level discovery macros.

Low-level discovery macros can be used for the tag name/value in trigger prototypes.

{EVENT.TAGS} and {EVENT.RECOVERY.TAGS} macros can be used in trigger-based notifications and they will resolve to a comma
separated list of event tags or recovery event tags.

Substring extraction

Substring extraction is supported to populate the tag name or tag value, using the new macro function - applying a regular
expression to the value obtained by the {ITEM.VALUE} macro.

257

{{ITEM.VALUE}.regsub(pattern, output)}
{{ITEM.VALUE}.iregsub(pattern, output)}

Tag name and value will be cut to 255 characters if their length exceeds 255 characters after macro resolution.

Viewing event tags

Event tags, if defined, can be seen with new events in:

• Monitoring → Problems
• Monitoring → Problems → Event details

Only the first three tag entries are displayed. If there are more than three tag entries, it is indicated by three dots. If you roll your
mouse over these three dots, all tag entries are displayed in a pop-up window.

4 Events

Overview

There are several types of events generated in Zabbix:

• trigger events - whenever a trigger changes its status (OK→PROBLEM→OK)
• discovery events - when hosts or services are detected
• auto registration events - when active agents are auto-registered by server
• internal events - when an item/low-level discovery rule becomes unsupported or a trigger goes into an unknown state

Note:
Internal events are supported starting with Zabbix 2.2 version.

Events are time-stamped and can be the basis of actions such as sending notification e-mail etc.

To view details of events in the frontend, go to Monitoring → Problems. There you can click on the event date and time to view
details of an event.

More information is available on each event source.

1 Event sources

1 Trigger events

Change of trigger status is the most frequent and most important source of events.

Each time the trigger changes its state, an event is generated. The event contains details of the trigger state’s change - when did
it happen and what the new state is.

2 Discovery events

Zabbix periodically scans the IP ranges defined in network discovery rules. Frequency of the check is configurable for each rule
individually. Once a host or a service is discovered, a discovery event (or several events) are generated.

Zabbix generates the following events:

Event When generated

Service Up Every time Zabbix detects active service.
Service Down Every time Zabbix cannot detect service.
Host Up If at least one of the services is UP for the IP.
Host Down If all services are not responding.
Service Discovered If the service is back after downtime or discovered for the first time.
Service Lost If the service is lost after being up.

258

Event When generated

Host Discovered If host is back after downtime or discovered for the first time.
Host Lost If host is lost after being up.

3 Active agent auto-discovery events

Active agent auto-registration creates events in Zabbix.

If configured, active agent auto-registration can happen when a previously unknown active agent asks for checks. The server adds
a new auto-registered host, using the received IP address and port of the agent.

For more information, see the active agent auto-registration page.

4 Internal events

Internal events happen when:

• an item changes state from ’normal’ to ’unsupported’
• an item changes state from ’unsupported’ to ’normal’
• a low-level discovery rule changes state from ’normal’ to ’unsupported’
• a low-level discovery rule changes state from ’unsupported’ to ’normal’
• a trigger changes state from ’normal’ to ’unknown’
• a trigger changes state from ’unknown’ to ’normal’

Internal events are supported since Zabbix 2.2. The aim of introducing internal events is to allow users to be notified when any
internal event takes place, for example, an item becomes unsupported and stops gathering data.

2 Manual closing of problems

Overview

While generally problem events are resolved automatically when trigger status goes from ’Problem’ to ’OK’, there may be cases
when it is difficult to determine if a problem has been resolved by means of a trigger expression. In such cases, the problem needs
to be resolved manually.

For example, syslog may report that some kernel parameters need to be tuned for optimal performance. In this case the issue is
reported to Linux administrators, they fix it and then close the problem manually.

Problems can be closed manually only for triggers with the Allow manual close option enabled.

When a problem is ”manually closed”, Zabbix generates a new internal task for Zabbix server. Then the task manager process
executes this task and generates an OK event, therefore closing problem event.

A manually closed problem does not mean that the underlying trigger will never go into a ’Problem’ state again. When new data
arrive for any item included in the trigger expression, the whole expression is re-evaluated and may result in a problem again.

Configuration

Two steps are required to close a problem manually.

Trigger configuration

In trigger configuration, enable the Allow manual close option.

Event acknowledgement

If a problem arises for a trigger with the Manual close flag, you can go to the acknowledgement screen of that trigger and close
the problem manually.

To close the problem, check the Close problem option in acknowledgement form and click on Acknowledge.

259

The request is processed by Zabbix server. Normally it will take a few seconds to close the problem. During that process CLOSING
is displayed in Monitoring → Problems as the status of the problem.

Verification

It can be verified that a problem has been closed manually:

• in event details, available through Monitoring → Problems;
• by using the {EVENT.ACK.HISTORY} macro in notification messages that will provide this information.

5 Event correlation

Overview

Event correlation allows to correlate problem events to their resolution in a manner that is very precise and flexible.

Event correlation can be defined:

• on trigger level - one trigger may be used to relate separate problems to their solution
• globally - problems can be correlated to their solution from a different trigger/polling method using global correlation rules

1 Trigger-based event correlation

Overview

Trigger-based event correlation allows to correlate separate problems reported by one trigger.

While generally an OK event can close all problem events created by one trigger, there are cases when a more detailed approach is
needed. For example, when monitoring log files you may want to discover certain problems in a log file and close them individually
rather than all together.

This is the case with triggers that have Multiple Problem Event Generation enabled. Such triggers are normally used for log
monitoring, trap processing, etc.

It is possible in Zabbix to relate problem events based on the event tags. Tags are used to extract values and create identification
for problem events. Taking advantage of that, problems can also be closed individually based on matching tag.

260

In other words, the same trigger can create separate events identified by the event tag. Therefore problem events can be identified
one-by-one and closed separately based on the identification by the event tag.

How it works

In log monitoring you may encounter lines similar to these:

Line1: Application 1 stopped
Line2: Application 2 stopped
Line3: Application 1 was restarted
Line4: Application 2 was restarted

The idea of event correlation is to be able to match the problem event from Line1 to the resolution from Line3 and the problem
event from Line2 to the resolution from Line4, and close these problems one by one:

Line1: Application 1 stopped
Line3: Application 1 was restarted #problem from Line 1 closed

Line2: Application 2 stopped
Line4: Application 2 was restarted #problem from Line 2 closed

To do this you need to tag these related events as, for example, ”Application 1” and ”Application 2”. That can be done by applying
a regular expression to the log line to extract the tag value. Then, when events are created, they are tagged ”Application 1” and
”Application 2” respectively and problem can be matched to the resolution.

Configuration

To configure event correlation on trigger level:

• go to the trigger configuration form

• select ’Problem event generation mode’ as Multiple
• select that ’OK event closes’ All problems if tag values match
• enter the name of the tag for event matching
• configure the tags to extract tag values from log lines

If configured successfully you will be able to see problem events tagged by application andmatched to their resolution inMonitoring
→ Problems.

261

Warning:
Because misconfiguration is possible, when similar event tags may be created for unrelated problems, please review the
cases outlined below!

• With two applications writing error and recovery messages to the same log file a user may decide to use two Application tags
in the same trigger with different tag values by using separate regular expressions in the tag values to extract the names
of, say, application A and application B from the {ITEM.VALUE} macro (e.g. when the message formats differ). However,
this may not work as planned if there is no match to the regular expressions. Non-matching regexps will yield empty tag
values and a single empty tag value in both problem and OK events is enough to correlate them. So a recovery message
from application A may accidentally close an error message from application B.

• Actual tags and tag values only become visible when a trigger fires. If the regular expression used is invalid, it is silently
replaced with an *UNKNOWN* string. If the initial problem event with an *UNKNOWN* tag value is missed, there may appear
subsequent OK events with the same *UNKNOWN* tag value that may close problem events which they shouldn’t have
closed.

• If a user uses the {ITEM.VALUE} macro without macro functions as the tag value, the 255-character limitation applies. When
log messages are long and the first 255 characters are non-specific, this may also result in similar event tags for unrelated
problems.

2 Global event correlation

Overview

Global event correlation allows to reach out over all metrics monitored by Zabbix and create correlations.

It is possible to correlate events created by completely different triggers and apply the same operations to them all. By creating
intelligent correlation rules it is actually possible to save yourself from thousands of repetitive notifications and focus on root causes
of a problem!

Global event correlation is a powerful mechanism, which allows you to untie yourself from one-trigger based problem and resolution
logic. So far, a single problem event was created by one trigger and we were dependent on that same trigger for the problem
resolution. We could not resolve a problem created by one trigger with another trigger. But with event correlation based on event
tagging, we can.

For example, a log trigger may report application problems, while a polling trigger may report the application to be up and running.
Taking advantage of event tags you can tag the log trigger as Status: Down while tag the polling trigger as Status: Up. Then, in a
global correlation rule you can relate these triggers and assign an appropriate operation to this correlation such as closing the old
events.

In another use, global correlation can identify similar triggers and apply the same operation to them. What if we could get only
one problem report per network port problem? No need to report them all. That is also possible with global event correlation.

Global event correlation is configured in correlation rules. A correlation rule defines how the new problem events are paired
with existing problem events and what to do in case of a match (close the new event, close matched old events by generating
corresponding OK events). If a problem is closed by global correlation, it is reported in the Info column of Monitoring → Problems.

Configuring global correlation rules is available to Zabbix Super Admin level users only.

Attention:
Event correlation must be configured very carefully, as it can negatively affect event processing performance or, if mis-
configured, close more events than was intended (in the worst case even all problem events could be closed).

To configure global correlation safely, observe the following important tips:

• Reduce the correlation scope. Always set a unique tag for the new event that is paired with old events and use the New
event tag correlation condition;

• Add a condition based on the old event when using the Close old event operation (or else all existing problems could be
closed);

• Avoid using common tag names that may end up being used by different correlation configurations;
• Keep the number of correlation rules limited to the ones you really need.

262

See also: known issues.

Configuration

To configure event correlation rules globally:

• Go to Configuration → Event correlation
• Click on Create correlation to the right (or on the correlation name to edit an existing rule)
• Enter parameters of the correlation rule in the form

Parameter Description

Name Unique correlation rule name.
Type of calculation The following options of calculating conditions are available:

And - all conditions must be met
Or - enough if one condition is met
And/Or - AND with different condition types and OR with the same
condition type
Custom expression - a user-defined calculation formula for
evaluating action conditions. It must include all conditions
(represented as uppercase letters A, B, C, ...) and may include
spaces, tabs, brackets (), and (case sensitive), or (case sensitive).

Conditions List of conditions, as selected from the New condition field.

263

Parameter Description

New condition Select conditions for correlating events and click on Add.
Note that if no old event condition is specified, all old events may
be matched and closed. Similarly if no new event condition is
specified, all new events may be matched and closed.
The following conditions are available:
Old event tag - specify the old event tag for matching.
New event tag - specify the new event tag for matching.
New event host group - specify the new event host group for
matching.
Event tag pair - specify new event tag and old event tag for
matching. In this case there will be a match if the values of the
tags in both events match. Tag names need not match.
This option is useful for matching runtime values, which may not
be known at the time of configuration (see also Example 1).
Old event tag value - specify the old event tag name and value
for matching, using the following operators:
= - has the old event tag value
<> - does not have the old event tag value
like - has the string in the old event tag value
not like - does not have the string in the old event tag value
New event tag value - specify the new event tag name and value
for matching, using the following operators:
= - has the new event tag value
<> - does not have the new event tag value
like - has the string in the new event tag value
not like - does not have the string in the new event tag value

Description Correlation rule description.
Enabled If you mark this checkbox, the correlation rule will be enabled.

• Select the operation of the correlation rule in the form

Parameter Description

Operations List of operations, selected from the New operation field.
New operation Select operation to perform when event is correlated and click on

Add. The following operations are available:
Close old events - close old events when a new event happens.
Always add a condition based on the old event when using the
Close old events operation or all existing problems could be closed.
Close new event - close the new event when it happens

Warning:
Because misconfiguration is possible, when similar event tags may be created for unrelated problems, please review the
cases outlined below!

264

• Actual tags and tag values only become visible when a trigger fires. If the regular expression used is invalid, it is silently
replaced with an *UNKNOWN* string. If the initial problem event with an *UNKNOWN* tag value is missed, there may appear
subsequent OK events with the same *UNKNOWN* tag value that may close problem events which they shouldn’t have
closed.

• If a user uses the {ITEM.VALUE} macro without macro functions as the tag value, the 255-character limitation applies. When
log messages are long and the first 255 characters are non-specific, this may also result in similar event tags for unrelated
problems.

Examples

Example 1

Stop repetitive problem events from the same network port.

This global correlation rule will correlate problems if Host and Port tag values exist on the trigger and they are the same in the
original event and the new one.

This operation will close new problem events on the same network port, keeping only the original problem open.

6 Visualisation

1 Graphs

Overview

265

With lots of data flowing into Zabbix, it becomes much easier for the users if they can look at a visual representation of what is
going on rather than only numbers.

This is where graphs come in. Graphs allow to grasp the data flow at a glance, correlate problems, discover when something
started or make a presentation of when something might turn into a problem.

Zabbix provides users with:

• built-in simple graphs of one item data
• the possibility to create more complex customised graphs
• access to a comparison of several items quickly in ad-hoc graphs

1 Simple graphs

Overview

Simple graphs are provided for the visualization of data gathered by items.

No configuration effort is required on the user part to view simple graphs. They are freely made available by Zabbix.

Just go to Monitoring → Latest data and click on the Graph link for the respective item and a graph will be displayed.

Time period selector

Take note of the time period selector above the graph. It allows you to select the desired time period easily.

The slider within the selector can be dragged back and forth, as well as resized, effectively changing the time period displayed.
Links on the left hand side allow to choose some often-used predefined periods (above the slider area) and move them back and
forth in time (below the slider area). The dates on the right hand side actually work as links, popping up a calendar and allowing
to set a specific start/end time.

The fixed/dynamic link in the lower right hand corner has the following effects:

• controls whether the time period is kept constant when you change the start/end time in the calendar popup.
• when fixed, time moving controls (« 1m 7d 1d 12h 1h 5m | 5m 1h 12h 1d 7d 1m ») will move the slider, while not changing
its size, whereas when dynamic, the control used will enlarge the slider in the respective direction.

• when fixed, pressing the larger < and > buttons will move the slider, while not changing its size, whereas when dynamic, <
and > will enlarge the slider in the respective direction. The slider will move by the amount of its size, so, for example, if it
is one month, it will move by a month; whereas the slider will enlarge by 1 day.

Another way of controlling the displayed time is to highlight an area in the graph with the left mouse button. The graph will zoom
into the highlighted area once you release the left mouse button.

Note:
Simple graphs are provided for all numeric items. For textual items, a link to History is available in Monitoring → Latest
data.

266

Recent data vs longer periods

For very recent data a single line is drawn connecting each received value. The single line is drawn as long as there is at least
one horizontal pixel available for one value.

For data that show a longer period three lines are drawn - a dark green one shows the average, while a light pink and a light
green line shows the maximum and minimum values at that point in time. The space between the highs and the lows is filled with
yellow background.

Working time (working days) is displayed in graphs as a white background, while non-working time is displayed in grey (with the
Original blue default frontend theme).

Working time is always displayed in simple graphs, whereas displaying it in custom graphs is a user preference.

Working time is not displayed if the graph shows more than 3 months.

Generating from history/trends

Graphs can be drawn based on either item history or trends. A grey caption at the bottom right of a graph indicates where the
data come from.

Several factors influence whether history of trends is used:

• longevity of item history. For example, item history can be kept for 14 days. In that case, any data older than the fourteen
days will be coming from trends.

• data congestion in the graph. If the amount of seconds to display in a horizontal graph pixel exceeds 3600/16, trend data
are displayed (even if item history is still available for the same period).

• if trends are disabled, item history is used for graph building - if available for that period. This is supported starting with
Zabbix 2.2.1 (before, disabled trends would mean an empty graph for the period even if item history was available).

Switching to raw values

A dropdown on the upper right allows to switch from the simple graph to the Values/500 latest values listings. This can be useful
for viewing the numeric values making up the graph.

The values represented here are raw, i.e. no units or postprocessing of values is used. Value mapping, however, is applied.

Known issues

See known issues for graphs.

2 Custom graphs

Overview

Custom graphs, as the name suggests, offer customisation capabilities.

While simple graphs are good for viewing data of a single item, they do not offer configuration capabilities.

267

Thus, if you want to change graph style or the way lines are displayed or compare several items, for example incoming and outgoing
traffic in a single graph, you need a custom graph.

Custom graphs are configured manually.

They can be created for a host or several hosts or for a single template.

Configuring custom graphs

To create a custom graph, do the following:

• Go to Configuration → Hosts (or Templates)
• Click on Graphs in the row next to the desired host or template
• In the Graphs screen click on Create graph
• Edit graph attributes

Graph attributes:

Parameter Description

Name Unique graph name.
Starting with Zabbix 2.2, item values can be referenced in the
name by using simple macros with the standard
{host:key.func(param)} syntax. Only avg, last, max and
min as functions with seconds as parameter are supported within
this macro. {HOST.HOST<1-9>} macros are supported for the use
within this macro, referencing the first, second, third, etc. host in
the graph, for example {{HOST.HOST1}:key.func(param)}.

Width Graph width in pixels (for preview and pie/exploded graphs only).
Height Graph height in pixels.
Graph type Graph type:

Normal - normal graph, values displayed as lines
Stacked - stacked graph, filled areas displayed
Pie - pie graph
Exploded - ”exploded” pie graph, portions displayed as ”cut out”
of the pie

Show legend Checking this box will set to display the graph legend.
Show working time If selected, non-working hours will be shown with gray background.

Not available for pie and exploded pie graphs.
Show triggers If selected, simple triggers will be displayed as red lines. Not

available for pie and exploded pie graphs.

268

Parameter Description

Percentile line (left) Display percentile for left Y axis. If, for example, 95% percentile is
set, then the percentile line will be at the level where 95 per cent
of the values fall under. Displayed as a bright green line. Only
available for normal graphs.

Percentile line (right) Display percentile for right Y axis. If, for example, 95% percentile is
set, then the percentile line will be at the level where 95 per cent
of the values fall under. Displayed as a bright red line. Only
available for normal graphs.

Y axis MIN value Minimum value of Y axis:
Calculated - Y axis minimum value will be automatically
calculated
Fixed - fixed minimum value for Y axis. Not available for pie and
exploded pie graphs.
Item - last value of the selected item will be the minimum value

Y axis MAX value Maximum value of Y axis:
Calculated - Y axis maximum value will be automatically
calculated
Fixed - fixed maximum value for Y axis. Not available for pie and
exploded pie graphs.
Item - last value of the selected item will be the maximum value

3D view Enable 3D style. For pie and exploded pie graphs only.
Items Items, data of which are to be displayed in this graph.

Configuring graph items

To add items, data of which are to be displayed in the graph, click on Add in the Items block, select items and then set attributes
for the way item data will be displayed.

Item display attributes:

Parameter Description

Sort order (0→100) Draw order. 0 will be processed first. Can be used to draw lines or
regions behind (or in front of) another.
You can drag and drop items by the arrow in the beginning of line
to set the sort order or which item is displayed in front of the other.

Name Name of item, data of which will be displayed.
Type Type (only available for pie and exploded pie graphs):

Simple - value of the item is represented proportionally on the pie
Graph sum - value of the item represents the whole pie
Note that colouring of the ”graph sum” item will only be visible to
the extent that it is not taken up by ”proportional” items.

Function What values will be displayed when more than one value exists for
an item:
all - all (minimum, average and maximum)
min - minimum only
avg - average only
max - maximum only

Draw style Draw style (only available for normal graphs; for stacked graphs
filled region is always used):
Line - draw lines
Filled region - draw filled region
Bold line - draw bold lines
Dot - draw dots
Dashed line - draw dashed line

Y axis side Which Y axis side the element is assigned to.
Colour RGB colour in HEX notation.

Graph preview

In the Preview tab, a preview of the graph is displayed so you can immediately see what you are creating.

269

Note that the preview will not show any data for template items.

In this example, pay attention to the dashed bold line displaying the trigger level and the trigger information displayed in the
legend.

Note:
3 triggers is the hard-coded limit for the number of triggers displayed in the legend.
If graph height is set as less than 120 pixels, no trigger will be displayed in the legend.

3 Ad-hoc graphs

Overview

While a simple graph is great for accessing data of one item and custom graphs offer customisation options, none of the two allow
to quickly create a comparison graph for multiple items with little effort and no maintenance.

To address this issue, since Zabbix 2.4 it is possible to create ad-hoc graphs for several items in a very quick way.

Configuration

To create an ad-hoc graph, do the following:

• Go to Monitoring → Latest data
• Use filter to display items that you want
• Mark checkboxes of the items you want to graph
• Click on Display stacked graph or Display graph buttons

270

Your graph is created instantly:

Note that to avoid displaying too many lines in the graph, only the average value for each item is displayed (min/max value lines

271

are not displayed). Triggers and trigger information is not displayed in the graph.

In the created graph window you have the time period selector available and the possibility to switch from the ”normal” line graph
to a stacked one (and back).

2 Network maps

Overview

If you have a network to look after, you may want to have an overview of your infrastructure somewhere. For that purpose you
can create maps in Zabbix - of networks and of anything you like.

All users can create network maps. The maps can be public (available to all users) or private (available to selected users).

Proceed to configuring a network map.

1 Configuring a network map

Overview

Configuring a map in Zabbix requires that you first create a map by defining its general parameters and then you start filling the
actual map with elements and their links.

You can populate the map with elements that are a host, a host group, a trigger, an image or another map.

272

Icons are used to represent map elements. You can define the information that will be displayed with the icons and set that recent
problems are displayed in a special way. You can link the icons and define information to be displayed on the links.

You can add custom URLs to be accessible by clicking on the icons. Thus you may link a host icon to host properties or a map icon
to another map.

Maps are managed in Monitoring → Maps, where they can be configured, managed and viewed. In the monitoring view you can
click on the icons and take advantage of the links to some scripts and URLs.

All users in Zabbix (including non-admin users) can create network maps. Maps have an owner - the user who created them.

Maps can be made public or private. Public maps are visible to all users, however, they must have at least read permissions to all
map elements to see it. To add an element to the map the user must also have at least read permission to it.

Private maps are visible only to their owner. Private maps can be shared by the owner to other users and user groups. Regular
(non-Super admin) users can only share with the groups and users they are member of. Private maps will be visible to their owner
and the users the map is shared with as long as they have read permissions to all map elements. Admin level users, as long as
they have read permissions to all map elements, can see and edit private maps regardless of being the owner or belonging to the
shared user list.

Creating a map

To create a map, do the following:

• Go to Monitoring → Maps
• Go to the view with all maps
• Click on Create map

The Map tab contains general map attributes:

273

General map attributes:

Parameter Description

Owner Name of map owner.
Name Unique map name.
Width Map width in pixels.
Height Map height in pixels.
Background image Use background image:

No image - no background image (white background)
Image - selected image to be used as a background image. No
scaling is performed. You may use a geographical map or any
other image to enhance your map.

Automatic icon mapping You can set to use an automatic icon mapping, configured in
Administration → General → Icon mapping. Icon mapping allows to
map certain icons against certain host inventory fields.

Icon highlighting If you check this box, icons will receive highlighting.
Elements with an active trigger will receive a round background, in
the same colour as the highest severity trigger. Moreover, a thick
green line will be displayed around the circle, if all problems are
acknowledged.
Elements with ”disabled” or ”in maintenance” status will get a
square background, gray and orange respectively.

274

Parameter Description

Mark elements on trigger status change A recent change of trigger status (recent problem or resolution) will
be highlighted with markers (inward-pointing red triangles) on the
three sides of the element icon that are free of the label. Markers
are displayed for 30 minutes.

Expand single problem If a map element (host, host group or another map) has one single
problem, this option controls whether the problem (trigger) name
is displayed, or problem count. If marked, problem name is used.

Advanced labels If you check this box you will be able to define separate label types
for separate element types.

Icon label type Label type used for icons:
Label - icon label
IP address - IP address
Element name - element name (for example, host name)
Status only - status only (OK or PROBLEM)
Nothing - no labels are displayed

Icon label location Label location in relation to the icon:
Bottom - beneath the icon
Left - to the left
Right - to the right
Top - above the icon

Problem display Display problem count as:
All - full problem count will be displayed
Separated - unacknowledged problem count will be displayed
separated as a number of the total problem count
Unacknowledged only - only the unacknowledged problem count
will be displayed

Minimum trigger severity Problems below the selected minimum severity level will not be
displayed in the map.
For example, with Warning selected, changes with Information and
Not classified level triggers will not be reflected in the map.
This parameter is supported starting with Zabbix 2.2.

URLs URLs for each element type can be defined (with a label). These
will be displayed as links when a user clicks on the element in the
map viewing mode.
Macros that can be used in map URLs: {MAP.ID},
{HOSTGROUP.ID}, {HOST.ID}, {TRIGGER.ID}

The Sharing tab contains the map type as well as sharing options (user groups, users) for private maps:

275

Parameter Description

Type Select map type:
Private - map is visible only to selected user groups and users
Public - map is visible to all

List of user group shares Select user groups that the map is accessible to.
You may allow read-only or read-write access.

List of user shares Select users that the map is accessible to.
You may allow read-only or read-write access.

When you click on Add to save this map, you have created an empty map with a name, dimensions and certain preferences. Now
you need to add some elements. For that, click on Constructor in the map list to open the editable area.

Adding elements

To add an element, click on Add next to Icon. The new element will appear at the top left corner of the map. Drag and drop it
wherever you like.

Note that with the Grid option ”On”, elements will always align to the grid (you can pick various grid sizes from the dropdown, also
hide/show the grid). If you want to put elements anywhere without alignment, turn the option to ”Off”. (Random elements can
later again be aligned to the grid with the Align icons button.)

Now that you have some elements in place, you may want to start differentiating them by giving names etc. By clicking on the
element, a form is displayed and you can set the element type, give a name, choose a different icon etc.

276

Map element attributes:

Parameter Description

Type Type of the element:
Host - icon representing status of all triggers of the selected host
Map - icon representing status of all elements of a map
Trigger - icon representing status of a single trigger
Host group - icon representing status of all triggers of all hosts
belonging to the selected group
Image - an icon, not linked to any resource

Label Icon label, any string.
Macros and multi-line strings can be used in labels.

277

Parameter Description

Label location Label location in relation to the icon:
Default - map’s default label location
Bottom - beneath the icon
Left - to the left
Right - to the right
Top - above the icon

Host Enter the host, if the element type is ’Host’. This field is
auto-complete so starting to type the name of a host will offer a
dropdown of matching hosts. Scroll down to select. Click on ’x’ to
remove the selected.

Map Select the map, if the element type is ’Map’.
Trigger Select the trigger, if the element type is ’Trigger’.
Host group Enter the host group, if the element type is ’Host group’. This field

is auto-complete so starting to type the name of a group will offer a
dropdown of matching groups. Scroll down to select. Click on ’x’ to
remove the selected.

Application You can select an application, allowing to only display problems of
triggers that belong to the given application.
This field is available for host and host group element types, and
supported since Zabbix 2.4.0.

Automatic icon selection In this case an icon mapping will be used to determine which icon
to display.

Icons You can choose to display different icons for the element in these
cases: default, problem, maintenance, disabled.

Coordinate X X coordinate of the map element.
Coordinate Y Y coordinate of the map element.
URLs Element-specific URLs can be set for the element. These will be

displayed as links when a user clicks on the element in the map
viewing mode. If the element has its own URLs and there are map
level URLs for its type defined, they will be combined in the same
menu.
Macros that can be used in map element URLs: {MAP.ID},
{HOSTGROUP.ID}, {HOST.ID}, {TRIGGER.ID}

Attention:
Added elements are not automatically saved. If you navigate away from the page, all changes may be lost.
Therefore it is a good idea to click on the Update button in the top right corner. Once clicked, the changes are saved
regardless of what you choose in the following popup.
Selected grid options are also saved with each map.

Selecting elements

To select elements, select one and then hold down Ctrl to select the others.

You can also select multiple elements by dragging a rectangle in the editable area and selecting all elements in it (option available
since Zabbix 2.0).

Once you select more than one element, the element property form shifts to the mass-update mode so you can change attributes
of selected elements in one go. To do so, mark the attribute using the checkbox and enter a new value for it. You may use macros
here (such as, say, {HOST.NAME} for the element label).

278

Linking elements

Once you have put some elements on the map, it is time to start linking them. To link two elements you must first select them.
With the elements selected, click on Add next to Link.

With a link created, the single element form now contains an additional Links section. Click on Edit to edit link attributes.

279

280

Link attributes:

Parameter Description

Label Label that will be rendered on top of the link.
The {host:key.func(param)} macro is supported in this field, but
only with avg, last, min and max trigger functions, with seconds
as parameter.

Connect to The element that the link connects to.
Type (OK) Default link style:

Line - single line
Bold line - bold line
Dot - dots
Dashed line - dashed line

Colour (OK) Default link colour.
Link indicators List of triggers linked to the link. In case a trigger has status

PROBLEM, its style is applied to the link.

2 Host group elements

Overview

This section explains how to add a “Host group” type element when configuring a network map.

Configuration

281

This table consists of parameters typical for Host group element type:

Parameter Description

Type Select Type of the element:
Host group - icon representing status of all triggers of all hosts
belonging to the selected group

Show Show options:
Host group - selecting this option will result as one single icon
displaying corresponding information about the certain host group
Host group elements - selecting this option will result as multiple
icons displaying corresponding information about each single
element (host) of the certain host group

282

Parameter Description

Area type This setting is available if “Host group elements” parameter is
selected:
Fit to map - all host group elements are equally placed within the
map
Custom size - manual setting of the map area for all the host
group elements to be displayed

Area size This setting is available if “Host group elements” parameter and
“Area type” parameter are selected:
Width - numeric value to be entered to specify map area width
Height - numeric value to be entered to specify map area height

Placing algorithm Grid – only available option of displaying all the host group
elements

Label Icon label, any string.
Macros and multi-line strings can be used in labels.
If the type of the map element is “Host group” specifying a certain
Macros has impact on the map view displaying corresponding
information about each single host. For example, if {HOST.IP}
macro is used, edit map view will only display the macro {HOST.IP}
itself while map view will include and display each host’s unique IP
address

Viewing host group elements

This option is available if ”Host group elements” show option is chosen. When selecting ”Host group elements” as the show option,
you will at first see only one icon for the host group. However, when you save the map and then go to the map view, you will see
that the map includes all the elements (hosts) of the certain host group:

Map editing view Map view

Notice how the {HOST.NAME} macro is used. In map editing the macro name in unresolved, while in map view all the unique
names of the hosts are displayed.

283

3 Link indicators

Overview

You can assign some triggers to a link between elements in a network map. When these triggers go into a problem state, the link
can reflect that.

When you configure a link, you set the default link type and color. When you assign triggers to a link, you can assign different link
types and colors with these triggers.

Should any of these triggers go into a problem state, their link style and color will be displayed on the link. So maybe your default
link was a green line. Now, with the trigger in problem state, your link may become bold red (if you have defined it so).

Configuration

To assign triggers as link indicators, do the following:

• select a map element
• click on Edit in the Links section for the appropriate link
• click on Add in the Link indicators block and select one or more triggers

284

285

Added triggers can be seen in the Link indicators list.

You can set the link type and color for each trigger directly from the list. When done, click on Apply, close the form and click on
Update to save the map changes.

Display

In Monitoring → Maps the respective color will be displayed on the link if the trigger goes into a problem state.

Note:
If multiple triggers go into a problem state, the one with the highest severity will determine the link style and color. If
multiple triggers with the same severity are assigned to the same map link, the one with the lowest ID takes precedence.

3 Screens

Overview

On Zabbix screens you can group information from various sources for a quick overview on a single screen. Building the screens
is quite easy and intuitive.

Essentially a screen is a table. You choose how many cells per table and what elements to display in the cells. The following
elements can be displayed:

• simple graphs
• simple graph prototypes
• user-defined custom graphs
• custom graph prototypes

286

• maps
• other screens
• plain text information
• server information (overview)
• host information (overview)
• trigger information (overview)
• host/hostgroup issues (status of triggers)
• system status
• data overview
• clock
• history of events
• history of recent actions
• URL (data taken from another location)

Screens are managed in Monitoring → Screens, where they can be configured, managed and viewed. They can also be added to
the favourites section of Monitoring → Dashboard.

To configure a screen you must first create it by defining its general properties and then add individual elements in the cells.

All users in Zabbix (including non-admin users) can create screens. Screens have an owner - the user who created them.

Screens can be made public or private. Public screens are visible to all users.

Private screens are visible only to their owner. Private screens can be shared by the owner to other users and user groups. Regular
(non-Super admin) users can only share with the groups and users they are member of. Private screens will be visible to their
owner and the users the screen is shared with as long as they have read permissions to all screen elements. Admin level users,
as long as they have read permissions to all screen elements, can see and edit private screens regardless of being the owner or
belonging to the shared user list.

Warning:
For both public and private screens a user must have at least read permissions to all screen elements in order to see the
screen. To add an element to a screen a user must also have at least read permission to it.

Creating a screen

To create a screen, do the following:

• Go to Monitoring → Screens
• Go to the view with all screens
• Click on Create Screen

The Screen tab contains general screen attributes:

Give your screen a unique name and set the number of columns (vertical cells) and rows (horizontal cells).

The Sharing tab contains the screen type as well as sharing options (user groups, users) for private screens:

287

Parameter Description

Owner Select the screen owner.
Type Select screen type:

Private - screen is visible only to selected user groups and users
Public - screen is visible to all

List of user group shares Select user groups that the screen is accessible to.
You may allow read-only or read-write access.

List of user shares Select users that the screen is accessible to.
You may allow read-only or read-write access.

Click on Add to save the screen.

Adding elements

To add elements to the screen, click on Constructor next to the screen name in the list.

On a new screen you probably only see links named Change. Clicking those links opens a form whereby you set what to display in
each cell.

On an existing screen you click on the existing elements to open the form whereby you set what to display.

288

Screen element attributes:

289

Parameter Description

Resource Information displayed in the cell:
Action log - history of recent actions
Clock - digital or analog clock displaying current server or local
time
Data overview - latest data for a group of hosts
Graph - single custom graph
Graph prototype - custom graph from low-level discovery rule
History of events - latest events
Host group issues - status of triggers filtered by the hostgroup
(includes triggers without events, since Zabbix 2.2)
Host info - high level host related information
Host issues - status of triggers filtered by the host (includes
triggers without events, since Zabbix 2.2)
Map - single map
Plain text - plain text data
Screen - screen (one screen may contain other screens inside)
Simple graph - single simple graph
Simple graph prototype - simple graph based on item generated
by low-level discovery
Status of Zabbix - high-level information about Zabbix server
System status - displays system status (similar to the Dashboard)
Trigger info - high level trigger related information
Trigger overview - status of triggers for a host group
URL - include content from an external resource

Horizontal align Possible values:
Center
Left
Right

Vertical align Possible values:
Middle
Top
Bottom

Column span Extend cell to a number of columns, same way as HTML column
spanning works.

Row span Extend cell to a number of rows, same way as HTML row spanning
works.

Take note of the ’+’ and ’-’ controls on each side of the table.

Clicking on ’+’ above the table will add a column. Clicking on ’-’ beneath the table will remove a column.

Clicking on ’+’ on the left side of the table will add a row. Clicking on ’-’ on the right side of the table will remove a row.

Attention:
If graph height is set as less than 120 pixels, no trigger will be displayed in the legend.

Dynamic elements

For some of the elements there is an extra option called Dynamic item. Checking this box at first does not to seem to change
anything.

However, once you go to Monitoring → Screens, you may realize that now you have extra dropdowns there for selecting the host.
Thus you have a screen where some elements display the same information while others display information depending on the
currently selected host.

The benefit of this is that you do not need to create extra screens just because you want to see the same graphs containing data
from various hosts.

Dynamic item option is available for several screen elements:

• Graphs (custom graphs)
• Graph prototypes
• Simple graphs
• Simple graph prototypes

290

• Plain text
• URL

Note:
Clicking on a dynamic graph opens it in full view; although with custom graphs and graph prototypes that is currently
supported with the default host only (i.e. with host ’not selected’ in the dropdown). When selecting another host in the
dropdown, the dynamic graph is created using item data of that host and the resulting graph is not clickable.

Note:
Dynamic URL elements will not be displayed in Monitoring → Screens, unless a host is selected. Without a selected host
the ”No host selected” message will be visible only.

1 Screen elements

Overview

This section lists available screen elements and provides details for screen element configuration.

1 Action log

In the action log element you can display details of action operations (notifications, remote commands). It replicates information
from Reports → Audit.

To configure, select Action log as resource:

You may set the following specific options:

Show lines Set how many action log lines will be displayed in the screen
cell.

Sort entries by Sort entries by:
Time (descending or ascending)
Type (descending or ascending)
Status (descending or ascending)
Recipient (descending or ascending).

2 Clock

In the clock element you may display local, server or specified host time.

To configure, select Clock as resource:

291

You may set the following specific options:

Time type Select local, server or specified host time.
Item Select the item for displaying time. To display host time, use

the system.localtime[local] item. This item must
exist on the host.
This field is available only when Host time is selected.

Width Select clock width.
Height Select clock height.

3 Data overview

In the data overview element you can display the latest data for a group of hosts. It replicates information from Monitoring →
Overview (when Data is selected as Type there).

To configure, select Data overview as resource:

292

You may set the following specific options:

Group Select host group.
Application Enter application name.
Hosts location Select host location - left or top.

4 Graph

In the graph element you can display a single custom graph.

To configure, select Graph as resource:

293

You may set the following specific options:

Graph Select the graph to display.
Width Select graph width.
Height Select graph height.
Dynamic item Set graph to display different data depending on the

selected host.

5 Graph prototype

In the graph prototype element you can display a custom graph from a low-level discovery rule.

To configure, select Graph prototype as resource:

294

You may set the following specific options:

Graph prototype Select the graph prototype to display.
Max columns In how many columns generated graphs should be displayed

in the screen cell.
Useful when there are many LLD-generated graphs.

Width Select graph width.
Height Select graph height.
Dynamic item Set graph to display different data depending on the

selected host.

6 History of events

In the history of events element you can display latest events.

To configure, select History of events as resource:

295

You may set the following specific option:

Show lines Set how many event lines will be displayed in the screen cell.

7 Host group issues

In the host group issue element you can display status of triggers filtered by the host group. It will be displayed similarly as in Last
20 issues from the Dashboard.

To configure, select Host group issues as resource:

You may set the following specific options:

Group Select host group.
Show lines Set how many trigger status lines will be displayed in the

screen cell.

296

Sort triggers by Select from the dropdown to sort triggers by last change,
severity (both descending) or host (ascending).

8 Host info

In the host information element you can display high-level information about host availability.

To configure, select Host info as resource:

You may set the following specific options:

Group Select host group(s).
Style Select vertical or horizontal display.

9 Host issues

In the host issue element you can display status of triggers filtered by the host. It will be displayed similarly as in Last 20 issues
from the Dashboard.

To configure, select Host issues as resource:

297

You may set the following specific options:

Host Select the host.
Show lines Set how many trigger status lines will be displayed in the

screen cell.
Sort triggers by Select from the dropdown to sort triggers by last change,

severity (both descending) or host (ascending).

10 Map

In the map element you can display a configured network map.

To configure, select Map as resource:

298

You may set the following specific options:

Map Select the map to display.

11 Plain text

In the plain text element you can display latest item data in plain text.

To configure, select Plain text as resource:

You may set the following specific options:

Item Select the item.
Show lines Set how many latest data lines will be displayed in the

screen cell.
Show text as HTML Set to display text as HTML.
Dynamic item Set to display different data depending on the selected host.

12 Screen

In the screen element you can display another Zabbix screen. One screen may contain other screens inside.

To configure, select Screen as resource:

299

You may set the following specific options:

Screen Select the screen to display.

13 Simple graph

In the simple graph element you can display a single simple graph.

To configure, select Simple graph as resource:

You may set the following specific options:

300

Item Select the item for the simple graph.
Width Select graph width.
Height Select graph height.
Dynamic item Set graph to display different data depending on the

selected host.

14 Simple graph prototype

In the simple graph prototype element you can display a simple graph based on an item generated by low-level discovery.

To configure, select Simple graph prototype as resource:

You may set the following specific options:

Item prototype Select the item prototype for the simple graph.
Max columns In how many columns generated graphs should be displayed

in the screen cell.
Useful when there are many LLD-generated graphs.

Width Select graph width.
Height Select graph height.
Dynamic item Set graph to display different data depending on the

selected host.

15 Status of Zabbix

In the Zabbix status element you can display high-level Zabbix and Zabbix server information.

To configure, select Status of Zabbix as resource:

301

16 System status

In this element you can display system status similarly as in the Dashboard widget.

To configure, select System status as resource:

17 Trigger info

In the trigger info element you can display high-level information about trigger states.

To configure, select Trigger info as resource:

302

You may set the following specific options:

Group Select the host group(s).
Style Select vertical or horizontal display.

18 Trigger overview

In the trigger overview element you can display the trigger states for a group of hosts. It replicates information from Monitoring →
Overview (when Triggers is selected as Type there).

To configure, select Trigger overview as resource:

You may set the following specific options:

Group Select the host group(s).
Application Enter the application name.
Hosts location Select host location - left or top.

19 URL

In the URL element you can display a URL content from an external resource.

To configure, select URL as resource:

303

You may set the following specific options:

URL Enter the URL to display.
Width Select window width.
Height Select window width.
Dynamic item Set to display different URL content depending on the

selected host.

Attention:
Browsers might not load an HTTP page included in a screen (using URL element), if Zabbix frontend is accessed over HTTPS.

4 Slide shows

Overview

In a slide show you can configure that a number of screens are displayed one after another at set intervals.

Sometimes you might want to switch between some configured screens. While that can be done manually, doing that more than
once or twice may become very tedious. This is where the slide show function comes to rescue.

All users in Zabbix (including non-admin users) can create slide shows. Slide shows have an owner - the user who created them.

Slide shows can be made public or private. Public slide shows are visible to all users, however, they must have at least read
permissions to all slide show elements (screens) to see it. To add a screen to the slide show the user must also have at least read
permission to it.

Private slide shows are visible only to their owner. Private slide shows can be shared by the owner to other users and user groups.
Regular (non-Super admin) users can only share with the groups and users they are member of. Private slide shows will be visible
to their owner and the users the slide show is shared with as long as they have read permissions to all included screens. Admin
level users, as long as they have read permissions to all included screens, can see and edit private slide shows regardless of being
the owner or belonging to the shared user list.

304

Configuration

To create a slide show, do the following:

• Go to Monitoring → Screens
• Select Slide shows in the dropdown
• Go to the view with all slide shows
• Click on Create slide show

The Slide tab contains general slide show attributes:

Parameter Description

Owner Select the slide show owner. Specifying owner is mandatory.
Name Unique name of the slide show.
Default delay (in seconds) How long one screen is displayed by default, before rotating to the

next, in seconds.
Slides List of screens to be rotated. Click on Add to select screens.

The Up/Down arrow before the screen allows to drag a screen up
and down in the sort order of display.
If you want to display only, say, a single graph in the slide show,
create a screen containing just that one graph.

Screen Screen name.
Delay A custom value for how long the screen will be displayed, in

seconds.
If set to 0, the Default delay value will be used.

Action Click on Remove to remove a screen from the slide show.

The slide show in this example consists of two screens which will be displayed in the following order:

Zabbix server ⇒ Displayed for 30 seconds ⇒ Zabbix server2 ⇒ Displayed for 15 seconds ⇒ Zabbix server ⇒ Displayed for 30 seconds
⇒ Zabbix server2 ⇒ …

The Sharing tab contains the slide show type as well as sharing options (user groups, users) for private slide shows:

305

Parameter Description

Type Select slide show type:
Private - slide show is visible only to selected user groups and
users
Public - slide show is visible to all

List of user group shares Select user groups that the slide show is accessible to.
You may allow read-only or read-write access.

List of user shares Select users that the slide show is accessible to.
You may allow read-only or read-write access.

Click on Add to save the slide show.

Display

Slide shows that are ready can be viewed in Monitoring → Screens, then choosing Slide shows from the dropdown and clicking on
the slide show name.

With the Menu option next to the dropdown, you can accelerate or slow down the display by choosing a slide delay multiplier:

306

Attention:
If a delay ends up as being less than 5 seconds (either by having entered a delay less than 5 seconds or by using the slide
delay multiplier), a 5-second minimum delay will be used.

7 Templates

Overview

A template is a set of entities that can be conveniently applied to multiple hosts.

The entities may be:

• items
• triggers
• graphs
• applications
• screens (since Zabbix 2.0)
• low-level discovery rules (since Zabbix 2.0)
• web scenarios (since Zabbix 2.2)

As many hosts in real life are identical or fairly similar so it naturally follows that the set of entities (items, triggers, graphs,...) you
have created for one host, may be useful for many. Of course, you could copy them to each new host, but that would be a lot
of manual work. Instead, with templates you can copy them to one template and then apply the template to as many hosts as
needed.

When a template is linked to a host, all entities (items, triggers, graphs,...) of the template are added to the host. Templates are
assigned to each individual host directly (and not to a host group).

Templates are often used to group entities for particular services or applications (like Apache, MySQL, PostgreSQL, Postfix...) and
then applied to hosts running those services.

Another benefit of using templates is when something has to be changed for all the hosts. Changing something on the template
level once will propagate the change to all the linked hosts.

Thus, the use of templates is an excellent way of reducing one’s workload and streamlining the Zabbix configuration.

Proceed to creating and configuring a template.

8 Notifications upon events

Overview

Assuming that we have configured some items and triggers and now are getting some events happening as a result of triggers
changing state, it is time to consider some actions.

To begin with, we would not want to stare at the triggers or events list all the time. It would be much better to receive notification
if something significant (such as a problem) has happened. Also, when problems occur, we would like to see that all the people
concerned are informed.

That is why sending notifications is one of the primary actions offered by Zabbix. Who and when should be notified upon a certain
event can be defined.

To be able to send and receive notifications from Zabbix you have to:

• define some media
• configure an action that sends a message to one of the defined media

Actions consist of conditions and operations. Basically, when conditions are met, operations are carried out. The two principal
operations are sending a message (notification) and executing a remote command.

For discovery and auto-registration created events, some additional operations are available. Those include adding or removing a
host, linking a template etc.

307

1 Media types

Overview

Media are the delivery channels used for sending notifications and alerts in Zabbix.

You can configure several media types:

• E-mail
• SMS
• Jabber
• Ez Texting
• Custom alertscripts

1 E-mail

Overview

To configure e-mail as the delivery channel for messages, you need to configure e-mail as the media type and assign specific
addresses to users.

Configuration

To configure e-mail as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on E-mail in the list of pre-defined media types).

308

Media type attributes:

Parameter Description

Name Name of the media type.
Type Select Email as the type.
SMTP server Set an SMTP server to handle outgoing messages.
SMTP server port Set the SMTP server port to handle outgoing messages.

This option is supported starting with Zabbix 3.0.
SMTP helo Set a correct SMTP helo value, normally a domain name.

309

Parameter Description

SMTP email The address entered here will be used as the From address for the
messages sent.
Adding a sender display name (like ”Zabbix-HQ” in Zabbix-HQ
<zabbix@company.com> in the screenshot above) with the actual
e-mail address is supported since Zabbix 2.2 version.
There are some restrictions on display names in Zabbix emails in
comparison to what is allowed by RFC 5322, as illustrated by
examples:
Valid examples:
zabbix@company.com (only email address, no need to use angle
brackets)
Zabbix HQ <zabbix@company.com> (display name and email
address in angle brackets)
∑Ω-monitoring <zabbix@company.com> (UTF-8 characters in
display name)
Invalid examples:
Zabbix HQ zabbix@company.com (display name present but no
angle brackets around email address)
”Zabbix\@\<H(comment)Q\>” <zabbix@company.com> (although
valid by RFC 5322, quoted pairs and comments are not supported
in Zabbix emails)

Connection security Select the level of connection security:
None - do not use the CURLOPT_USE_SSL option
STARTTLS - use the CURLOPT_USE_SSL option with
CURLUSESSL_ALL value
SSL/TLS - use of CURLOPT_USE_SSL is optional
This option is supported starting with Zabbix 3.0.

SSL verify peer Mark the checkbox to verify the SSL certificate of the SMTP server.
The value of ”SSLCALocation” server configuration directive should
be put into CURLOPT_CAPATH for certificate validation.
This sets cURL option CURLOPT_SSL_VERIFYPEER.
This option is supported starting with Zabbix 3.0.

SSL verify host Mark the checkbox to verify that the Common Name field or the
Subject Alternate Name field of the SMTP server certificate
matches.
This sets cURL option CURLOPT_SSL_VERIFYHOST.
This option is supported starting with Zabbix 3.0.

Authentication Select the level of authentication:
None - no cURL options are set
(since 3.2.8) Username and password - implies ”AUTH=*”
leaving the choice of authentication mechanism to cURL
(until 3.2.8) Normal password - CURLOPT_LOGIN_OPTIONS is set
to ”AUTH=PLAIN”
This option is supported starting with Zabbix 3.0.

Username User name to use in authentication.
This sets the value of CURLOPT_USERNAME.
This option is supported starting with Zabbix 3.0.

Password Password to use in authentication.
This sets the value of CURLOPT_PASSWORD.
This option is supported starting with Zabbix 3.0.

Enabled Mark the checkbox to enable the media type.

Attention:
To make SMTP authentication options available, Zabbix server should be compiled with the --with-libcurl compilation option
with cURL 7.20.0 or higher.

User media

To assign a specific address to the user:

• Go to Administration→Users

310

http://curl.haxx.se/libcurl/c/CURLOPT_USE_SSL.html
http://curl.haxx.se/libcurl/c/CURLOPT_CAPATH.html
http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html
http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYHOST.html
http://curl.haxx.se/libcurl/c/CURLOPT_LOGIN_OPTIONS.html
http://curl.haxx.se/libcurl/c/CURLOPT_USERNAME.html
http://curl.haxx.se/libcurl/c/CURLOPT_PASSWORD.html

• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select Email as the type.
Send to Specify the e-mail address to send the messages to. Adding a

recipient display name (like “Some User” in Some User
<user@domain.tld> in the screenshot above) with the actual
e-mail address is supported since Zabbix 2.2 version.
See examples and restrictions on display name and email address
in media type attribute SMTP email description.

When active You can limit the time when messages are sent, for example, the
working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.
Note that for non-trigger events the default severity (’Not
classified’) is used, so leave it checked if you want to receive
notifications for non-trigger events.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

2 SMS

Overview

Zabbix supports the sending of SMS messages using a serial GSM modem connected to Zabbix server’s serial port.

Make sure that:

311

• The speed of the serial device (normally /dev/ttyS0 under Linux) matches that of the GSM modem. Zabbix does not set the
speed of the serial link. It uses default settings.

• The ’zabbix’ user has read/write access to the serial device. Run the command ls –l /dev/ttyS0 to see current permissions of
the serial device.

• The GSM modem has PIN entered and it preserves it after power reset. Alternatively you may disable PIN on the SIM card.
PIN can be entered by issuing command AT+CPIN=”NNNN” (NNNN is your PIN number, the quotes must be present) in a
terminal software, such as Unix minicom or Windows HyperTerminal.

Zabbix has been tested with these GSM modems:

• Siemens MC35
• Teltonika ModemCOM/G10

To configure SMS as the delivery channel for messages, you also need to configure SMS as the media type and enter the respective
phone numbers for the users.

Configuration

To configure SMS as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on SMS in the list of pre-defined media types).

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select SMS as the type.
GSM modem Set the serial device name of the GSM modem.

User media

To assign a phone number to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select SMS as the type.
Send to Specify the phone number to send messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

3 Jabber

Overview

Zabbix supports sending Jabber messages.

When sending notifications, Zabbix tries to look up the Jabber SRV record first, and if that fails, it uses an address record for that
domain. Among Jabber SRV records, the one with the highest priority and maximum weight is chosen. If it fails, other records are
not tried.

To configure Jabber as the delivery channel for messages, you need to configure Jabber as the media type and enter the respective
addresses for the users.

Configuration

312

To configure Jabber as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on Jabber in the list of pre-defined media types).

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select Jabber as the type.
Jabber identifier Enter Jabber identifier.
Password Enter Jabber password.

User media

To assign a Jabber address to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select Jabber as the type.
Send to Specify the address to send messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

4 Ez Texting

Overview

You can use Zabbix technological partner Ez Texting for message sending.

To configure Ez Texting as the delivery channel for messages, you need to configure Ez Texting as the media type and assign
recipient identification to the users.

Configuration

To configure Ez Texting as the media type:

• Go to Administration→Media types
• Click on Create media type

313

http://www.zabbix.com/partners.php#Technology_Partners

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select Ez Texting as the type.
Username Enter the Ez Texting username.
Password Enter the Ez Texting password.
Message text limit Select the message text limit.

USA (160 characters)
Canada (136 characters)

User media

To assign Ez Texting recipient identification to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select the Ez Texting media type.
Send to Specify the recipient to send the messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

314

5 Custom alertscripts

Overview

If you are not satisfied with existing media types for sending alerts there is an alternative way to do that. You can create a script
that will handle the notification your way.

Alert scripts are executed on Zabbix server. These scripts are located in the directory defined in the server configuration file
AlertScriptsPath variable.

Here is an example alert script:

#####!/bin/bash

to=$1
subject=$2
body=$3

cat <<EOF | mail -s "$subject" "$to"
$body
EOF

Environment variables are not preserved or created for the script, so they should be handled explicitly.

Configuration

To configure custom alertscripts as the media type:

• Go to Administration→Media types
• Click on Create media type

Media type attributes:

Parameter Description

Name Enter name of the media type.
Type Select Script as the type.
Script name Enter the name of the script.

315

Parameter Description

Script parameters Add command-line parameters to the script.
{ALERT.SENDTO}, {ALERT.SUBJECT} and {ALERT.MESSAGE}
macros are supported in script parameters.
Customizing script parameters is supported since Zabbix 3.0.

User media

To assign custom alertscripts to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select the custom alertscripts media type.
Send to Specify the recipient to receive the alerts.
When active You can limit the time when alertscripts are executed, for example,

the working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to activate
the alertscript for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

2 Actions

Overview

If you want some operations taking place as a result of events (for example, notifications sent), you need to configure actions.

Actions can be defined in response to events of all supported types:

• Trigger events - when trigger status changes from OK to PROBLEM and back
• Discovery events - when network discovery takes place
• Auto registration events - when new active agents auto-register
• Internal events - when items become unsupported or triggers go into an unknown state

Configuring an action

To configure an action, do the following:

• Go to Configuration → Actions
• From the Event source dropdown select the required source
• Click on Create action
• Name the action
• Choose conditions upon which operations are carried out
• Choose the operations to carry out
• Choose the recovery operations to carry out

General action attributes:

316

Parameter Description

Name Unique action name.
Type of calculation Select the evaluation option for action conditions (with more than

one condition):
And - all conditions must be met
Or - enough if one condition is met
And/Or - combination of the two: AND with different condition
types and OR with the same condition type
Custom expression - a user-defined calculation formula for
evaluating action conditions.

Conditions List of action conditions.
New condition Select a new action condition and click on Add.
Enabled Mark the checkbox to enable the action. Otherwise it will be

disabled.

1 Conditions

Overview

An action is executed only in case an event matches a defined set of conditions. Conditions are set when configuring an action.

The following conditions can be set for trigger-based actions:

317

Condition type Supported operators Description

Application =
like
not like

Specify an application or an
application to exclude.
= - event belongs to a trigger
of the item that is linked to
the specified application.
like - event belongs to a
trigger of the item that is
linked to an application
containing the string.
not like - event belongs to a
trigger of the item that is
linked to an application not
containing the string.

Host group =
<>

Specify host groups or host
groups to exclude.
= - event belongs to this host
group.
<> - event does not belong
to this host group.
Since Zabbix 3.2.2,
specifying a parent host
group implicitly selects all
nested host groups. To
specify the parent group
only, all nested groups have
to be additionally set with the
<> operator. In Zabbix 3.2.0,
3.2.1 each host group is
specified individually.

Template =
<>

Specify templates or
templates to exclude.
= - event belongs to a trigger
inherited from this template.
<> - event does not belong
to a trigger inherited from
this template.

Host =
<>

Specify hosts or hosts to
exclude.
= - event belongs to this
host.
<> - event does not belong
to this host.

Tag =
<>
like
not like

Specify event tag or event
tag to exclude.
= - event has this tag
<> - event does not have
this tag
like - event has a tag
containing this string
not like - event does not
have a tag containing this
string

318

Condition type Supported operators Description

Tag value =
<>
like
not like

Specify event tag and value
combination or tag and value
combination to exclude.
= - event has this tag and
value
<> - event does not have
this tag and value
like - event has a tag and
value containing these
strings
not like - event does not
have a tag and value
containing these strings

Trigger =
<>

Specify triggers or triggers to
exclude.
= - event is generated by this
trigger.
<> - event is generated by
any other trigger, except this
one.

Trigger name like
not like

Specify a string in the trigger
name or a string to exclude.
like - event is generated by a
trigger, containing this string
in the name. Case sensitive.
not like - this string cannot
be found in the trigger name.
Case sensitive.
Note: Entered value will be
compared to trigger name
with all macros expanded.

Trigger severity =
<>
>=
<=

Specify trigger severity.
= - equal to trigger severity
<> - not equal to trigger
severity
>= - more or equal to trigger
severity
<= - less or equal to trigger
severity

Time period in
not in

Specify a time period or a
time period to exclude.
in - event time is within the
time period.
not in - event time is not
within the time period.
See Time period specification
page for description of the
format.

Maintenance status in
not in

Specify a host in
maintenance or not in
maintenance.
in - host is in maintenance
mode.
not in - host is not in
maintenance mode.
Note: If several hosts are
involved in the trigger
expression, the condition
matches if at least one of the
hosts is/is not in maintenance
mode.

319

Note:
When a new action for triggers is created, it gets one condition automatically: ”Maintenance status = not inmaintenance”.
With this condition notifications are not sent for hosts in maintenance. This condition can be removed by the user.

The following conditions can be set for discovery-based events:

Condition type Supported operators Description

Host IP =
<>

Specify an IP address range
or a range to exclude for a
discovered host.
= - host IP is in the range.
<> - host IP is not in the
range.
It may have the following
formats:
Single IP: 192.168.1.33
Range of IP addresses:
192.168.1-10.1-254
IP mask: 192.168.4.0/24
List: 192.168.1.1-254,
192.168.2.1-100,
192.168.2.200,
192.168.4.0/24
Support for spaces in the list
format is provided since
Zabbix 3.0.0.

Service type =
<>

Specify a service type of a
discovered service or a
service type to exclude.
= - matches the discovered
service.
<> - does not match the
discovered service.
Available service types: SSH,
LDAP, SMTP, FTP, HTTP,
HTTPS (available since
Zabbix 2.2 version), POP,
NNTP, IMAP, TCP, Zabbix
agent, SNMPv1 agent,
SNMPv2 agent, SNMPv3
agent, ICMP ping, telnet
(available since Zabbix 2.2
version).

Service port =
<>

Specify a TCP port range of a
discovered service or a range
to exclude.
= - service port is in the
range.
<> - service port is not in the
range.

Discovery rule =
<>

Specify a discovery rule or a
discovery rule to exclude.
= - using this discovery rule.
<> - using any other
discovery rule, except this
one.

320

Condition type Supported operators Description

Discovery check =
<>

Specify a discovery check or
a discovery check to exclude.
= - using this discovery
check.
<> - using any other
discovery check, except this
one.

Discovery object = Specify the discovered
object.
= - equal to discovered
object (a device or a service).

Discovery status = Up - matches ’Host Up’ and
’Service Up’ events
Down - matches ’Host Down’
and ’Service Down’ events
Discovered - matches ’Host
Discovered’ and ’Service
Discovered’ events
Lost - matches ’Host Lost’
and ’Service Lost’ events

Uptime/Downtime >=
<=

Uptime for ’Host Up’ and
’Service Up’ events.
Downtime for ’Host Down’
and ’Service Down’ events.
>= - is more or equal to.
Parameter is given in
seconds.
<= - is less or equal to.
Parameter is given in
seconds.

Received value =
<>
>=
<=
like
not like

Specify the value received
from an agent (Zabbix,
SNMP) check in a discovery
rule. Case sensitive string
comparison. If several Zabbix
agent or SNMP checks are
configured for a rule,
received values for each of
them are checked (each
check generates a new event
which is matched against all
conditions).
= - equal to the value.
<> - not equal to the value.
>= - more or equal to the
value.
<= - less or equal to the
value.
like - contains the substring.
Parameter is given as a
string.
not like - does not contain
the substring. Parameter is
given as a string.

Proxy =
<>

Specify a proxy or a proxy to
exclude.
= - using this proxy.
<> - using any other proxy
except this one.

321

Note:
Service checks in a discovery rule, which result in discovery events, do not take place simultaneously. Therefore, ifmultiple
values are configured for Service type, Service port or Received value conditions in the action, they will be
compared to one discovery event at a time, but not to several events simultaneously. As a result, actions with multiple
values for the same check types may not be executed correctly.

The following conditions can be set for actions based on active agent auto-registration:

Condition type Supported operators Description

Host metadata like
not like

Specify host metadata or
host metadata to exclude.
like - host metadata contains
the string.
not like - host metadata
does not contain the string.
Host metadata can be
specified in an agent
configuration file.

Host name like
not like

Specify a host name or a host
name to exclude.
like - host name contains the
string.
not like - host name does
not contain the string.

Proxy =
<>

Specify a proxy or a proxy to
exclude.
= - using this proxy.
<> - using any other proxy
except this one.

The following conditions can be set for actions based on internal events:

Condition type Supported operators Description

Application =
like
not like

Specify an application or an
application to exclude.
= - event belongs to an item
that is linked to the specified
application.
like - event belongs to an
item that is linked to an
application containing the
string.
not like - event belongs to
an item that is linked to an
application not containing
the string.

322

Condition type Supported operators Description

Event type = Item in ”not supported”
state - matches events
where an item goes from a
’normal’ to ’not supported’
state
Low-level discovery rule
in ”not supported” state -
matches events where a
low-level discovery rule goes
from a ’normal’ to ’not
supported’ state
Trigger in ”unknown”
state - matches events
where a trigger goes from a
’normal’ to ’unknown’ state

Host group =
<>

Specify host groups or host
groups to exclude.
= - event belongs to this host
group.
<> - event does not belong
to this host group.

Template =
<>

Specify templates or
templates to exclude.
= - event belongs to an
item/trigger/low-level
discovery rule inherited from
this template.
<> - event does not belong
to an item/trigger/low-level
discovery rule inherited from
this template.

Host =
<>

Specify hosts or hosts to
exclude.
= - event belongs to this
host.
<> - event does not belong
to this host.

Type of calculation

The following options of calculating conditions are available:

• And - all conditions must be met

Note that using ”And” calculation is disallowed between several triggers when they are selected as a Trigger= condition. Actions
can only be executed based on the event of one trigger.

• Or - enough if one condition is met
• And/Or - combination of the two: AND with different condition types and OR with the same condition type, for example:

Host group = Oracle servers
Host group = MySQL servers
Trigger name like ’Database is down’
Trigger name like ’Database is unavailable’

is evaluated as

(Host group = Oracle servers or Host group = MySQL servers) and (Trigger name like ’Database is down’ or Trigger name like
’Database is unavailable’)

• Custom expression - a user-defined calculation formula for evaluating action conditions. It must include all conditions
(represented as uppercase letters A, B, C, ...) and may include spaces, tabs, brackets (), and (case sensitive), or (case
sensitive).

323

While the previous example with And/Or would be represented as (A or B) and (C or D), in a custom expression you may as well
have multiple other ways of calculation:

(A and B) and (C or D)
(A and B) or (C and D)
((A or B) and C) or D
etc.

Actions disabled due to deleted objects

If a certain object (host, template, trigger, etc) used in an action condition/operation is deleted, the condition/operation is removed
and the action is disabled to avoid incorrect execution of the action. The action can be re-enabled by the user.

This behavior takes place when deleting:

• host groups (”host group” condition, ”remote command” operation on a specific host group);
• hosts (”host” condition, ”remote command” operation on a specific host);
• templates (”template” condition, ”link to template” and ”unlink from template” operations);
• triggers (”trigger” condition);
• discovery rules (when using ”discovery rule” and ”discovery check” conditions);
• proxies (”proxy” condition).

Note: If a remote command has many target hosts, and we delete one of them, only this host will be removed from the target list,
the operation itself will remain. But, if it’s the only host, the operation will be removed, too. The same goes for ”link to template”
and ”unlink from template” operations.

Actions are not disabled when deleting a user or user group used in a ”send message” operation.

2 Operations

Overview

You can define the following operations for all events:

• send a message
• execute a remote command (including IPMI)

For discovery events, there are additional operations available:

• add host
• remove host
• enable host
• disable host
• add to group
• delete from group
• link to template
• unlink from template
• set host inventory mode

The additional operations available for auto-registration events are:

• add host
• disable host
• add to group
• link to template
• set host inventory mode

Configuring an operation

To configure an operation, go to the Operations tab in action configuration and click on New in the Operations block. Edit the
operation step and click on Add to add to the list of Operations.

Operation attributes:

324

Parameter Description

Default operation step duration Duration of one operation step by default
(minimum 60 seconds).
For example, an hour-long step duration means
that if an operation is carried out, an hour will
pass before the next step.

Default subject Default message subject for notifications. The
subject may contain macros. It is limited to 255
characters.

Default message Default message for notifications. The message
may contain macros. It is limited to certain
amount of characters depending on the type of
database (see Sending message for more
information).

325

Parameter Description

Pause operations while in maintenance Mark this checkbox to delay the start of
operations for the duration of a maintenance
period. When operations are started, after the
maintenance, all operations are performed
including those for the events during the
maintenance.
If you unmark this checkbox, operations will be
executed without delay even during a
maintenance period.
This option is supported since Zabbix 3.2.0.

Operations Action operations are displayed, with these
details:
Steps - escalation step(s) to which the operation
is assigned
Details - type of operation and its
recipient/target.
Since Zabbix 2.2, the operation list also displays
the media type (e-mail, SMS, Jabber, etc) used in
sending a message as well as the name and
surname (in parentheses after the alias) of a
notification recipient.
Start in - how long after an event the operation
is performed
Duration (sec) - step duration is displayed.
Default is displayed if the step uses default
duration, and a time is displayed if custom
duration is used.
Action - links for editing and removing an
operation are displayed.
To configure a new operation, click on New.

Operation details This block is used to configure the details of an
operation.

Steps Select the step(s) to assign the operation to in
an escalation schedule:
From - execute starting with this step
To - execute until this step (0=infinity, execution
will not be limited)

Step
du-
ra-
tion

Custom duration for these steps (0=use default
step duration).
Several operations can be assigned to the same
step. If these operations have different step
duration defined, the shortest one is taken into
account and applied to the step.

Operation
type

Two operation types are available for all events:
Send message - send message to user
Remote command - execute a remote
command
More operations are available for discovery and
auto-registration based events (see above).

Operation
type:
send
mes-
sage
Send
to
user
groups

Click on Add to select user groups to send the
message to.
The user group must have at least ”read”
permissions to the host in order to be notified.

326

Parameter Description

Send
to
users

Click on Add to select users to send the message
to.
The user must have at least ”read” permissions
to the host in order to be notified.

Send
only
to

Send message to all defined media types or a
selected one only.

Default
mes-
sage

If selected, the default message will be used (see
above).

Subject Subject of the custom message. The subject may
contain macros. It is limited to 255 characters.

Message The custom message. The message may contain
macros. It is limited to certain amount of
characters depending on the type of database
(see Sending message for more information).

Operation
type:
re-
mote
com-
mand
Target
list

Select targets to execute the command on:
Current host - command is executed on the
host of the trigger that caused the problem
event. This option will not work if there are
multiple hosts in the trigger.
Host - select host(s) to execute the command
on.
Host group - select host group(s) to execute the
command on. Starting with Zabbix 3.2.2,
specifying a parent host group implicitly selects
all nested host groups. Thus the remote
command will also be executed on hosts from
nested groups.
A command on a host is executed only once,
even if the host matches more than once (e.g.
from several host groups; individually and from a
host group).
The target list is meaningless if a custom script is
executed on Zabbix server. Selecting more
targets in this case only results in the script
being executed on the server more times.
Note that for global scripts, the target selection
also depends on the Host group setting in global
script configuration.

Type Select the command type:
IPMI - execute an IPMI command
Custom script - execute a custom set of
commands
SSH - execute an SSH command
Telnet - execute a Telnet command
Global script - execute one of the global scripts
defined in Administration→Scripts.

Execute
on

Execute a custom script on Zabbix server or
Zabbix agent. To execute scripts on the agent, it
must be configured to allow remote commands
from the server.
This field is available if ’Custom script’ is
selected as Type.

327

Parameter Description

Commands Enter the command(s).
Supported macros will be resolved based on the
trigger expression that caused the event. For
example, host macros will resolve to the hosts of
the trigger expression (and not of the target list).

Conditions Condition for performing the operation:
Not ack - only when the event is
unacknowledged
Ack - only when the event is acknowledged.

1 Sending message

Overview

Sending a message is one of the best ways of notifying people about a problem. That is why it is one of the primary actions offered
by Zabbix.

Configuration

To be able to send and receive notifications from Zabbix you have to:

• define the media to send a message to
• configure an action operation that sends a message to one of the defined media

Attention:
Zabbix sends notifications only to those users that have at least ’read’ permissions to the host that generated the event.
At least one host of a trigger expression must be accessible.

You can configure custom scenarios for sending messages using escalations.

To successfully receive and read e-mails from Zabbix, e-mail servers/clients must support standard ’SMTP/MIME e-mail’ format
since Zabbix sends UTF-8 data (If the subject contains ASCII characters only, it is not UTF-8 encoded.). The subject and the body
of the message are base64-encoded to follow ’SMTP/MIME e-mail’ format standard.

Message limit after all macros expansion depends on the type of database and character set (non- ASCII characters require more
than one byte to be stored):

Database //Limit in characters // //Limit in bytes //
MySQL 65535 65535
Oracle Database 2048 4000
PostgreSQL 65535 not limited
IBM DB2 2048 2048
SQLite (only Zabbix proxy) 65535 not limited

Tracking messages

You can view the status of messages sent in Monitoring → Problems.

In the Actions column you can see summarized information about actions taken. In there green numbers represent messages sent,
red ones - failed messages. In progress indicates that an action is initiated. Failed informs that no action has executed successfully.

If you click on the event time to view event details, you will also see the Message actions block containing details of messages
sent (or not sent) due to the event.

In Reports → Action log you will see details of all actions taken for those events that have an action configured.

2 Remote commands

Overview

328

With remote commands you can define that a certain pre-defined command is automatically executed on the monitored host upon
some condition.

Thus remote commands are a powerful mechanism for smart pro-active monitoring.

In the most obvious uses of the feature you can try to:

• Automatically restart some application (web server, middleware, CRM) if it does not respond
• Use IPMI ’reboot’ command to reboot some remote server if it does not answer requests
• Automatically free disk space (removing older files, cleaning /tmp) if running out of disk space
• Migrate a VM from one physical box to another depending on the CPU load
• Add new nodes to a cloud environment upon insufficient CPU (disk, memory, whatever) resources

Configuring an action for remote commands is similar to that for sending a message, the only difference being that Zabbix will
execute a command instead of sending a message.

Attention:
Remote commands are not supported to be executed on Zabbix agents monitored by Zabbix proxy, so for commands from
Zabbix server to agent a direct connection is required.

Remote command limit after all macros expansion is the same as message limit for Sending message operation.

See also the command execution page.

Remote commands are executed even if the target host is in maintenance.

The following tutorial provides step-by-step instructions on how to set up remote commands.

Configuration

Those remote commands that are executed on Zabbix agent (custom scripts) must be first enabled in the respective zab-
bix_agentd.conf.

Make sure that the EnableRemoteCommands parameter is set to 1 and uncommented. Restart agent daemon if changing this
parameter.

Attention:
Remote commands do not work with active Zabbix agents.

Then, when configuring a new action in Configuration → Actions:

• Define the appropriate conditions. In this example, set that the action is activated upon any disaster problems with one of
Apache applications:

• In the Operations tab, select the Remote command operation type
• Select the remote command type (IPMI, Custom script, SSH, Telnet, Global script)
• Enter the remote command

329

For example:

sudo /etc/init.d/apache restart

In this case, Zabbix will try to restart an Apache process. With this command, make sure that the command is executed on Zabbix
agent (click the Zabbix agent button against Execute on).

Attention:
Note the use of sudo - Zabbix user does not have permissions to restart system services by default. See below for hints
on how to configure sudo.

Note:
Zabbix agent should run on the remote host and accept incoming connections. Zabbix agent executes commands in
background.

Attention:
Zabbix does not check if a command has been executed successfully.

Remote commands on Zabbix agent are executed without timeout by the system.run[,nowait] key. On Zabbix server remote
commands are executed with timeout as set in the TrapperTimeout parameter of zabbix_server.conf file.

Access permissions

Make sure that the ’zabbix’ user has execute permissions for configured commands. One may be interested in using sudo to give
access to privileged commands. To configure access, execute as root:

visudo

Example lines that could be used in sudoers file:

allows 'zabbix' user to run all commands without password.
zabbix ALL=NOPASSWD: ALL

allows 'zabbix' user to restart apache without password.
zabbix ALL=NOPASSWD: /etc/init.d/apache restart

Note:
On some systems sudoers file will prevent non-local users from executing commands. To change this, comment out
requiretty option in /etc/sudoers.

Remote commands with multiple interfaces

If the target system has multiple interfaces of the selected type (Zabbix agent or IPMI), remote commands will be executed on the
default interface.

It is possible to execute remote commands via SSH and Telnet using another interface than the Zabbix agent one. The available
interface to use is selected in the following order:

* Zabbix agent default interface
* SNMP default interface
* JMX default interface
* IPMI default interface

IPMI remote commands

For IPMI remote commands the following syntax should be used:

<command> [<value>]

where

• <command> - one of IPMI commands without spaces
• <value> - ’on’, ’off’ or any unsigned integer. <value> is an optional parameter.

Examples

Example 1

Restart of Windows on certain condition.

330

In order to automatically restart Windows upon a problem detected by Zabbix, define the following actions:

PARAMETER Description

Operation type ’Remote command’
Type ’Custom script’
Command c:\windows\system32\shutdown.exe -r -f

Example 2

Restart the host by using IPMI control.

PARAMETER Description

Operation type ’Remote command’
Type ’IPMI’
Command reset

Example 3

Power off the host by using IPMI control.

PARAMETER Description

Operation type ’Remote command’
Type ’IPMI’
Command power off

3 Additional operations

Overview

For discovery events, there are additional operations available:

• add host
• remove host
• enable host
• disable host
• add to group
• delete from group
• link to template
• unlink from template
• set host inventory mode

The additional operations available for auto-registration events are:

• add host
• disable host
• add to group
• link to template
• set host inventory mode

Adding host

Hosts are added during the discovery process, as soon as a host is discovered, rather than at the end of the discovery process.

Note:
As network discovery can take some time due to many unavailable hosts/services having patience and using reasonable
IP ranges is advisable.

When adding a host, its name is decided by the standard gethostbyname function. If the host can be resolved, resolved name
is used. If not, the IP address is used. Besides, if IPv6 address must be used for a host name, then all ”:” (colons) are replaced by
”_” (underscores), since colons are not allowed in host names.

331

Attention:
If performing discovery by a proxy, currently hostname lookup still takes place on Zabbix server.

Attention:
If a host already exists in Zabbix configuration with the same name as a newly discovered one, versions of Zabbix prior to
1.8 would add another host with the same name. Zabbix 1.8.1 and later adds _N to the hostname, where N is increasing
number, starting with 2.

4 Using macros in messages

Overview

In message subjects and message text you can use macros for more efficient problem reporting.

A full list of macros supported by Zabbix is available.

Examples

Examples here illustrate how you can use macros in messages.

Example 1

Message subject:

{TRIGGER.NAME}: {TRIGGER.STATUS}

When you receive the message, the message subject will be replaced by something like:

Processor load is too high on server zabbix.zabbix.com: PROBLEM

Example 2

Message:

Processor load is: {zabbix.zabbix.com:system.cpu.load[,avg1].last()}

When you receive the message, the message will be replaced by something like:

Processor load is: 1.45

Example 3

Message:

Latest value: {{HOST.HOST}:{ITEM.KEY}.last()}
MAX for 15 minutes: {{HOST.HOST}:{ITEM.KEY}.max(900)}
MIN for 15 minutes: {{HOST.HOST}:{ITEM.KEY}.min(900)}

When you receive the message, the message will be replaced by something like:

Latest value: 1.45
MAX for 15 minutes: 2.33
MIN for 15 minutes: 1.01

Example 4

Message:

http://<server_ip_or_name>/zabbix/events.php?triggerid={TRIGGER.ID}&filter_set=1

When you receive the message, it will contain a link to all events of the problem trigger.

Example 5

Informing about values from several hosts in a trigger expression.

Message:

Trigger: {TRIGGER.NAME}
Trigger expression: {TRIGGER.EXPRESSION}

1. Item value on {HOST.NAME1}: {ITEM.VALUE1} ({ITEM.NAME1})
2. Item value on {HOST.NAME2}: {ITEM.VALUE2} ({ITEM.NAME2})

332

When you receive the message, the message will be replaced by something like:

Trigger: Processor load is too high on a local host
Trigger expression: {Myhost:system.cpu.load[percpu,avg1].last()}>5 or {Myotherhost:system.cpu.load[percpu,avg1].last()}>5

1. Item value on Myhost: 0.83 (Processor load (1 min average per core))
2. Item value on Myotherhost: 5.125 (Processor load (1 min average per core))

Example 6

Receiving details of both the problem event and recovery event in a recovery message:

Message:

Problem:

Event ID: {EVENT.ID}
Event value: {EVENT.VALUE}
Event status: {EVENT.STATUS}
Event time: {EVENT.TIME}
Event date: {EVENT.DATE}
Event age: {EVENT.AGE}
Event acknowledgement: {EVENT.ACK.STATUS}
Event acknowledgement history: {EVENT.ACK.HISTORY}

Recovery:

Event ID: {EVENT.RECOVERY.ID}
Event value: {EVENT.RECOVERY.VALUE}
Event status: {EVENT.RECOVERY.STATUS}
Event time: {EVENT.RECOVERY.TIME}
Event date: {EVENT.RECOVERY.DATE}

When you receive the message, the macros will be replaced by something like:

Problem:

Event ID: 21874
Event value: 1
Event status: PROBLEM
Event time: 13:04:30
Event date: 2014.01.02
Event age: 5m
Event acknowledgement: Yes
Event acknowledgement history: 2014.01.02 13:05:51 "John Smith (Admin)"
-acknowledged-

Recovery:

Event ID: 21896
Event value: 0
Event status: OK
Event time: 13:10:07
Event date: 2014.01.02

Attention:
Separate notification macros for the original problem event and recovery event are supported since Zabbix 2.2.0.

3 Recovery operations

Overview

Recovery operations allow you to be notified when problems are resolved.

Both messages and remote commands are supported in recovery operations. Recovery operations do not support escalating - all
operations are assigned to a single step.

333

Use cases

Some use cases for recovery operations are as follows:

1. Notify all users that were notified on the problem

* Select 'Send recovery message' as operation type
- Have multiple operations upon recovery: send a notification and execute a remote command

* Add operation types for sending a message and executing a command
- Open a ticket in external helpdesk/ticketing system and close it when the problem is resolved

* Create an external script that communicates with the helpdesk system
* Create an action having operation that executes this script and thus opens a ticket
* Have a recovery operation that executes this script with other parameters and closes the ticket
* Use the {EVENT.ID} macro to reference the original problem

Configuring a recovery operation

To configure a recovery operation:

• Go to the Recovery operations tab in action configuration
• Click on New in the Operations block
• Edit the operation details and click on Add

Several operations can be added.

Recovery operation attributes:

334

Parameter Description

Default subject Default message subject for recovery
notifications. The subject may contain macros.

Default message Default message for recovery notifications. The
message may contain macros.

Operations Recovery operation details are displayed.
To configure a new recovery operation, click on
New.

Operation details This block is used to configure the details of a
recovery operation.

Operation
type

Three operation types are available for recovery
events:
Send recovery message - send recovery
message to all users who were notified on the
problem event
Send message - send recovery message to
specified user
Remote command - execute a remote
command
Note that if the same recipient with unchanged
default subject/message is defined in several
operation types, duplicate notifications are not
sent.

Operation
type:
send
re-
cov-
ery
mes-
sage
Default
mes-
sage

If selected, the default message will be used (see
above).

Subject Subject of the custom message. The subject
may contain macros.

Message The custom message. The message may contain
macros.

Operation
type:
send
mes-
sage
Send
to
user
groups

Click on Add to select user groups to send the
recovery message to.
The user group must have at least ”read”
permissions to the host in order to be notified.

Send
to
users

Click on Add to select users to send the recovery
message to.
The user must have at least ”read” permissions
to the host in order to be notified.

Send
only
to

Send recovery message to all defined media
types or a selected one only.

Default
mes-
sage

If selected, the default message will be used (see
above).

Subject Subject of the custom message. The subject
may contain macros.

Message The custom message. The message may contain
macros.

335

Parameter Description

Operation
type:
re-
mote
com-
mand
Target
list

Select current host, other hosts or host groups as
targets to execute the command on.

Type Select the command type:
IPMI - execute an IPMI command
Custom script - execute a custom set of
commands. You can select to execute the
command on Zabbix agent or Zabbix server.
SSH - execute an SSH command
Telnet - execute a Telnet command
Global script - execute one of the global scripts
defined in Administration→Scripts.

Execute
on

Execute command on Zabbix agent or Zabbix
server.

Commands Enter the command(s).

4 Escalations

Overview

With escalations you can create custom scenarios for sending notifications or executing remote commands.

In practical terms it means that:

• Users can be informed about new problems immediately
• Notifications can be repeated until the problem is resolved
• Sending a notification can be delayed
• Notifications can be escalated to another ”higher” user group
• Remote commands can be executed immediately or when a problem is not resolved for a lengthy period

Actions are escalated based on the escalation step. Each step has a duration in time.

You can define both the default duration and a custom duration of an individual step. The minimum duration of one escalation step
is 60 seconds.

You can start actions, such as sending notifications or executing commands, from any step. Step one is for immediate actions. If
you want to delay an action, you can assign it to a later step. For each step, several actions can be defined.

The number of escalation steps is not limited.

Escalations are defined when configuring an operation. Escalations are supported for problem operations only, not recovery.

Miscellaneous aspects of escalation behaviour

Let’s consider what happens in different circumstances if an action contains several escalation steps.

Situation Behaviour

The host in question goes into maintenance after the initial
problem notification is sent

Depending on the Pause operations while in maintenance
setting in action configuration, all remaining escalation steps
are executed either with a delay caused by the maintenance
period or without delay. A maintenance period does not
cancel operations.

The time period defined in the Time period action condition
ends after the initial notification is sent

All remaining escalation steps are executed. The Time period
condition cannot stop operations; it has effect with regard to
when actions are started/not started, not operations.

A problem starts during maintenance and continues (is not
resolved) after maintenance ends

Depending on the Pause operations while in maintenance
setting in action configuration, all escalation steps are
executed either from the moment maintenance ends or
immediately.

336

Situation Behaviour

A problem starts during a no-data maintenance and
continues (is not resolved) after maintenance ends

It must wait for the trigger to fire, before all escalation steps
are executed.

Different escalations follow in close succession and overlap The execution of each new escalation supersedes the
previous escalation, but for at least one escalation step that
is always executed on the previous escalation. This behavior
is relevant in actions upon events that are created with
EVERY problem evaluation of the trigger.

During an escalation in progress (like a message being
sent), based on any type of event:
- the action is
disabled
- the event is deleted
Based on trigger
event:
- the trigger is disabled or deleted
- the host
or item is disabled
Based on internal event about
triggers:
- the trigger is disabled or deleted
Based
on internal event about items/low-level discovery
rules:
- the item is disabled or deleted
- the host is
disabled

The message in progress is sent and then one more
message on the escalation is sent. The follow-up message
will have the cancellation text at the beginning of the
message body (NOTE: Escalation cancelled) naming the
reason (for example, NOTE: Escalation cancelled: action
’<Action name>’ disabled). This way the recipient is
informed that the escalation is cancelled and no more steps
will be executed. This message is sent to all who received
the notifications before. The reason of cancellation is also
logged to the server log file (starting from Debug Level
3=Warning).

During an escalation in progress (like a message being sent)
the action is deleted

No more messages are sent. The information is logged to
the server log file (starting from Debug Level 3=Warning),
for example: escalation cancelled: action id:334
deleted

Escalation examples

Example 1

Sending a repeated notification once every 30 minutes (5 times in total) to a ’MySQL Administrators’ group. To configure:

• in Operations tab, set the Default operation step duration to ’1800’ seconds (30 minutes)
• Set the escalation steps to be From ’1’ To ’5’
• Select the ’MySQL Administrators’ group as recipients of the message

Notifications will be sent at 0:00, 0:30, 1:00, 1:30, 2:00 hours after the problem starts (unless, of course, the problem is resolved
sooner).

If the problem is resolved and a recovery message is configured, it will be sent to those who received at least one problemmessage
within this escalation scenario.

Note:
If the trigger that generated an active escalation is disabled, Zabbix sends an informative message about it to all those
that have already received notifications.

Example 2

Sending a delayed notification about a long-standing problem. To configure:

337

• In Operations tab, set the Default operation step duration to ’36000’ seconds (10 hours)
• Set the escalation steps to be From ’2’ To ’2’

A notification will only be sent at Step 2 of the escalation scenario, or 10 hours after the problem starts.

You can customize the message text to something like ’The problem is more than 10 hours old’.

Example 3

Escalating the problem to the Boss.

In the first example above we configured periodical sending of messages to MySQL administrators. In this case, the administrators
will get four messages before the problem will be escalated to the Database manager. Note that the manager will get a message
only in case the problem is not acknowledged yet, supposedly no one is working on it.

338

Note the use of {ESC.HISTORY} macro in the message. The macro will contain information about all previously executed steps on
this escalation, such as notifications sent and commands executed.

Example 4

A more complex scenario. After multiple messages to MySQL administrators and escalation to the manager, Zabbix will try to
restart the MySQL database. It will happen if the problem exists for 2:30 hours and it hasn’t been acknowledged.

If the problem still exists, after another 30 minutes Zabbix will send a message to all guest users.

If this does not help, after another hour Zabbix will reboot server with the MySQL database (second remote command) using IPMI
commands.

339

Example 5

An escalation with several operations assigned to one step and custom intervals used. The default operation step duration is 30
minutes.

Notifications will be sent as follows:

• to MySQL administrators at 0:00, 0:30, 1:00, 1:30 after the problem starts
• to Database manager at 2:00 and 2:10 (and not at 3:00; seeing that steps 5 and 6 overlap with the next operation, the
shorter custom step duration of 600 seconds in the next operation overrides the longer step duration of 3600 seconds tried
to set here)

• to Zabbix administrators at 2:00, 2:10, 2:20 after the problem starts (the custom step duration of 600 seconds working)
• to guest users at 4:00 hours after the problem start (the default step duration of 30 minutes returning between steps 8 and
11)

3 Receiving notification on unsupported items

Overview

340

Receiving notifications on unsupported items is supported since Zabbix 2.2.

It is part of the concept of internal events in Zabbix, allowing users to be notified on these occasions. Internal events reflect a
change of state:

• when items go from ’normal’ to ’unsupported’ (and back)
• when triggers go from ’normal’ to ’unknown’ (and back)
• when low-level discovery rules go from ’normal’ to ’unsupported’ (and back)

This section presents a how-to for receiving notification when an item turns unsupported.

Configuration

Overall, the process of setting up the notification should feel familiar to those who have set up alerts in Zabbix before.

Step 1

Configure some media, such as e-mail, SMS or Jabber, to use for the notifications. Refer to the corresponding sections of the
manual to perform this task.

Attention:
For notifying on internal events the default severity (’Not classified’) is used, so leave it checked when configuring user
media if you want to receive notifications for internal events.

Step 2

Go to Configuration→Actions and select Internal as the event source. Click on Create action on the upper right to open an action
configuration form.

Step 3

In the Action tab enter a name for the action. Then select Event type in the New condition block and select Item in ”not supported”
state as the value.

Don’t forget to click on Add to actually list the condition in the Conditions block.

Step 4

341

In the Operations tab, enter the subject/content of the problem message.

Click on New in the Operations block and select some recipients of the message (user groups/users) and the media types (or ’All’)
to use for delivery.

Click on Add in the Operation details block to actually list the operation in the Operations block.

If you wish to receive more than one notification, set the operation step duration (interval betweenmessages sent) and add another
operation.

Step 5

342

The Recovery operations tab allows to configure a recovery notification when an item goes back to the normal state.

Enter the subject/content of the recovery message.

Click on New in the Operations block and select some recipients of the message (user groups/users) and the media types (or ’All’)
to use for delivery.

Click on Add in the Operation details block to actually list the operation in the Operations block.

Step 6

When finished, click on the Add button underneath the form.

And that’s it, you’re done! Now you can look forward to receiving your first notification from Zabbix if some item turns unsupported.

9 Macros

Overview

Zabbix supports a number of macros which may be used in various situations. Macros are variables, identified by a specific syntax:

{MACRO}

Macros resolve to a specific value depending on the context.

Effective use of macros allows to save time and make Zabbix configuration more transparent.

In one of typical uses, a macro may be used in a template. Thus a trigger on a template may be named ”Processor load is too high
on {HOST.NAME}”. When the template is applied to the host, such as Zabbix server, the name will resolve to ”Processor load is
too high on Zabbix server” when the trigger is displayed in the Monitoring section.

343

Macros may be used in item key parameters. A macro may be used for only a part of the parameter, for example
item.key[server_{HOST.HOST}_local]. Double-quoting the parameter is not necessary as Zabbix will take care of
any ambiguous special symbols, if present in the resolved macro.

See also:

• full list of supported macros
• macro functions
• how to configure user macros

1 Macro functions

Overview

Macro functions offer the ability to customize macro values.

Sometimes a macro may resolve to a value that is not necessarily easy to work with. It may be long or contain a specific substring
of interest that you would like to extract. This is where macro functions can be useful.

The syntax of a macro function is:

{<macro>.<func>(<params>)}

where:

• <macro> - the macro to customize (for example {ITEM.VALUE})
• <func> - the function to apply
• <params> - a comma-delimited list of function parameters. Parameters must be quoted if they start with ” ”(space), " or
contain), ,.

For example:

{{ITEM.VALUE}.regsub(pattern, output)}

Supported macro functions

FUNCTION

DescriptionParametersSupported
for

regsub (<pattern>,<output>)

344

FUNCTION

Substring
extrac-
tion by a
regular
expres-
sion
match
(case
sensi-
tive).

pattern
- the
regular
expres-
sion to
match
output -
the
output
options.
\1 - \9
place-
holders
are sup-
ported
to
capture
groups.
\0
returns
the
matched
text (see
known
issues).

If
pattern
is not a
correct
regular
expres-
sion
’UN-
KNOWN’
is re-
turned.

{ITEM.VALUE}
{ITEM.LASTVALUE}

iregsub (<pattern>,<output>)

345

FUNCTION

Substring
extrac-
tion by a
regular
expres-
sion
match
(case
insensi-
tive).

pattern
- the
regular
expres-
sion to
match
output -
the
output
options.
\1 - \9
place-
holders
are sup-
ported
to
capture
groups.
\0
returns
the
matched
text (see
known
issues).

If
pattern
is not a
correct
regular
expres-
sion
’UN-
KNOWN’
is re-
turned.

{ITEM.VALUE}
{ITEM.LASTVALUE}

If a function is used in a supported location, but applied to a macro not supporting macro functions, then the macro evaluates to
’UNKNOWN’.

If a macro function is applied to the macro in locations not supporting macro functions then the function is ignored.

Examples

The ways in which macro functions can be used to customize macro values is illustrated in the following examples containing log
lines as received value:

Received value Macro Output

123Log line {{ITEM.VALUE}.regsub(^[0-9]+,
Problem)}

Problem

123 Log line {{ITEM.VALUE}.regsub("^([0-9]+)",
"Problem")}

Problem

123 Log line {{ITEM.VALUE}.regsub("^([0-9]+)",
Problem ID: \1)}

Problem ID: 123

Log line {{ITEM.VALUE}.regsub(".*",
"Problem ID:
\1")}

”Problem ID: ”

MySQL crashed errno 123 {{ITEM.VALUE}.regsub("^([A-Z]+).*([0-9]+)",
" Problem ID:
\1_\2 ")}

” Problem ID: MySQL_123 ”

346

Received value Macro Output

123 Log line {{ITEM.VALUE}.regsub("([1-9]+",
"Problem ID:
\1")}

UNKNOWN (invalid regular
expression)

2 User macros

Overview

User macros are supported in Zabbix for greater flexibility, in addition to the macros supported out-of-the-box.

User macros can be defined on global, template and host level. These macros have a special syntax:

{$MACRO}

User macros can be used in:

• item names
• item key parameters
• trigger names and descriptions
• trigger expression parameters and constants (see examples)
• many other locations (see Macros supported by location)

The following characters are allowed in the macro names: A-Z , 0-9 , _ , .

Zabbix resolves macros according to the following precedence:

1. host level macros (checked first)
2. macros defined for first level templates of the host (i.e., templates linked directly to the host), sorted by template ID
3. macros defined for second level templates of the host, sorted by template ID
4. macros defined for third level templates of the host, sorted by template ID, etc.
5. global macros (checked last)

In other words, if a macro does not exist for a host, Zabbix will try to find it in the host templates of increasing depth. If still not
found, a global macro will be used, if exists.

If Zabbix is unable to find a macro, the macro will not be resolved.

Attention:
User macros are left unresolved in the Configuration section (for example, in the trigger list) by design to make complex
configuration more transparent.

To define user macros, go to the corresponding locations in the frontend:

• for global macros, visit Administration → General → Macros
• for host and template level macros, open host or template properties and look for the Macros tab

Note:
If a user macro is used in items or triggers in a template, it is suggested to add that macro to the template even if it is
defined on a global level. That way, exporting the template to XML and importing it in another system will still allow it to
work as expected.

Common use cases of global and host macros

• take advantage of templates with host-specific attributes: passwords, port numbers, file names, regular expressions, etc.
• apply global macros for global one-click configuration changes and fine tuning

Examples

Example 1

Use of host-level macro in the ”Status of SSH daemon” item key:

net.tcp.service[ssh,,{$SSH_PORT}]

This item can be assigned to multiple hosts, providing that the value of {$SSH_PORT} is defined on those hosts.

Example 2

Use of host-level macro in the ”CPU load is too high” trigger:

347

{ca_001:system.cpu.load[,avg1].last()}>{$MAX_CPULOAD}

Such a trigger would be created on the template, not edited in individual hosts.

Note:
If you want to use amount of values as the function parameter (for example, max(#3)), include hash mark in the macro
definition like this: SOME_PERIOD => #3

Example 3

Use of two macros in the ”CPU load is too high” trigger:

{ca_001:system.cpu.load[,avg1].min({$CPULOAD_PERIOD})}>{$MAX_CPULOAD}

Note that a macro can be used as a parameter of trigger function, in this example function min().

Attention:
In trigger expressions user macros will resolve if referencing a parameter or constant. They will NOT resolve if referencing
the host, item key, function, operator or another trigger expression.

User macro context

An optional context can be used in user macros, allowing to override the default value with context-specific one.

User macros with context have a similar syntax:

{$MACRO:context}

Macro context is a simple text value. The common use case for macro contexts would be using a low-level discovery macro value
as a user macro context. For example, a trigger prototype could be defined for mounted file system discovery to use a different
low space limit depending on the mount points or file system types.

Only low-level discovery macros are supported in macro contexts. Any other macros are ignored and treated as plain text.

Technically, macro context is specified using rules similar to item key parameters, except macro context is not parsed as several
parameters if there is a , character:

• Macro context must be quoted with " if the context contains a } character or starts with a " character. Quotes inside quoted
context must be escaped with the \ character. The \ character itself is not escaped, which means it’s impossible to have a
quoted context ending with the \ character - the macro {$MACRO:"a:\b\c\"} is invalid.

• The leading spaces in context are ignored, the trailing spaces are not. For example {$MACRO:A} is the same as {$MACRO:
A}, but not {$MACRO:A }.

• All spaces before leading quotes and after trailing quotes are ignored, but all spaces inside quotes are not. Macros
{$MACRO:"A"}, {$MACRO: "A"}, {$MACRO:"A" } and {$MACRO: "A" } are the same, but macros {$MACRO:"A"} and
{$MACRO:" A "} are not.

The following macros are all equivalent, because they have the same context: {$MACRO:A}, {$MACRO: A} and {$MACRO:"A"}.
This is in contrast with item keys, where key[a], key[a] and key["a"] are the same semantically, but different for uniqueness
purposes.

When context macros are processed, Zabbix looks up the macro with its context. If a macro with this context is not defined by host
or linked templates, and it is not a defined as a global macro with context, then the macro without context is searched for.

See usage example of macro context in a disk space trigger prototype and take limitation clause into consideration.

3 Low-level discovery macros

Overview

There is a type of macro used within the low-level discovery function:

{#MACRO}

It is a macro that is used in an LLD rule and returns real values of file system names, network interfaces and SNMP OIDs.

These macros can be used for creating item, trigger and graph prototypes. Then, when discovering real file systems, network
interfaces etc., these macros are substituted with real values and are the basis for creating real items, triggers and graphs.

These macros are also used in creating host and host group prototypes in virtual machine discovery.

Supported locations

348

LLD macros can be used:

• for item prototypes in
– names
– key parameters
– units
– SNMP OIDs
– IPMI sensor fields
– calculated item formulas
– SSH and Telnet scripts
– database monitoring SQL queries
– descriptions (supported since 2.2.0)

• for trigger prototypes in
– names
– expressions (insofar as when referencing an item key prototype and as standalone constants)
– URLs (supported since 3.0.0)
– descriptions (supported since 2.2.0)
– event tag names and values (except macro function parameters) (supported since 3.2.0)

• for graph prototypes in
– names

• for host prototypes (supported since 2.2.0) in
– names
– visible names
– host group prototype names
– (see the full list)

In all those places LLD macros can be used inside user macro context.

Some low-level discovery macros come ”pre-packaged” with the LLD function in Zabbix - {#FSNAME}, {#FSTYPE}, {#IFNAME},
{#SNMPINDEX}, {#SNMPVALUE}. However, adhering to these names is not compulsory when creating a custom low-level discovery
rule. Then you may use any other LLD macro name and refer to that name.

10 Users and user groups

Overview

All users in Zabbix access the Zabbix application through the web-based frontend. Each user is assigned a unique login name and
a password.

All user passwords are encrypted and stored in the Zabbix database. Users cannot use their user id and password to log directly
into the UNIX server unless they have also been set up accordingly to UNIX. Communication between the web server and the user
browser can be protected using SSL.

With a flexible user permission schema you can restrict and differentiate access to:

• administrative Zabbix frontend functions
• monitored hosts in hostgroups

The initial Zabbix installation has two predefined users - ’Admin’ and ’guest’. The ’guest’ user is used for unauthenticated users.
Before you log in as ’Admin’, you are ’guest’. Proceed to configuring a user in Zabbix.

1 Configuring a user

Overview

To configure a user:

• Go to Administration → Users
• Click on Create user (or on the user name to edit an existing user)
• Edit user attributes in the form

General attributes

The User tab contains general user attributes:

349

Parameter Description

Alias Unique username, used as the login name.
Name User first name (optional).

If not empty, visible in acknowledgement information and
notification recipient information.

Surname User second name (optional).
If not empty, visible in acknowledgement information and
notification recipient information.

350

Parameter Description

Groups List of all user groups the user belongs to. Adherence to user
groups determines what host groups and hosts the user will have
access to. Click on Add to add groups.
Starting with Zabbix 3.2.9 this field is auto-complete so starting to
type the name of a user group will offer a dropdown of matching
groups. Scroll down to select. Click on ’x’ to remove the selected.

Password Two fields for entering the user password.
With an existing password, contains a Password button, clicking on
which opens the password fields.

Language Language of the Zabbix frontend.
The php gettext extension is required for the translations to work.

Theme Defines how the frontend looks like:
System default - use default system settings
Blue - standard blue theme
Dark - alternative dark theme

Auto-login Mark this checkbox to make Zabbix remember the user and log the
user in automatically for 30 days. Browser cookies are used for
this.

Auto-logout With this checkbox marked the user will be logged out
automatically, after the set amount of seconds (minimum 90
seconds).
Note that this option will not work:
* If the ”Show warning if Zabbix server is down” global
configuration option is enabled and Zabbix frontend is kept open;
* When Monitoring menu pages perform background information
refreshes;
* If logging in with the Remember me for 30 days option checked.

Refresh (in seconds) Set the refresh rate used for graphs, screens, plain text data, etc.
Can be set to 0 to disable.

Rows per page You can determine how many rows per page will be displayed in
lists.

URL (after login) You can make Zabbix to transfer you to a specific URL after
successful login, for example, the status of triggers page.

User media

The Media tab contains a listing of all media defined for the user. Media are used for sending notifications. Click on Add to assign
media to the user.

See the Media types section for details on configuring media types.

Permissions

The Permissions tab contains information on:

• the user type (Zabbix User, Zabbix Admin, Zabbix Super Admin). Users cannot change their own type.
• host groups the user has access to. ’Zabbix User’ and ’Zabbix Admin’ users do not have access to any host groups and hosts
by default. To get access they need to be included in user groups that have access to respective host groups and hosts.

See the User permissions page for details.

2 Permissions

Overview

You can differentiate user permissions in Zabbix by defining the respective user type and then by including the unprivileged users
in user groups that have access to host group data.

User type

The user type defines the level of access to administrative menus and the default access to host group data.

351

User type Description

Zabbix User The user has access to the Monitoring menu. The user has no
access to any resources by default. Any permissions to host groups
must be explicitly assigned.

Zabbix Admin The user has access to the Monitoring and Configuration menus.
The user has no access to any host groups by default. Any
permissions to host groups must be explicitly given.

Zabbix Super Admin The user has access to everything: Monitoring, Configuration and
Administration menus. The user has a read-write access to all host
groups. Permissions cannot be revoked by denying access to
specific host groups.

Permissions to host groups

Access to any host data in Zabbix are granted to user groups on host group level only.

That means that an individual user cannot be directly granted access to a host (or host group). It can only be granted access to a
host by being part of a user group that is granted access to the host group that contains the host.

3 User groups

Overview

User groups allow to group users both for organizational purposes and for assigning permissions to data. Permissions to monitoring
data of host groups are assigned to user groups, not individual users.

It may often make sense to separate what information is available for one group of users and what - for another. This can be
accomplished by grouping users and then assigning varied permissions to host groups.

A user can belong to any amount of groups.

Configuration

To configure a user group:

• Go to Administration → User groups
• Click on Create user group (or on the group name to edit an existing group)
• Edit group attributes in the form

The User group tab contains general group attributes:

352

Parameter Description

Group name Unique group name.
Users The In group block contains a listing of the members of this group.

To add users to the group select them in the Other groups block
and click on «.

Frontend access How the users of the group are authenticated.
System default - use default authentication
Internal - use Zabbix authentication. Ignored if HTTP
authentication is set
Disabled - access to Zabbix GUI is forbidden

Enabled Status of user group and group members.
Checked - user group and users are enabled
Unchecked - user group and users are disabled

Debug mode Mark this checkbox to activate debug mode for the users.

The Permissions tab allows you to specify user group access to host group (and thereby host) data:

Current permissions to host groups are displayed in the Permissions block.

If current permissions of the host group are inherited by all nested host groups, that is indicated by the including subgroups text
in the parenthesis after the host group name. (Note that in versions 3.2.0, 3.2.1 the same is expressed by a forward slash and
asterisk ’/*’ after a host group name.)

You may change the level of access to a host group:

• Read-write - read-write access to a host group;
• Read - read-only access to a host group;
• Deny - access to a host group denied;
• None - no permissions are set.

Use the selection field below to select host groups and the level of access to them (note that selecting None will remove host group
from the list if the group is already in the list). If you wish to include nested host groups, mark the Include subgroups checkbox.
This field is auto-complete so starting to type the name of a host group will offer a dropdown of matching groups. If you wish to
see all host groups, click on Select.

Host access from several user groups

A user may belong to any number of user groups. These groups may have different access permissions to hosts.

Therefore, it is important to know what hosts an unprivileged user will be able to access as a result. For example, let us consider
how access to host X (in Hostgroup 1) will be affected in various situations for a user who is in user groups A and B.

• If Group A has only Read access to Hostgroup 1, but Group B Read-write access to Hostgroup 1, the user will get Read-write
access to ’X’.

Attention:
“Read-write” permissions have precedence over “Read” permissions starting with Zabbix 2.2.

353

• In the same scenario as above, if ’X’ is simultaneously also in Hostgroup 2 that is denied to Group A or B, access to ’X’ will
be unavailable, despite a Read-write access to Hostgroup 1.

• If Group A has no permissions defined and Group B has a Read-write access to Hostgroup 1, the user will get Read-write
access to ’X’.

• If Group A has Deny access to Hostgroup 1 and Group B has a Read-write access to Hostgroup 1, the user will get access to
’X’ denied.

Other details

• An Admin level user with Read-write access to a host will not be able to link/unlink templates, if he has no access to the
Templates group. With Read access to Templates group he will be able to link/unlink templates to the host, however, will not
see any templates in the template list and will not be able to operate with templates in other places.

• An Admin level user with Read access to a host will not see the host in the configuration section host list; however, the host
triggers will be accessible in IT service configuration.

• Any non-Zabbix Super Admin user (including ’guest’) can see network maps as long as the map is empty or has only images.
When hosts, host groups or triggers are added to the map, permissions are respected. The same applies to screens and
slideshows as well. The users, regardless of permissions, will see any objects that are not directly or indirectly linked to
hosts.

7. IT services

Overview IT services are intended for those who want to get a high-level (business) view of monitored infrastructure. In many
cases, we are not interested in low-level details, like the lack of disk space, high processor load, etc. What we are interested in is
the availability of service provided by our IT department. We can also be interested in identifying weak places of IT infrastructure,
SLA of various IT services, the structure of existing IT infrastructure, and other information of a higher level.

Zabbix IT services provide answers to all mentioned questions.

IT services is a hierarchy representation of monitored data.

A very simple IT service structure may look like:

IT Service
|
|-Workstations
| |
| |-Workstation1
| |
| |-Workstation2
|
|-Servers

Each node of the structure has attribute status. The status is calculated and propagated to upper levels according to the selected
algorithm. At the lowest level of IT services are triggers. The status of individual nodes is affected by the status of their triggers.

Note:
Note that triggers with a Not classified or Information severity do not impact SLA calculation.

Configuration To configure IT services, go to: Configuration → IT services.

On this screen you can build a hierarchy of your monitored infrastructure. The highest-level parent service is ’root’. You can build
your hierarchy downward by adding lower-level parent services and then individual nodes to them.

354

Click on Add child to add services. To edit an existing service, click on its name. A form is displayed where you can edit the service
attributes.

Configuring an IT service

The Service tab contains general service attributes:

Parameter Description

Name Service name.
Parent service Parent service the service belongs to.

355

Parameter Description

Status calculation algorithm Method of calculating service status:
Do not calculate - do not calculate service status
Problem, if at least one child has a problem - problem status,
if at least one child service has a problem
Problem, if all children have problems - problem status, if all
child services are having problems

Calculate SLA Enable SLA calculation and display.
Acceptable SLA (in %) SLA percentage that is acceptable for this service. Used for

reporting.
Trigger Linkage to trigger:

None - no linkage
trigger name - linked to the trigger, thus depends on the trigger
status
Services of the lowest level must be linked to triggers. (Otherwise
their state will not be represented accurately.)
When triggers are linked, their state prior to linking is not counted.

Sort order Sort order for display, lowest comes first.

The Dependencies tab contains services the service depends on. Click on Add to add a service from those that are configured.

Hard and soft dependency

Availability of a service may depend on several other services, not just one. The first option is to add all those directly as child
services.

However, if some service is already added somewhere else in the services tree, it cannot be simply moved out of there to a child
service here. How to create a dependency on it? The answer is ”soft” linking. Add the service and mark the Soft check box. That
way the service can remain in its original location in the tree, yet be depended upon from several other services. Services that are
”soft-linked” are displayed in grey in the tree. Additionally, if a service has only ”soft” dependencies, it can be deleted directly,
without deleting child services first.

The Time tab contains the service time specification.

356

Parameter Description

Service times By default, all services are expected to operate 24x7x365. If
exceptions needed, add new service times.

New service time Service times:
Uptime - service uptime
Downtime - service state within this period does not affect SLA.
One-time downtime - a single downtime. Service state within
this period does not affect SLA.
Add the respective hours.
Note: Service times affect only the service they are configured for.
Thus, a parent service will not take into account the service time
configured on a child service (unless a corresponding service time
is configured on the parent service as well).
Service times are taken into account when calculating IT service
status and SLA by the frontend. However, information on service
availability is being inserted into database continuously, regardless
of service times.

Display To monitor IT services, go to Monitoring → IT services.

8. Web monitoring

Overview With Zabbix you can check several availability aspects of web sites.

Attention:
To perform web monitoring Zabbix server must be initially configured with cURL (libcurl) support.

To activate web monitoring you need to define web scenarios. A web scenario consists of one or several HTTP requests or ”steps”.
The steps are periodically executed by Zabbix server in a pre-defined order. If a host is monitored by proxy, the steps are executed
by the proxy.

Since Zabbix 2.2 web scenarios are attached to hosts/templates in the same way as items, triggers, etc. That means that web
scenarios can also be created on a template level and then applied to multiple hosts in one move.

357

The following information is collected in any web scenario:

• average download speed per second for all steps of whole scenario
• number of the step that failed
• last error message

The following information is collected in any web scenario step:

• download speed per second
• response time
• response code

For more details, see web monitoring items.

Data collected from executing web scenarios is kept in the database. The data is automatically used for graphs, triggers and
notifications.

Zabbix can also check if a retrieved HTML page contains a pre-defined string. It can execute a simulated login and follow a path
of simulated mouse clicks on the page.

Zabbix web monitoring supports both HTTP and HTTPS. When running a web scenario, Zabbix will optionally follow redirects (see
option Follow redirects below). Maximum number of redirects is hard-coded to 10 (using cURL option CURLOPT_MAXREDIRS). All
cookies are preserved during the execution of a single scenario.

See also known issues for web monitoring using HTTPS protocol.

Configuring a web scenario To configure a web scenario:

• Go to: Configuration → Hosts (or Templates)
• Click on Web in the row of the host/template
• Click on Create scenario to the right (or on the scenario name to edit an existing scenario)
• Enter parameters of the scenario in the form

The Scenario tab allows you to configure the general parameters of a web scenario.

358

http://curl.haxx.se/libcurl/c/CURLOPT_MAXREDIRS.html

General parameters:

Parameter Description

Host Name of the host/template that the scenario belongs to.
Name Unique scenario name.

Starting with Zabbix 2.2, the name may contain supported macros.

359

Parameter Description

Application Select an application the scenario will belong to.
Web scenario items will be grouped under the selected application
in Monitoring → Latest data.

New application Enter the name of a new application for the scenario.
Update interval (in sec) How often the scenario will be executed, in seconds.
Attempts The number of attempts for executing web scenario steps. In case

of network problems (timeout, no connectivity, etc) Zabbix can
repeat executing a step several times. The figure set will equally
affect each step of the scenario. Up to 10 attempts can be
specified, default value is 1.
Note: Zabbix will not repeat a step because of a wrong response
code or the mismatch of a required string.
This parameter is supported starting with Zabbix 2.2.

Agent Select a client agent.
Zabbix will pretend to be the selected browser. This is useful when
a website returns different content for different browsers.
User macros can be used in this field, starting with Zabbix 2.2.

HTTP proxy You can specify an HTTP proxy to use, using the format:
http://[username[:password]@]proxy.mycompany.com[:port]
By default, 1080 port will be used.
If specified, the proxy will overwrite proxy related environment
variables like http_proxy, HTTPS_PROXY. If not specified, the proxy
will not overwrite proxy related environment variables.
The entered value is passed on ”as is”, no sanity checking takes
place. You may also enter a SOCKS proxy address. If you specify
the wrong protocol, the connection will fail and the item will
become unsupported. With no protocol specified, the proxy will be
treated as an HTTP proxy.
Note: Only simple authentication is supported with HTTP proxy.
User macros can be used in this field.
This parameter is supported starting with Zabbix 2.2.

Variables List of scenario-level variables (macros) that may be used in
scenario steps (URL, Post variables).
They have the following format:
{macro1}=value1
{macro2}=value2
{macro3}=regex:<regular expression>
For example:
{username}=Alexei
{password}=kj3h5kJ34bd
{hostid}=regex:hostid is ([0-9]+)
If the value part starts with regex: then the part after it will be
treated as a regular expression that will search the web page and,
if found, store the match in the variable. Note that at least one
subgroup must be present so that the matched value can be
extracted.
The macros can then be referenced in the steps as {username},
{password} and {hostid}. Zabbix will automatically replace them
with actual values.
Having variables that search a webpage for a regular expression
match is supported starting with Zabbix 2.2.
HOST.* macros and user macros can be used in this field, starting
with Zabbix 2.2.
Note: Variables are not URL-encoded.

360

Parameter Description

Headers HTTP headers that will be sent when performing a request.
Headers should be listed using the same syntax as they would
appear in the HTTP protocol, optionally using some additional
features supported by the CURLOPT_HTTPHEADER cURL option.
For example:
Accept-Charset: utf-8
Accept-Language: en-US
Content-Type: application/xml; charset=utf-8
HOST.* macros and user macros can be used in this field.
Specifying custom headers is supported starting with Zabbix 2.4.

Enabled The scenario is active if this box is checked, otherwise - disabled.

Note that when editing an existing scenario, two extra buttons are available in the form:

Create another scenario based on the properties of the
existing one.

Delete history and trend data for the scenario. This will
make the server perform the scenario immediately after
deleting the data.

Note:
If HTTP proxy field is left empty, another way for using an HTTP proxy is to set proxy related environment variables.
For HTTP checks - set the http_proxy environment variable for the Zabbix server user. For example,
//http_proxy=http:%%//%%proxy_ip:proxy_port//.
For HTTPS checks - set the HTTPS_PROXY environment variable. For example,
//HTTPS_PROXY=http:%%//%%proxy_ip:proxy_port//. More details are available by running a shell command: # man
curl.

The Steps tab allows you to configure the web scenario steps. To add a web scenario step, click on Add.

361

http://curl.haxx.se/libcurl/c/CURLOPT_HTTPHEADER.html

Configuring steps

Step parameters:

Parameter Description

Name Unique step name.
Starting with Zabbix 2.2, the name may contain supported macros.

362

Parameter Description

URL URL to connect to and retrieve data. For example:
http://www.zabbix.com
https://www.google.com
GET variables can be passed in the URL parameter.
Starting with Zabbix 2.2, this field may contain supported macros.
Limited to 2048 characters starting with Zabbix 2.4.

Post HTTP POST variables, if any.
For example:
id=2345&userid={user}
If {user} is defined as a macro of the web scenario, it will be
replaced by its value when the step is executed.
The information will be sent as is, variables are not URL-encoded.
Starting with Zabbix 2.2, this field may contain supported macros.

Variables List of step-level variables (macros) that may be used for GET and
POST functions.
Step-level variables override scenario-level variables or variables
from the previous step. However, the value of a step-level variable
only affects the step after (and not the current step).
They have the following format:
{macro}=value
{macro}=regex:<regular expression>
For more information see variable description on the scenario level.
Having step-level variables is supported starting with Zabbix 2.2.
Note: Variables are not URL-encoded.

Headers HTTP headers that will be sent when performing a request.
Headers should be listed using the same syntax as they would
appear in the HTTP protocol.
Headers on the step level will overwrite the headers specified for
the scenario.
For example, ’User-Agent:’ with no data will remove User-Agent set
on scenario level.
HOST.* macros and user macros can be used in this field.
This sets the CURLOPT_HTTPHEADER cURL option.
Specifying custom headers is supported starting with Zabbix 2.4.

Follow redirects Mark the checkbox to follow HTTP redirects.
This sets the CURLOPT_FOLLOWLOCATION cURL option.
This option is supported starting with Zabbix 2.4.

Retrieve only headers Mark the checkbox to retrieve only headers from the HTTP
response.
This sets the CURLOPT_NOBODY cURL option.
This option is supported starting with Zabbix 2.4.

Timeout Zabbix will not spend more than the set amount of seconds on
processing the URL. Actually this parameter defines maximum time
for making connection to the URL and maximum time for
performing an HTTP request. Therefore, Zabbix will not spend more
than 2 x Timeout seconds on the step.
For example: 15

Required string Required regular expressions pattern.
Unless retrieved content (HTML) matches required pattern the step
will fail. If empty, no check is performed.
For example:
Homepage of Zabbix
Welcome.*admin
Note: Referencing regular expressions created in the Zabbix
frontend is not supported in this field.
Starting with Zabbix 2.2, this field may contain supported macros.

Required status codes List of expected HTTP status codes. If Zabbix gets a code which is
not in the list, the step will fail.
If empty, no check is performed.
For example: 200,201,210-299
Starting with Zabbix 2.2, user macros can be used in this field.

363

http://curl.haxx.se/libcurl/c/CURLOPT_HTTPHEADER.html
http://curl.haxx.se/libcurl/c/CURLOPT_FOLLOWLOCATION.html
http://curl.haxx.se/libcurl/c/CURLOPT_NOBODY.html

Note:
Any changes in web scenario steps will only be saved when the whole scenario is saved.

See also a real-life example of how web monitoring steps can be configured.

Configuring authentication The Authentication tab allows you to configure scenario authentication options.

Authentication parameters:

Parameter Description

Authentication Authentication options.
None - no authentication used.
Basic authentication - basic authentication is used.
NTLM authentication - NTLM (Windows NT LAN Manager)
authentication is used.
Selecting an authentication method will provide two additional
fields for entering a user name and password.
User macros can be used in user and password fields, starting with
Zabbix 2.2.

SSL verify peer Mark the checkbox to verify the SSL certificate of the web server.
The server certificate will be automatically taken from system-wide
certificate authority (CA) location. You can override the location of
CA files using Zabbix server or proxy configuration parameter
SSLCALocation.
This sets the CURLOPT_SSL_VERIFYPEER cURL option.
This option is supported starting with Zabbix 2.4.

SSL verify host Mark the checkbox to verify that the Common Name field or the
Subject Alternate Name field of the web server certificate matches.
This sets the CURLOPT_SSL_VERIFYHOST cURL option.
This option is supported starting with Zabbix 2.4.

SSL certificate file Name of the SSL certificate file used for client authentication. The
certificate file must be in PEM1 format. If the certificate file
contains also the private key, leave the SSL key file field empty. If
the key is encrypted, specify the password in SSL key password
field. The directory containing this file is specified by Zabbix server
or proxy configuration parameter SSLCertLocation.
HOST.* macros and user macros can be used in this field.
This sets the CURLOPT_SSLCERT cURL option.
This option is supported starting with Zabbix 2.4.

364

http://en.wikipedia.org/wiki/NTLM
http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html
http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYHOST.html
http://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html

Parameter Description

SSL key file Name of the SSL private key file used for client authentication. The
private key file must be in PEM1 format. The directory containing
this file is specified by Zabbix server or proxy configuration
parameter SSLKeyLocation.
HOST.* macros and user macros can be used in this field.
This sets the CURLOPT_SSLKEY cURL option.
This option is supported starting with Zabbix 2.4.

SSL key password SSL private key file password.
User macros can be used in this field.
This sets the CURLOPT_KEYPASSWD cURL option.
This option is supported starting with Zabbix 2.4.

Attention:
[1] Zabbix supports certificate and private key files in PEM format only. In case you have your certificate and private key
data in PKCS #12 format file (usually with extention *.p12 or *.pfx) you may generate the PEM file from it using the following
commands:
openssl pkcs12 -in ssl-cert.p12 -clcerts -nokeys -out ssl-cert.pem
openssl pkcs12 -in ssl-cert.p12 -nocerts -nodes -out ssl-cert.key

Note:
Zabbix server picks up changes in certificates without a restart.

Note:
If you have client certificate and private key in a single file just specify it in a ”SSL certificate file” field and leave ”SSL key
file” field empty. The certificate and key must still be in PEM format. Combining certificate and key is easy:
cat client.crt client.key > client.pem

Display To view detailed data of defined web scenarios, go to Monitoring → Web or Latest data. Click on the scenario name to
see more detailed statistics.

365

http://curl.haxx.se/libcurl/c/CURLOPT_SSLKEY.html
http://curl.haxx.se/libcurl/c/CURLOPT_KEYPASSWD.html

An overview of web monitoring scenarios can be viewed in Monitoring → Dashboard.

Extended monitoring Sometimes it is necessary to log received HTML page content. This is especially useful if some web
scenario step fails. Debug level 5 (trace) serves that purpose. This level can be set in server and proxy configuration files or
using a runtime control option (-R log_level_increase="http poller,N", where N is the process number). The following
examples demonstrate how extended monitoring can be started provided debug level 4 is already set:

Increase log level of all http pollers:
shell> zabbix_server -R log_level_increase="http poller"

Increase log level of second http poller:
shell> zabbix_server -R log_level_increase="http poller,2"

If extended web monitoring is not required it can be stopped using the -R log_level_decrease option.

1 Web monitoring items

Overview

Some new items are automatically added for monitoring when web scenarios are created.

366

Scenario items

As soon as a scenario is created, Zabbix automatically adds the following items for monitoring, linking them to the selected
application.

Item Description

Download speed for scenario
<Scenario>

This item will collect information about the download speed (bytes per second) of the
whole scenario, i.e. average for all steps.
Item key: web.test.in[Scenario„bps]
Type: Numeric(float)

Failed step of scenario
<Scenario>

This item will display the number of the step that failed on the scenario. If all steps are
executed successfully, 0 is returned.
Item key: web.test.fail[Scenario]
Type: Numeric(unsigned)

Last error message of scenario
<Scenario>

This item returns the last error message text of the scenario. A new value is stored only if
the scenario has a failed step. If all steps are ok, no new value is collected.
Item key: web.test.error[Scenario]
Type: Character

The actual scenario name will be used instead of ”Scenario”.

Note:
Web monitoring items are added with a 30 day history and a 90 day trend retention period.

Note:
If scenario name starts with a doublequote or contains comma or square bracket, it will be properly quoted in item keys.
In other cases no additional quoting will be performed.

These items can be used to create triggers and define notification conditions.

Example 1

To create a ”Web scenario failed” trigger, you can define a trigger expression:

{host:web.test.fail[Scenario].last()}<>0

Make sure to replace ’Scenario’ with the real name of your scenario.

Example 2

To create a ”Web scenario failed” trigger with a useful problem description in the trigger name, you can define a trigger with name:

Web scenario "Scenario" failed: {ITEM.VALUE}

and trigger expression:

{host:web.test.error[Scenario].strlen()}>0 and {host:web.test.fail[Scenario].last()}>0

Make sure to replace ’Scenario’ with the real name of your scenario.

Example 3

To create a ”Web application is slow” trigger, you can define a trigger expression:

{host:web.test.in[Scenario,,bps].last()}<10000

Make sure to replace ’Scenario’ with the real name of your scenario.

Scenario step items

As soon as a step is created, Zabbix automatically adds the following items for monitoring, linking them to the selected application.

Item Description

Download speed for step
<Step> of scenario <Scenario>

This item will collect information about the download speed (bytes per second) of the
step.
Item key: web.test.in[Scenario,Step,bps]
Type: Numeric(float)

367

Item Description

Response time for step <Step>
of scenario <Scenario>

This item will collect information about the response time of the step in seconds.
Response time is counted from the beginning of the request until all information has
been transferred.
Item key: web.test.time[Scenario,Step,resp]
Type: Numeric(float)

Response code for step <Step>
of scenario <Scenario>

This item will collect response codes of the step.
Item key: web.test.rspcode[Scenario,Step]
Type: Numeric(unsigned)

Actual scenario and step names will be used instead of ”Scenario” and ”Step” respectively.

Note:
Web monitoring items are added with a 30 day history and a 90 day trend retention period.

Note:
If scenario name starts with a doublequote or contains comma or square bracket, it will be properly quoted in item keys.
In other cases no additional quoting will be performed.

These items can be used to create triggers and define notification conditions. For example, to create a ”Zabbix GUI login is too
slow” trigger, you can define a trigger expression:

{zabbix:web.test.time[ZABBIX GUI,Login,resp].last()}>3

2 Real life scenario

Overview

This section presents a step-by-step real-life example of how web monitoring can be used.

Let’s use Zabbix Web monitoring to monitor the web interface of Zabbix. We want to know if it is available, provides the right
content and how quickly it works. To do that we also must log in with our user name and password.

Scenario

Step 1

Add a new web scenario.

We will add a scenario to monitor the web interface of Zabbix. The scenario will execute a number of steps.

Go to Configuration → Hosts, pick a host and click on Web in the row of that host. Then click on Create scenario.

368

In the new scenario form we will name the scenario as Zabbix frontend and create a new Zabbix frontend application for it.

Note that we will also create two macros, {user} and {password}.

Step 2

Define steps for the scenario.

Click on Add button in the Steps tab to add individual steps.

369

Web scenario step 1

We start by checking that the first page responds correctly, returns with HTTP response code 200 and contains text ”Zabbix SIA”.

When done configuring the step, click on Add.

Web scenario step 2

370

We continue by logging in to the Zabbix frontend, and we do so by reusing the macros (variables) we defined on the scenario level,
{user} and {password}.

Attention:
Note that Zabbix frontend uses JavaScript redirect when logging in, thus first we must log in, and only in further steps we
may check for logged-in features. Additionally, the login step must use full URL to index.php file.

371

All the post variables must be on a single line and concatenated with & symbol. Example string for logging into Zabbix frontend:

name=Admin&password=zabbix&enter=Sign in

If using the macros as in this example, login string becomes:

name={user}&password={password}&enter=Sign in

Take note also of how we are getting the content of {sid} variable (session ID), which will be required in step 4.

Web scenario step 3

Being logged in, we should now verify the fact. To do so, we check for a string that is only visible when logged in - for example,
Administration.

372

Web scenario step 4

Now that we have verified that frontend is accessible and we can log in and retrieve logged-in content, we should also log out -
otherwise Zabbix database will become polluted with lots and lots of open session records.

373

Web scenario step 5

We can also check that we have logged out by looking for the Username string.

374

Complete configuration of steps

A complete configuration of web scenario steps should look like this:

375

Step 3

Save the finished web monitoring scenario.

The scenario will appear in Monitoring → Web:

Click on the scenario name to see more detailed statistics:

376

9. Virtual machine monitoring

Overview Support of monitoring VMware environments is available in Zabbix starting with version 2.2.0.

Zabbix can use low-level discovery rules to automatically discover VMware hypervisors and virtual machines and create hosts to
monitor them, based on pre-defined host prototypes.

The default dataset in Zabbix offers several ready-to-use templates for monitoring VMware vCenter or ESX hypervisor.

The minimum required VMware vCenter or vSphere version is 4.1.

Details The virtual machine monitoring is done in two steps. First, virtual machine data is gathered by vmware collector Zabbix
processes. Those processes obtain necessary information from VMware web services over the SOAP protocol, pre-process it and
store into Zabbix server shared memory. Then, this data is retrieved by pollers using Zabbix simple check VMware keys.

Starting with Zabbix version 2.4.4 the collected data is divided into 2 types: VMware configuration data and VMware performance
counter data. Both types are collected independently by vmware collectors. Because of this it is recommended to enable more
collectors than the monitored VMware services. Otherwise retrieval of VMware performance counter statistics might be delayed
by the retrieval of VMware configuration data (which takes a while for large installations).

377

Currently only datastore, network interface and disk device statistics and custom performance counter items are based on the
VMware performance counter information.

Configuration For virtual machine monitoring to work, Zabbix should be compiled with the --with-libxml2 and --with-libcurl
compilation options.

The following configuration file options can be used to tune the Virtual machine monitoring:

• StartVMwareCollectors - the number of pre-forked vmware collector instances.
This value depends on the number of VMware services you are going to monitor. For the most cases this should be:
servicenum < StartVMwareCollectors < (servicenum * 2)
where servicenum is the number of VMware services. E. g. if you have 1 VMware service tomonitor set StartVMwareCollectors
to 2, if you have 3 VMware services, set it to 5. Note that in most cases this value should not be less than 2 and should not
be 2 times greater than the number of VMware services that you monitor. Also keep in mind that this value also depends on
your VMware environment size and VMwareFrequency and VMwarePerfFrequency configuration parameters (see below).

• VMwareCacheSize
• VMwareFrequency
• VMwarePerfFrequency
• VMwareTimeout

For more details, see the configuration file pages for Zabbix server and proxy.

Discovery Zabbix can use a low-level discovery rule to automatically discover VMware hypervisors and virtual machines.

378

Discovery rule key in the above screenshot is vmware.hv.discovery[{$URL}].

Host prototypes Host prototypes can be created with the low-level discovery rule. When virtual machines are discovered, these
prototypes become real hosts. Prototypes, before becoming discovered, cannot have their own items and triggers, other than those
from the linked templates. Discovered hosts will belong to an existing host and will take the IP of the existing host for the host
configuration.

In a host prototype configuration, LLD macros are used for the host name, visible name and host group prototype fields. Linkage
to existing host groups, template linkage and encryption are other options that can be set.

If Create enabled is checked, the host will be added in an enabled state. If unchecked, the host will be added, but in disabled state.

Discovered hosts are prefixed with the name of the discovery rule that created them, in the host list. Discovered hosts can be
manually deleted. Discovered hosts will also be automatically deleted, based on the Keep lost resources period (in days) value
of the discovery rule. Most of the configuration options are read-only, except for enabling/disabling the host and host inventory.
Discovered hosts cannot have host prototypes of their own.

Ready-to-use templates The default dataset in Zabbix offers several ready-to-use templates for monitoring VMware vCenter
or directly ESX hypervisor.

These templates contain pre-configured LLD rules as well as a number of built-in checks for monitoring virtual installations.

Note that ”Template Virt VMware” template should be used for VMware vCenter and ESX hypervisor monitoring. The ”Template
Virt VMware Hypervisor” and ”Template Virt VMware Guest” templates are used by discovery and normally should not be manually
linked to a host.

379

Note:
If your server has been upgraded from a pre-2.2 version and has no such templates, you can import them manually,
downloading from the community page with official templates. However, these templates have dependencies from the
VMware VirtualMachinePowerState and VMware status value maps, so it is necessary to create these value maps first
(using an SQL script, manually or importing from an XML) before importing the templates.

Host configuration To use VMware simple checks the host must have the following user macros defined:

• {$URL} - VMware service (vCenter or ESX hypervisor) SDK URL (https://servername/sdk)
• {$USERNAME} - VMware service user name
• {$PASSWORD} - VMware service {$USERNAME} user password

Example The following example demonstrates how to quickly setup VMware monitoring on Zabbix:

• compile zabbix server with required options (--with-libxml2 and --with-libcurl)
• set the StartVMwareCollectors option in Zabbix server configuration file to 1 or more
• create a new host
• set the host macros required for VMware authentication:

{{..:..:assets:en:manual:vm_monitoring:vm_host_macros.png|}}
* Link the host to the VMware service template:

{{..:..:assets:en:manual:vm_monitoring:vm_host_templates.png|}}
* Click on the //Add// button to save the host

Extended logging The data gathered by VMware collector can be logged for detailed debugging using debug level 5. This
level can be set in server and proxy configuration files or using a runtime control option (-R log_level_increase="vmware
collector,N", where N is a process number). The following examples demonstrate how extended logging can be started provided
debug level 4 is already set:

Increase log level of all vmware collectors:
shell> zabbix_server -R log_level_increase="vmware collector"

Increase log level of second vmware collector:
shell> zabbix_server -R log_level_increase="vmware collector,2"

If extended logging of VMware collector data is not required it can be stopped using the -R log_level_decrease option.

Troubleshooting

• In case of unavailable metrics, please make sure if they are not made unavailable or turned off by default in recent VMware
vSphere versions or if some limits are not placed on performance-metric database queries. See ZBX-12094 for additional
details.

Virtual machine discovery key fields

The following table lists fields returned by virtual machine related discovery keys.

380

http://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/SQLs_for_Official_Templates
https://servername/sdk
https://support.zabbix.com/browse/ZBX-12094

Item key

Description Field Retrieved
content

vmware.cluster.discovery
Performs cluster discovery. {#CLUSTER.ID}Cluster

identi-
fier.

{#CLUSTER.NAME}Cluster
name.

vmware.hv.discovery
Performs hypervisor discovery. {#HV.UUID}Unique

hypervi-
sor
identi-
fier.

{#HV.ID} Hypervisor
identifier
(Host-
System
man-
aged
object
name).

{#HV.NAME}Hypervisor
name.

{#CLUSTER.NAME}Cluster
name,
might be
empty.

{#DATACENTER.NAME}Datacenter
name.

vmware.hv.datastore.discovery
Performs hypervisor datastore discovery. Note that multiple hypervisors can use the same datastore. {#DATASTORE}Datastore

name.
vmware.vm.discovery
Performs virtual machine discovery. {#VM.UUID}Unique

virtual
machine
identi-
fier.

{#VM.ID} Virtual
machine
identifier
(Virtual-
Machine
man-
aged
object
name).

{#VM.NAME}Virtual
machine
name.

{#HV.NAME}Hypervisor
name.

{#CLUSTER.NAME}Cluster
name,
might be
empty.

{#DATACENTER.NAME}Datacenter
name.

vmware.vm.net.if.discovery

381

Item key

Performs virtual machine network interface discovery. {#IFNAME} Network
interface
name.

vmware.vm.vfs.dev.discovery
Performs virtual machine disk device discovery. {#DISKNAME}Disk

device
name.

vmware.vm.vfs.fs.discovery
Performs virtual machine file system discovery. {#FSNAME}File

system
name.

10. Maintenance

Overview You can define maintenance periods for hosts and host groups in Zabbix. There are two maintenance types - with data
collection and with no data collection.

During a maintenance ”with data collection” triggers are processed as usual and events are created when required. However,
problem escalations are paused for hosts in maintenance, if the Pause operations while in maintenance option is checked in action
configuration. In this case, escalation steps that may include sending notifications or remote commands will be ignored for as long
as the maintenance period lasts.

For example, if escalation steps are scheduled at 0, 30 and 60 minutes after a problem start, and there is a half-hour long main-
tenance lasting from 10 minutes to 40 minutes after a real problem arises, steps two and three will be executed a half-hour later,
or at 60 minutes and 90 minutes (providing the problem still exists). Similarly, if a problem arises during the maintenance, the
escalation will start after the maintenance.

To receive problem notifications during the maintenance normally (without delay), you have to uncheck the Pause operations while
in maintenance option in action configuration.

Note:
If at least one host (used in the trigger expression) is not in maintenance mode, Zabbix will send a problem notification.

Zabbix server must be running during maintenance. Timer processes are responsible for switching host status to/from mainte-
nance at 0 seconds of every minute. A proxy will always collect data regardless of the maintenance type (including ”no data”
maintenance). The data is later ignored by the server if ’no data collection’ is set.

When ”no data” maintenance ends, triggers using nodata() function will not fire before the next check during the period they are
checking.

If a log item is added while a host is in maintenance and the maintenance ends, only new logfile entries since the end of the
maintenance will be gathered.

If a timestamped value is sent for a host that is in a “no data” maintenance type (e.g. using Zabbix sender) then this value will be
dropped however it is possible to send a timestamped value in for an expired maintenance period and it will be accepted.

Attention:
To ensure predictable behaviour of recurring maintenance periods (daily, weekly, monthly), it is required to use a common
timezone for all parts of Zabbix.

Configuration To configure a maintenance period:

• Go to: Configuration → Maintenance
• Click on Create maintenance period (or on the name of an existing maintenance period)

The Maintenance tab contains general maintenance period attributes:

382

Parameter Description

Name Name of the maintenance period.
Maintenance type Two types of maintenance can be set:

With data collection - data will be collected by the server during
maintenance, triggers will be processed
No data collection - data will not be collected by the server
during maintenance

Active since The date and time when executing maintenance periods becomes
active.
Note: Setting this time alone does not activate a maintenance
period; for that go to the Periods tab.

Active till The date and time when executing maintenance periods stops
being active.

Description Description of maintenance period.

The Periods tab allows you to define the exact days and hours when the maintenance takes place. Clicking on New opens a
flexible Maintenance period form where you can define the times - for daily, weekly, monthly or one-time maintenance.

383

Daily and weekly periods have an Every day/Every week parameter, which defaults to 1. Setting it to 2 wouldmake themaintenance
take place every two days or every two weeks and so on. The starting day or week is the day or week that Active since time falls
on.

For example, having Active since set to 2013-09-06 12:00 and an hour long daily recurrent period every two days at 23:00 will result
in the first maintenance period starting on 2013-09-06 at 23:00, while the second maintenance period will start on 2013-09-08 at
23:00. Or, with the same Active since time and an hour long daily recurrent period every two days at 01:00, the first maintenance
period will start on 2013-09-08 at 01:00, and the second maintenance period on 2013-09-10 at 01:00.

Attention:
It is possible to set maintenance time and occurrence in Periods which partly or fully doesn’t match with active period set
in Maintenance.
Maintenance periods outside active period will not be represented in the frontend and will not affect problem notification
behavior.

The Hosts & Groups tab allows you to select the hosts and host groups for maintenance.

384

Starting with Zabbix 3.2.2, specifying a parent host group implicitly selects all nested host groups. Thus the maintenance will also
be executed on hosts from nested groups.

Display Icon with an orange wrench near a host name indicates that this host is in maintenance in the Monitoring → Dashboard,
Monitoring → Triggers and Inventory → Hosts → Host inventory details sections.

Maintenance details are displayed when the mouse pointer is positioned over the icon.

Note:
The display of hosts in maintenance in the Dashboard can be unset altogether with the dashboard filtering function.

Additionally, hosts in maintenance get an orange background in Monitoring → Maps and in Configuration → Hosts their status is
displayed as ’In maintenance’.

385

11. Regular expressions

Overview POSIX extended regular expressions are supported in Zabbix.

There are two ways of using regular expressions in Zabbix:

• manually entering a regular expression
• using a global regular expression created in Zabbix

Regular expressions You may manually enter a regular expression in supported places. Note that the expression may not start
with @ because that symbol is used in Zabbix for referencing global regular expressions.

Global regular expressions There is an advanced editor for creating and testing complex regular expressions in Zabbix fron-
tend.

Once a regular expression has been created this way, it can be used in several places in the frontend by referring to its name,
prefixed with @, for example, @mycustomregexp.

To create a global regular expression:

• Go to: Administration → General
• Select Regular expressions from the dropdown
• Click on New regular expression

The Expressions tab allows to set the regular expression name and add subexpressions.

Parameter Description

Name Set the regular expression name. Any Unicode characters are
allowed.

Expressions Click on Add in the Expressions block to add a new
subexpression.

Expression
type

Select expression type:
Character string included - match the substring
Any character string included - match any substring from
a comma-delimited list
Character string not included - match any string except
the substring
Result is TRUE - match the regular expression
Result is FALSE - do not match the regular expression

ExpressionEnter substring/regular expression.

Since Zabbix 2.4.0, a forward slash (/) in the expression is treated literally, rather than a delimiter. This way it is possible to save
expressions containing a slash, whereas previously it would produce an error.

Attention:
A custom regular expression name in Zabbix may contain commas, spaces, etc. In those cases where that may lead to
misinterpretation when referencing (for example, a comma in the parameter of an item key) the whole reference may be
put in quotes like this: ”@My custom regexp for purpose1, purpose2”.
Regular expression names must not be quoted in other locations (for example, in LLD rule properties).

386

https://en.wikipedia.org/wiki/Regular_expression#POSIX_extended

Example Use of the following regular expression in LLD to discover databases not taking into consideration a database with a
specific name:

^TESTDATABASE$

Chosen Expression type: ”Result is FALSE”. Doesn’t match name, containing string ”TESTDATABASE”.

More complex example A custom regular expression may consist of multiple subexpressions, and it can be tested in the Test
tab by providing a test string.

Results show the status of each subexpression and total custom expression status.

Total custom expression status is defined as Combined result. If several sub expressions are defined Zabbix uses AND logical
operator to calculate Combined result. It means that if at least one Result is False Combined result has also False status.

Explanation of global regular expressions

Global regexp Expression Description

File systems for discovery ^(btrfs\|ext2\|ext3\|ext4\|jfs\|reiser\|xfs\|ffs\|ufs\|jfs\|jfs2\|vxfs\|hfs\|refs\|ntfs\|fat32\|zfs)$Matches ”btrfs” or ”ext2” or ”ext3” or
”ext4” or ”jfs” or ”reiser” or ” xfs” or
”ffs” or ”ufs” or ”jfs” or ”jfs2” or ”vxfs”
or ”hfs” or ”refs” or ”ntfs” or ”fat32”
or ”zfs”

387

Global regexp Expression Description

Network interfaces for discovery ^Software Loopback
Interface

Matches strings starting with
”Software Loopback Interface”

^lo$ Matches ”lo”
^(In)?[Ll]oop[Bb]ack[0-9._]*$Matches strings that optionally start

with ”In”, then have ”L” or ”l”, then
”oop”, then ”B” or ”b”, then ”ack”,
which can be optionally followed by
any number of digits, dots or
underscores

^NULL[0-9.]*$ Matches strings staring with ”NULL”
optionally followed by any number of
digits or dots

^[Ll]o[0-9.]*$ Matches strings starting with ”Lo” or
”lo” and optionally followed by any
number of digits or dots

^[Ss]ystem$ Matches ”System” or ”system”
^Nu[0-9.]*$ Matches strings staring with ”Nu”

optionally followed by any number of
digits or dots

Storage devices for SNMP discovery ^(Physical memory\|Virtual
memory\|Memory
buffers\|Cached
memory\|Swap space)$

Matches ”Physical memory” or ”Virtual
memory” or ”Memory buffers” or
”Cached memory” or ”Swap space”

Windows service names for discovery ^(MMCSS\|gupdate\|SysmonLog\|clr_optimization_v2.0.50727_32\|clr_optimization_v4.0.30319_32)$Matches ”MMCSS” or ”gupdate” or
”SysmonLog” or strings like
”clr_optimization_v2.0.50727_32” and
”clr_optimization_v4.0.30319_32”
where instead of dots you can put any
character except newline.

Windows service startup states for discovery ^(automatic\|automatic
delayed)$

Matches ”automatic” or ”automatic
delayed”.

12. Event acknowledgment

Overview Problem events in Zabbix can be acknowledged by users.

If a user gets notified about of a problem event, they can go to Zabbix frontend, navigate from events to the acknowledgment
screen and acknowledge the problem. When acknowledging, they can enter their comment for it, saying that they are working on
it or whatever else they may feel like saying about it.

This way, if another system user spots the same problem, they immediately see if it has been acknowledged and the comments
so far.

This way the workflow of resolving problems with more than one system user can take place in a more coordinated way.

Acknowledgment status is also used when defining action operations. You can define, for example, that a notification is sent to a
higher level manager only if an event is not acknowledged for some time.

To acknowledge events, a user must have at least read permission to the corresponding trigger.

Acknowledgment screen The acknowledgment status of problems is displayed in:

• Monitoring → Dashboard (Last 20 issues and System status widgets)
• Monitoring → Problems
• Monitoring → Problems → Event details
• Monitoring → Overview (with triggers selected)
• Monitoring → Triggers
• Monitoring → Screens (with Host group issues, Host issues, System status and Triggers overview elements)

The Ack column contains either a ’Yes’ or a ’No’, indicating an acknowledged or an unacknowledged problem respectively. A ’Yes’
may also have a number with it, indicating the number of comments for the problem so far.

388

Both ’Yes’ and ’No’ are links. Clicking them will take you to the acknowledgment screen.

To acknowledge a problem, enter your comment and click on Acknowledge. You may choose to acknowledge the selected event
only or the selected event and all other unacknowledged problems of the trigger(s).

Any previous comments for the problem are displayed below the message area.

Event acknowledgment in the frontend can be turned on/off in Administration→ General. When turned off, acknowledgment related
controls are hidden from view except for the operation condition in action operations. Also, while turning acknowledgment on/off
affects the frontend, it remains available via the API.

Closing problem manually You can manually close a problem through the acknowledgement screen by checking the Close
problem option. Closing a problem in this way is possible if the Allow manual close option is checked in trigger configuration.

Display Acknowledgment information is fully displayed in the event details accessible by clicking the time of event in Monitoring
→ Problems.

Based on acknowledgment information it is possible to configure how the problem count is displayed in the dashboard or maps. To
do that, you have to make selections in the Problem display option, available in both map configuration and the dashboard filter. It
is possible to display all problem count, unacknowledged problem count as separated from the total or unacknowledged problem
count only.

Acknowledgment status is displayed in Monitoring → Triggers. There, acknowledgment status is also used with the trigger filtering
options. You can filter by unacknowledged triggers or triggers with the last event unacknowledged.

13. Configuration export/import

Overview Zabbix export/import functionality makes it possible to exchange various configuration entities between one Zabbix
system and another.

Typical use cases for this functionality:

• share templates or network maps - Zabbix users may share their configuration parameters
• share web scenarios on share.zabbix.com - export a template with the web scenarios and upload to share.zabbix.com. Then
others can download the template and import the XML into Zabbix.

• integrate with third-party tools - the universal XML format makes integration and data import/export possible with third party
tools and applications

What can be exported/imported

Objects that can be exported/imported are:

389

• host groups (through Zabbix API only)
• templates (including all directly attached items, triggers, graphs, screens, discovery rules, web scenarios and template
linkage)

• hosts (including all directly attached items, triggers, graphs, discovery rules, web scenarios and template linkage)
• network maps (including all related images; map export/import is supported since Zabbix 1.8.2)
• images
• screens
• value maps

Export format

Data can be exported using the Zabbix web frontend or Zabbix API. Supported export formats are:

• XML - in the frontend
• XML or JSON - in Zabbix API

Details about export

• All supported elements are exported in one file.
• Host and template entities (items, triggers, graphs, discovery rules) that are inherited from linked templates are not exported.
Any changes made to those entities on a host level (such as changed item interval, modified regular expression or added
prototypes to the low-level discovery rule) will be lost when exporting; when importing, all entities from linked templates are
re-created as on the original linked template.

• Entities created by low-level discovery and any entities depending on them are not exported. For example, a trigger created
for an LLD-rule generated item will not be exported.

• Triggers and graphs that use web items are exported starting with Zabbix 3.2.2; they are not exported in Zabbix 3.2.0 and
3.2.1.

Details about import

• Import stops at the first error.
• When updating existing images during image import, ”imagetype” field is ignored, i.e. it is impossible to change image type
via import.

• When importing hosts/templates using the ”Delete missing” option, host/template macros not present in the imported XML
file will be deleted too.

• Empty tags for items, triggers, graphs, host/template applications, discoveryRules, itemPrototypes, triggerPrototypes, graph-
Prototypes are meaningless i.e. it’s the same as if it was missing. Other tags, for example, item applications, are meaningful
i.e. empty tag means no applications for item, missing tag means don’t update applications.

• Import supports both XML and JSON, the import file must have a correct file extension: .xml for XML and .json for JSON.
• See compatibility information about supported XML versions.

<?xml version="1.0" encoding="UTF-8"?>
<zabbix_export>

<version>3.2</version>
<date>2016-10-04T06:20:11Z</date>

</zabbix_export>

XML base format

<?xml version="1.0" encoding="UTF-8"?>

Default header for XML documents.

<zabbix_export>

Root element for Zabbix XML export.

<version>3.2</version>

Export version.

<date>2016-10-04T06:20:11Z</date>

Date when export was created in ISO 8601 long format.

Other tags are dependent on exported objects.

390

Groups

Frontend can export groups only with hosts or templates. When host or template is exported all groups it belongs to are exported
with it automatically.

API allows to export groups independently from hosts or templates.
<groups>

<group>
<name>Zabbix servers</name>

</group>
</groups>

groups/group

Parameter Type Description Details

name string Group name.

Hosts

Hosts are exported with many related objects and object relations.

Host export contains:

• host data
• host inventory data
• group relations
• template relations
• interfaces
• macros
• applications
• items
• discovery rules with all prototypes
• web scenarios
• value maps

When a host is imported and updated, it can only be linked to additional templates and never be unlinked from any.

<hosts>
<host>

<host>Zabbix server</host>
<name>Zabbix server</name>
<description>Zabbix monitoring server.</description>
<proxy/>
<status>0</status>
<ipmi_authtype>-1</ipmi_authtype>
<ipmi_privilege>2</ipmi_privilege>
<ipmi_username/>
<ipmi_password/>
<templates/>
<groups>

<group>
<name>Zabbix servers</name>

</group>
</groups>
<interfaces>

<interface>
<default>1</default>
<type>1</type>
<useip>1</useip>
<ip>127.0.0.1</ip>

391

<dns/>
<port>20001</port>
<interface_ref>if1</interface_ref>

</interface>
</interfaces>
<applications>

<application>
<name>Memory</name>

</application>
<application>

<name>Zabbix agent</name>
</application>

</applications>
<items>

<item>
<name>Agent ping</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>
<snmp_oid/>
<key>agent.ping</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units/>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description>The agent always returns 1 for this item. It could be used in combination with nodata() for availability check.</description>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Zabbix agent</name>

</application>
</applications>
<valuemap>

<name>Zabbix agent ping status</name>
</valuemap>
<logtimefmt/>
<interface_ref>if1</interface_ref>

</item>
<item>

<name>Available memory</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>

392

<snmp_oid/>
<key>vm.memory.size[available]</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units>B</units>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description>Available memory is defined as free+cached+buffers memory.</description>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Memory</name>

</application>
</applications>
<valuemap/>
<logtimefmt/>
<interface_ref>if1</interface_ref>

</item>
</items>
<discovery_rules>

<discovery_rule>
<name>Mounted filesystem discovery</name>
<type>0</type>
<snmp_community/>
<snmp_oid/>
<key>vfs.fs.discovery</key>
<delay>3600</delay>
<status>0</status>
<allowed_hosts/>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<delay_flex/>
<params/>
<ipmi_sensor/>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<filter>{#FSTYPE}:@File systems for discovery</filter>
<lifetime>30</lifetime>

393

<description>Discovery of file systems of different types as defined in global regular expression "File systems for discovery".</description>
<item_prototypes>

<item_prototype>
<name>Free disk space on $1</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>
<snmp_oid/>
<key>vfs.fs.size[{#FSNAME},free]</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units>B</units>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description/>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Filesystems</name>

</application>
</applications>
<valuemap/>
<logtimefmt/>
<application_prototypes>

<application_prototype>
<name>{#FSNAME}</name>

</application_prototype>
</application_prototypes>
<interface_ref>if1</interface_ref>

</item_prototype>
</item_prototypes>
<trigger_prototypes>

<trigger_prototype>
<expression>{Zabbix server 2:vfs.fs.size[{#FSNAME},pfree].last()}<20</expression>
<name>Free disk space is less than 20% on volume {#FSNAME}</name>
<url/>
<status>0</status>
<priority>2</priority>
<description/>
<type>0</type>

</trigger_prototype>
</trigger_prototypes>
<graph_prototypes>

<graph_prototype>

394

<name>Disk space usage {#FSNAME}</name>
<width>600</width>
<height>340</height>
<yaxismin>0.0000</yaxismin>
<yaxismax>0.0000</yaxismax>
<show_work_period>0</show_work_period>
<show_triggers>0</show_triggers>
<type>2</type>
<show_legend>1</show_legend>
<show_3d>1</show_3d>
<percent_left>0.0000</percent_left>
<percent_right>0.0000</percent_right>
<ymin_type_1>0</ymin_type_1>
<ymax_type_1>0</ymax_type_1>
<ymin_item_1>0</ymin_item_1>
<ymax_item_1>0</ymax_item_1>
<graph_items>

<graph_item>
<sortorder>0</sortorder>
<drawtype>0</drawtype>
<color>C80000</color>
<yaxisside>0</yaxisside>
<calc_fnc>2</calc_fnc>
<type>2</type>
<item>

<host>Zabbix server 2</host>
<key>vfs.fs.size[{#FSNAME},total]</key>

</item>
</graph_item>
<graph_item>

<sortorder>1</sortorder>
<drawtype>0</drawtype>
<color>00C800</color>
<yaxisside>0</yaxisside>
<calc_fnc>2</calc_fnc>
<type>0</type>
<item>

<host>Zabbix server 2</host>
<key>vfs.fs.size[{#FSNAME},free]</key>

</item>
</graph_item>

</graph_items>
</graph_prototype>

</graph_prototypes>
<interface_ref>if1</interface_ref>

</discovery_rule>
</discovery_rules>
<httptests>

<httptest>
<name>Zabbix</name>
<application/>
<delay>60</delay>
<attempts>1</attempts>
<agent>Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0)</agent>
<http_proxy/>
<variables/>
<headers/>
<status>0</status>
<authentication>0</authentication>
<http_user/>
<http_password/>
<verify_peer>0</verify_peer>

395

<verify_host>0</verify_host>
<ssl_cert_file/>
<ssl_key_file/>
<ssl_key_password/>
<steps>

<step>
<name>Main page</name>
<url>https://zabbix.com</url>
<posts/>
<variables/>
<headers/>
<follow_redirects>1</follow_redirects>
<retrieve_mode>0</retrieve_mode>
<timeout>60</timeout>
<required/>
<status_codes>200</status_codes>

</step>
</steps>

</httptest>
</httptests>
<macros>

<macro>
<macro>{$M1}</macro>
<value>m1</value>

</macro>
<macro>

<macro>{$M2}</macro>
<value>m2</value>

</macro>
</macros>
<inventory/>

</host>
</hosts>
<value_maps>

<value_map>
<name>Zabbix agent ping status</name>
<mappings>

<mapping>
<value>1</value>
<newvalue>Up</newvalue>

</mapping>
</mappings>

</value_map>
</value_maps>

hosts/host

Parameter Type Description Details

host string Host name.
name string Visible host name.
description string Host description.
status int Host status.
proxy int Proxy name.
ipmi_authtype int IPMI authentication type.
ipmi_privilege int IPMI privilege.
ipmi_username string IPMI username.
ipmi_password string IPMI password.

hosts/host/groups/group

396

Parameter Type Description Details

name string Group name.

hosts/host/templates/template

Parameter Type Description Details

name string Template technical name.

hosts/host/interfaces/interface

Column name Type Description

default integer Interface status:
0 - Not default interface
1 - Default interface

type integer Interface type:
1 - agent
2 - SNMP
3 - IPMI
4 - JMX

useip integer How to connect to the host:
0 – connect to the host using DNS name
1 – connect to the host using IP address

ip varchar IP address, can be either IPv4 or IPv6.
dns varchar DNS name.
port varchar Port number.
interface_ref varchar Interface reference name to be used in items.

hosts/host/applications/application

Parameter Type Description Details

name string Application name.

hosts/host/items/item

Parameter Type Description

type int Item type:
0 - Zabbix agent
1 - SNMPv1
2 - Trapper
3 - Simple check
4 - SNMPv2
5 - Internal
6 - SNMPv3
7 - Active check
8 - Aggregate
9 - HTTP test (web monitoring scenario step)
10 - External
11 - Database monitor
12 - IPMI
13 - SSH
14 - telnet
15 - Calculated
16 - JMX
17 - SNMP trap

snmp_community string SNMP Community name
snmp_oid string SNMP OID

397

Parameter Type Description

port int Item custom port
name string Item name
key string Item key
delay int Check interval
history int How long to keep item history (days)
trends int How long to keep item trends (days)
status int Item status
value_type int Value type
trapper_hosts string
units string Value units
multiplier int Value multiplier
delta int Store values as delta
snmpv3_securityname string SNMPv3 security name
snmpv3_securitylevel int SNMPv3 security level
snmpv3_authpassphrase string SNMPv3 authentication phrase
snmpv3_privpassphrase string SNMPv3 private phrase
formula string
delay_flex string Flexible delay
params string
ipmi_sensor string IPMI sensor
data_type int
authtype int
username string
password string
publickey string
privatekey string
interface_ref varchar Reference to host interface
description string Item description
inventory_link int Host inventory field number, that will be updated with

the value returned by the item
applications Item applications
valuemap Value map assigned to item
logtimefmt string Format of the time in log entries. Used only by log

items.

hosts/host/items/item/applications/application

Parameter Type Description Details

name string Application name.

hosts/host/items/item/valuemap

Parameter Type Description Details

name string Value map name.

value_maps/value_map

Parameter Type Description Details

name string Value map name.
mappings Value mappings for value map.

value_maps/value_map/mappings/mapping

Parameter Type Description Details

value string Value mapping original value.

398

Parameter Type Description Details

newvalue string Value to which the original value is mapped to.

14. Discovery

Please use the sidebar to access content in the Discovery section.

1 Network discovery

Overview

Zabbix offers automatic network discovery functionality that is effective and very flexible.

With network discovery properly set up you can:

• speed up Zabbix deployment
• simplify administration
• use Zabbix in rapidly changing environments without excessive administration

Zabbix network discovery is based on the following information:

• IP ranges
• Availability of external services (FTP, SSH, WEB, POP3, IMAP, TCP, etc)
• Information received from Zabbix agent (only unencrypted mode is supported)
• Information received from SNMP agent

It does NOT provide:

• Discovery of network topology

Network discovery basically consists of two phases: discovery and actions.

Discovery

Zabbix periodically scans the IP ranges defined in network discovery rules. The frequency of the check is configurable for each
rule individually.

Note that one discovery rule will always be processed by a single discoverer process. The IP range will not be split between multiple
discoverer processes.

Each rule has a set of service checks defined to be performed for the IP range.

Note:
Discovery checks are processed independently from the other checks. If any checks do not find a service (or fail), other
checks will still be processed.

Every check of a service and a host (IP) performed by the network discovery module generates a discovery event.

Event Check of service result

Service Discovered The service is ’up’ after it was ’down’ or when discovered for the first time.
Service Up The service is ’up’, consecutively.
Service Lost The service is ’down’ after it was ’up’.
Service Down The service is ’down’, consecutively.
Host Discovered At least one service of a host is ’up’ after all services of that host were ’down’ or a service is

discovered which belongs to a not registered host.
Host Up At least one service of a host is ’up’, consecutively.
Host Lost All services of a host are ’down’ after at least one was ’up’.
Host Down All services of a host are ’down’, consecutively.

Actions

Discovery events can be the basis of relevant actions, such as:

399

• Sending notifications
• Adding/removing hosts
• Enabling/disabling hosts
• Adding hosts to a group
• Removing hosts from a group
• Linking hosts to/unlinking from a template
• Executing remote scripts

These actions can be configured with respect to the device type, IP, status, uptime/downtime, etc. For full details on configuring
actions for network-discovery based events, see action operation and conditions pages.

Host creation

A host is added if the Add host operation is selected. A host is also added, even if the Add host operation is missing, if you select
operations resulting in actions on a host. Such operations are:

• enable host
• disable host
• add host to a host group
• link template to a host

When adding hosts, a host name is the result of reverse DNS lookup or IP address if reverse lookup fails. Lookup is performed from
the Zabbix server or Zabbix proxy, depending on which is doing the discovery. If lookup fails on the proxy, it is not retried on the
server. If the host with such a name already exists, the next host would get _2 appended to the name, then _3 and so on.

Created hosts are added to the Discovered hosts group (by default, configurable in Administration → General → Other). If you wish
hosts to be added to another group, add a Remove from host groups operation (specifying ”Discovered hosts”) and also add an
Add to host groups operation (specifying another host group), because a host must belong to a host group.

If a host already exists with the discovered IP address, a new host is not created. However, if the discovery action contains
operations (link template, add to host group, etc), they are performed on the existing host.

Host removal

Hosts discovered by a network discovery rule are removed automatically from Monitoring → Discovery if a discovered entity is not
in the rule’s IP range any more. Hosts are removed immediately.

Interface creation when adding hosts

When hosts are added as a result of network discovery, they get interfaces created according to these rules:

• the services detected - for example, if an SNMP check succeeded, an SNMP interface will be created
• if a host responded both to Zabbix agent and SNMP requests, both types of interfaces will be created
• if uniqueness criteria are Zabbix agent or SNMP-returned data, the first interface found for a host will be created as the
default one. Other IP addresses will be added as additional interfaces.

• if a host responded to agent checks only, it will be created with an agent interface only. If it would start responding to SNMP
later, additional SNMP interfaces would be added.

• if 3 separate hosts were initially created, having been discovered by the ”IP” uniqueness criteria, and then the discovery rule
is modified so that hosts A, B and C have identical uniqueness criteria result, B and C are created as additional interfaces
for A, the first host. The individual hosts B and C remain. In Monitoring → Discovery the added interfaces will be displayed
in the ”Discovered device” column, in black font and indented, but the ”Monitored host” column will only display A, the first
created host. ”Uptime/Downtime” is not measured for IPs that are considered to be additional interfaces.

Configuring a network discovery rule

Overview

To configure a network discovery rule used by Zabbix to discover hosts and services:

• Go to Configuration → Discovery
• Click on Create rule (or on the rule name to edit an existing one)
• Edit the discovery rule attributes

Rule attributes

400

Parameter Description

Name Unique name of the rule. For example, ”Local network”.
Discovery by proxy What performs discovery:

no proxy - Zabbix server is doing discovery
<proxy name> - this proxy performs discovery

401

Parameter Description

IP range The range of IP addresses for discovery. It may have the following
formats:
Single IP: 192.168.1.33
Range of IP addresses: 192.168.1-10.1-255. The range is limited
by the total number of covered addresses (less than 64K).
IP mask: 192.168.4.0/24
supported IP masks:
/16 - /30 for IPv4 addresses
/112 - /128 for IPv6 addresses
List: 192.168.1.1-255, 192.168.2.1-100, 192.168.2.200,
192.168.4.0/24
Since Zabbix 3.0.0 this field supports spaces, tabulation and
multiple lines.

Delay (in sec) This parameter defines how often Zabbix will execute the rule.
Delay is measured after the execution of previous discovery
instance ends so there is no overlap.

Checks Zabbix will use this list of checks for discovery.
Supported checks: SSH, LDAP, SMTP, FTP, HTTP, HTTPS, POP,
NNTP, IMAP, TCP, Telnet, Zabbix agent, SNMPv1 agent, SNMPv2
agent, SNMPv3 agent, ICMP ping.
A protocol-based discovery uses the net.tcp.service[]
functionality to test each host, except for SNMP which queries an
SNMP OID. Zabbix agent is tested by querying an item in
unencrypted mode. Please see agent items for more details.
The ’Ports’ parameter may be one of following:
Single port: 22
Range of ports: 22-45
List: 22-45,55,60-70

Device uniqueness criteria Uniqueness criteria may be:
IP address - no processing of multiple single-IP devices. If a
device with the same IP already exists it will be considered already
discovered and a new host will not be added.
Type of discovery check - either SNMP or Zabbix agent check.

Enabled With the check-box marked the rule is active and will be executed
by Zabbix server.
If unmarked, the rule is not active. It won’t be executed.

Changing proxy setting

Since Zabbix 2.2.0 the hosts discovered by different proxies are always treated as different hosts. While this allows to perform
discovery on matching IP ranges used by different subnets, changing proxy for an already monitored subnet is complicated because
the proxy changes must be also applied to all discovered hosts. For example the steps to replace proxy in a discovery rule:

1. disable discovery rule
2. sync proxy configuration
3. replace the proxy in the discovery rule
4. replace the proxy for all hosts discovered by this rule
5. enable discovery rule

A real life scenario

In this example we would like to set up network discovery for the local network having an IP range of 192.168.1.1-192.168.1.254.

In our scenario we want to:

• discover those hosts that have Zabbix agent running
• run discovery every 10 minutes
• add a host to monitoring if the host uptime is more than 1 hour
• remove hosts if the host downtime is more than 24 hours
• add Linux hosts to the ”Linux servers” group
• add Windows hosts to the ”Windows servers” group
• use Template OS Linux for Linux hosts
• use Template OS Windows for Windows hosts

402

Step 1

Defining a network discovery rule for our IP range.

Zabbix will try to discover hosts in the IP range of 192.168.1.1-192.168.1.254 by connecting to Zabbix agents and getting the
value from system.uname key. The value received from the agent can be used to apply different actions for different operating
systems. For example, link Windows servers to Template OS Windows, Linux servers to Template OS Linux.

The rule will be executed every 10 minutes (600 seconds).

When this rule is added, Zabbix will automatically start the discovery and generating discovery-based events for further processing.

Step 2

Defining an action for adding the discovered Linux servers to the respective group/template.

403

The action will be activated if:

• the ”Zabbix agent” service is ”up”
• the value of system.uname (the Zabbix agent key we used in rule definition) contains ”Linux”
• Uptime is 1 hour (3600 seconds) or more

The action will execute the following operations:

404

• add the discovered host to the ”Linux servers” group (and also add host if it wasn’t added previously)
• link host to the ”Template OS Linux” template. Zabbix will automatically start monitoring the host using items and triggers
from ”Template OS Linux”.

Step 3

Defining an action for adding the discovered Windows servers to the respective group/template.

405

Step 4

Defining an action for removing lost servers.

A server will be removed if ”Zabbix agent” service is ’down’ for more than 24 hours (86400 seconds).

2 Active agent auto-registration

Overview

It is possible to allow active Zabbix agent auto-registration, after which the server can start monitoring them. This way new hosts
can be added for monitoring without configuring them manually on the server.

Auto registration can happen when a previously unknown active agent asks for checks.

The feature might be very handy for automatic monitoring of new Cloud nodes. As soon as you have a new node in the Cloud
Zabbix will automatically start the collection of performance and availability data of the host.

Active agent auto-registration also supports the monitoring of added hosts with passive checks. When the active agent asks for

406

checks, providing it has the ’ListenIP’ or ’ListenPort’ configuration parameters defined in the configuration file, these are sent along
to the server. (If multiple IP addresses are specified, the first one is sent to the server.)

Server, when adding the new auto-registered host, uses the received IP address and port to configure the agent. If no IP address
value is received, the one used for the incoming connection is used. If no port value is received, 10050 is used.

Configuration

Specify server

Make sure you have the Zabbix server identified in the agent configuration file - zabbix_agentd.conf

ServerActive=10.0.0.1

Unless you specifically define a Hostname in zabbix_agentd.conf, the system hostname of agent location will be used by server
for naming the host. The system hostname in Linux can be obtained by running the ’hostname’ command.

Restart the agent after making any changes to the configuration file.

Action for active agent auto-registration

When server receives an auto-registration request from an agent it calls an action. An action of event source ”Auto registration”
must be configured for agent auto-registration.

Note:
Setting up network discovery is not required to have active agents auto-register.

In the Zabbix frontend, go to Configuration → Actions, select Auto registration as the event source and click on Create action:

• In the Action tab, give your action a name
• Optionally specify conditions. If you are going to use the ”Host metadata” condition, see the next section.
• In the Operations tab, add relevant operations, such as - ’Add host’, ’Add to host groups’ (for example, Discovered hosts),
’Link to templates’, etc.

Note:
If the hosts that will be auto-registering are likely to be supported for active monitoring only (such as hosts that are
firewalled from your Zabbix server) then you might want to create a specific template like Template_Linux-active to link to.

Using host metadata

When agent is sending an auto-registration request to the server it sends its hostname. In some cases (for example, Amazon cloud
nodes) a hostname is not enough for Zabbix server to differentiate discovered hosts. Host metadata can be optionally used to
send other information from an agent to the server.

Host metadata is configured in the agent configuration file - zabbix_agentd.conf. There are 2 ways of specifying host metadata in
the configuration file:

HostMetadata
HostMetadataItem

See the description of the options in the link above.

<note:important>An auto-registration attempt happens every time an active agent sends a request to refresh active checks to
the server. The delay between requests is specified in the RefreshActiveChecks parameter of the agent. The first request is sent
immediately after the agent is restarted. :::

Example 1

Using host metadata to distinguish between Linux and Windows hosts.

Say you would like the hosts to be auto-registered by the Zabbix server. You have active Zabbix agents (see ”Configuration”
section above) on your network. There are Windows hosts and Linux hosts on your network and you have ”Template OS Linux”
and ”Template OS Windows” templates available in your Zabbix frontend. So at host registration you would like the appropriate
Linux/Windows template to be applied to the host being registered. By default only the hostname is sent to the server at auto-
registration, which might not be enough. In order to make sure the proper template is applied to the host you should use host
metadata.

Agent configuration

The first thing to do is configuring the agents. Add the next line to the agent configuration files:

HostMetadataItem=system.uname

407

This way you make sure host metadata will contain ”Linux” or ”Windows” depending on the host an agent is running on. An
example of host metadata in this case:

Linux: Linux server3 3.2.0-4-686-pae #1 SMP Debian 3.2.41-2 i686 GNU/Linux
Windows: Windows WIN-0PXGGSTYNHO 6.0.6001 Windows Server 2008 Service Pack 1 Intel IA-32

Do not forget to restart the agent after making any changes to the configuration file.

Frontend configuration

Now you need to configure the frontend. Create 2 actions. The first action:

• Name: Linux host autoregistration
• Conditions: Host metadata like Linux
• Operations: Link to templates: Template OS Linux

Note:
You can skip an ”Add host” operation in this case. Linking to a template requires adding a host first so the server will do
that automatically.

The second action:

• Name: Windows host autoregistration
• Conditions: Host metadata like Windows
• Operations: Link to templates: Template OS Windows

Example 2

Using host metadata to allow some basic protection against unwanted hosts registering.

Agent configuration

Add the next line to the agent configuration file:

HostMetadata=Linux 21df83bf21bf0be663090bb8d4128558ab9b95fba66a6dbf834f8b91ae5e08ae

where ”Linux” is a platform, and the rest of the string is some hard-to-guess secret text.

Do not forget to restart the agent after making any changes to the configuration file.

Frontend configuration

Create an action in the frontend, using the above mentioned hard-to-guess secret code to disallow unwanted hosts:

• Name: Auto registration action Linux
• Conditions:

* Type of calculation: AND
* Condition (A): Host metadata like //Linux//
* Condition (B): Host metadata like //21df83bf21bf0be663090bb8d4128558ab9b95fba66a6dbf834f8b91ae5e08ae//

* Operations:
* Send message to users: Admin via all media
* Add to host groups: Linux servers
* Link to templates: Template OS Linux

Please note that this method alone does not provide strong protection because data are transmitted in plain text.

3 Low-level discovery

Overview

Low-level discovery provides a way to automatically create items, triggers, and graphs for different entities on a computer. For
instance, Zabbix can automatically start monitoring file systems or network interfaces on your machine, without the need to create
items for each file system or network interface manually. Additionally it is possible to configure Zabbix to remove unneeded entities
automatically based on actual results of periodically performed discovery.

In Zabbix, six types of discovery items are supported out of the box:

• discovery of file systems;
• discovery of network interfaces;
• discovery of CPUs and CPU cores;

408

• discovery of SNMP OIDs;
• discovery using ODBC SQL queries;
• discovery of Windows services.

A user can define their own types of discovery, provided they follow a particular JSON protocol.

The general architecture of the discovery process is as follows.

First, a user creates a discovery rule in ”Configuration” → ”Templates” → ”Discovery” column. A discovery rule consists of (1) an
item that discovers the necessary entities (for instance, file systems or network interfaces) and (2) prototypes of items, triggers,
and graphs that should be created based on the value of that item.

An item that discovers the necessary entities is like a regular item seen elsewhere: the server asks a Zabbix agent (or whatever
the type of the item is set to) for a value of that item, the agent responds with a textual value. The difference is that the value the
agent responds with should contain a list of discovered entities in a specific JSON format. While the details of this format are only
important for implementers of custom discovery checks, it is necessary to know that the returned value contains a list of macro →
value pairs. For instance, item ”net.if.discovery” might return two pairs: ”{#IFNAME}” → ”lo” and ”{#IFNAME}” → ”eth0”.

Note:
Low-level discovery items ”vfs.fs.discovery” and ”net.if.discovery” are supported since Zabbix agent version 2.0.
Discovery item ”system.cpu.discovery” is supported since Zabbix agent version 2.4.
Discovery of SNMP OIDs is supported since Zabbix server and proxy version 2.0.
Discovery using ODBC SQL queries is supported since Zabbix server and proxy version 3.0.

These macros are used in names, keys and other prototype fields where they are then substituted with the received values for
creating real items, triggers, graphs or even hosts for each discovered entity. See the full list of options for using LLD macros.

When the server receives a value for a discovery item, it looks at the macro → value pairs and for each pair generates real items,
triggers, and graphs, based on their prototypes. In the example with ”net.if.discovery” above, the server would generate one set
of items, triggers, and graphs for the loopback interface ”lo”, and another set for interface ”eth0”.

The following sections illustrate the process described above in detail and serve as a how-to for performing all types of discovery
mentioned above. The last section describes the JSON format for discovery items and gives an example of how to implement your
own file system discoverer as a Perl script.

Data limits for return values

There is no limit for low-level discovery rule JSON data if it is received directly by Zabbix server, because return values are processed
without being stored in a database. There’s also no limit for custom low-level discovery rules, however, if it is intended to acquire
custom LLD data using a user parameter, then user parameter return value limit applies (512 KB).

If data has to go through Zabbix proxy it has to store this data in database so database limits apply, for example, 2048 bytes on a
Zabbix proxy run with IBM DB2 database.

3.1 Discovery of file systems

To configure the discovery of file systems, do the following:

• Go to: Configuration → Templates
• Click on Discovery in the row of an appropriate template

• Click on Create discovery rule in the upper right corner of the screen
• Fill in the form with the following details

The Discovery rule tab contains general discovery rule attributes:

409

Parameter Description

Name Name of discovery rule.
Type The type of check to perform discovery; should be Zabbix agent or

Zabbix agent (active) for file system discovery.
Key An item with ”vfs.fs.discovery” key is built into the Zabbix agent on

many platforms (see supported item key list for details), and will
return a JSON with the list of file systems present on the computer
and their types.

410

Parameter Description

Update interval (in sec) This field specifies how often Zabbix performs discovery. In the
beginning, when you are just setting up file system discovery, you
might wish to set it to a small interval, but once you know it works
you can set it to 30 minutes or more, because file systems usually
do not change very often.
Note: If set to ’0’, the item will not be polled. However, if a flexible
interval also exists with a non-zero value, the item will be polled
during the flexible interval duration.

Custom intervals You can create custom rules for checking the item:
Flexible - create an exception to the Update interval (interval with
different frequency)
Scheduling - create a custom polling schedule.
For detailed information see Custom intervals. Scheduling is
supported since Zabix 3.0.0.

Keep lost resources period (in days) This field allows you to specify for how many days the discovered
entity will be retained (won’t be deleted) once its discovery status
becomes ”Not discovered anymore” (max 3650 days).
Note: If set to ”0”, entities will be deleted immediately. Using ”0”
is not recommended, since just wrongly editing the filter may end
up in the entity being deleted with all the historical data.

Description Enter a description.
Enabled If checked, the rule will be processed.

The Filters tab contains discovery rule filter definitions:

Parameter Description

Type of calculation The following options for calculating filters are available:
And - all filters must be passed;
Or - enough if one filter is passed;
And/Or - uses And with different macro names and Or with the
same macro name;
Custom expression - offers the possibility to define a custom
calculation of filters. The formula must include all filters in the list.
Limited to 255 symbols.

411

Parameter Description

Filters A filter can be used to generate real items, triggers, and graphs
only for certain file systems. It expects a POSIX Extended Regular
Expression. For instance, if you are only interested in C:, D:, and E:
file systems, you could put {#FSNAME} into ”Macro” and
”^C|^D|^E” regular expression into ”Regular expression” text
fields. Filtering is also possible by file system types using
{#FSTYPE} macro (e.g. ”^ext|^reiserfs”) and by drive types
(supported only by Windows agent) using {#FSDRIVETYPE} macro
(e.g., ”fixed”).
You can enter a regular expression or reference a global regular
expression in ”Regular expression” field.
In order to test a regular expression you can use ”grep -E”, for
example:
for f in ext2 nfs reiserfs smbfs; do echo $f \| grep -E '^ext\|^reiserfs' \|\| echo "SKIP: $f"; done{#FSDRIVETYPE}
macro on Windows is supported since Zabbix 3.0.0.
Defining several filters is supported since Zabbix 2.4.0.
Note that if some macro from the filter is missing in the response,
the found entity will be ignored.

Attention:
Zabbix database in MySQL must be created as case-sensitive if file system names that differ only by case are to be
discovered correctly.

Attention:
The mistake or typo in regex used in LLD rule may cause deleting thousands of configuration elements, historical values
and events for many hosts. For example, incorrect “File systems for discovery” regular expression may cause deleting
thousands of items, triggers, historical values and events.

Note:
Discovery rule history is not preserved.

Once a rule is created, go to the items for that rule and press ”Create prototype” to create an item prototype. Note how macro
{#FSNAME} is used where a file system name is required. When the discovery rule is processed, this macro will be substituted
with the discovered file system.

412

413

Attributes that are specific for item prototypes:

Parameter Description

New application prototype You may define a new application prototype.
In application prototypes you can use low-level discovery macros
that, after discovery, will be substituted with real values to create
applications that are specific for the discovered entity. See also
application discovery notes for more specific information.

Application prototypes Select from the existing application prototypes.
Create enabled If checked the item will be added in an enabled state.

If unchecked, the item will be added to a discovered entity, but in a
disabled state.

We can create several item prototypes for each file system metric we are interested in:

Then, we create trigger prototypes in a similar way:

414

Attributes that are specific for trigger prototypes:

Parameter Description

Create enabled If checked the trigger will be added in an enabled state.
If unchecked, the trigger will be added to a discovered entity, but
in a disabled state.

When real triggers are created from the prototypes, there may be a need to be flexible as to what constant (’20’ in our example)
is used for comparison in the expression. See how user macros with context can be useful to accomplish such flexibility.

You can define dependencies between trigger prototypes as well (supported since Zabbix 3.0). To do that, go to the Dependencies
tab. A trigger prototype may depend on another trigger prototype from the same low-level discovery (LLD) rule or on a regular

415

trigger. A trigger prototype may not depend on a trigger prototype from a different LLD rule or on a trigger created from trigger
prototype. Host trigger prototype cannot depend on a trigger from a template.

We can create graph prototypes, too:

Finally, we have created a discovery rule that looks like shown below. It has five item prototypes, two trigger prototypes, and one
graph prototype.

416

Note: For configuring host prototypes, see the section about host prototype configuration in virtual machine monitoring.

The screenshots below illustrate how discovered items, triggers, and graphs look like in the host’s configuration. Discovered entities
are prefixed with an orange link to a discovery rule they come from.

Note that discovered entities will not be created in case there are already existing entities with the same uniqueness criteria, for
example, an item with the same key or graph with the same name.

Items (similarly, triggers and graphs) created by a low-level discovery rule will be deleted automatically if a discovered entity (file
system, interface, etc) stops being discovered (or does not pass the filter anymore). In this case the items, triggers and graphs
will be deleted after the days defined in the Keep lost resources period field pass.

When discovered entities become ’Not discovered anymore’, a lifetime indicator is displayed in the item list. Move your mouse
pointer over it and a message will be displayed indicating how many days are left until the item is deleted.

If entities were marked for deletion, but were not deleted at the expected time (disabled discovery rule or item host), they will be
deleted the next time the discovery rule is processed.

Entities containing other entities, which are marked for deletion, will not update if changed on the discovery rule level. For example,
LLD-based triggers will not update if they contain items that are marked for deletion.

417

3.2 Discovery of network interfaces

Discovery of network interfaces is done in exactly the same way as discovery of file systems, except that you use the dis-
covery rule key ”net.if.discovery” instead of ”vfs.fs.discovery” and use macro {#IFNAME} instead of {#FSNAME} in filter and
item/trigger/graph prototypes.

Examples of item prototypes that you might wish to create based on ”net.if.discovery”: ”net.if.in[{#IFNAME},bytes]”,
”net.if.out[{#IFNAME},bytes]”.

See above for more information about the filter.

3.3 Discovery of CPUs and CPU cores

Discovery of CPUs and CPU cores is done in a similar fashion as network interface discovery with the exception being that the
discovery rule key is ”system.cpu.discovery”. This discovery key returns two macros - {#CPU.NUMBER} and {#CPU.STATUS}
identifying the CPU order number and status respectively. To note, a clear distinction cannot be made between actual, physical
processors, cores and hyperthreads. {#CPU.STATUS} on Linux, UNIX and BSD systems returns the status of the processor, which
can be either ”online” or ”offline”. OnWindows systems, this samemacro may represent a third value - ”unknown” - which indicates
that a processor has been detected, but no information has been collected for it yet.

CPU discovery relies on the agent’s collector process to remain consistent with the data provided by the collector and save resources
on obtaining the data. This has the effect of this item key not working with the test (-t) command line flag of the agent binary, which
will return a NOT_SUPPORTED status and an accompanying message indicating that the collector process has not been started.

Item prototypes that can be created based on CPU discovery include, for example, ”system.cpu.util[{#CPU.NUMBER}, <type>,
<mode>]” or ”system.hw.cpu[{#CPU.NUMBER}, <info>]”.

3.4 Discovery of SNMP OIDs

In this example, we will perform SNMP discovery on a switch. First, go to ”Configuration” → ”Templates”.

418

To edit discovery rules for a template, click on the link in the ”Discovery” column.

Then, press ”Create rule” and fill the form with the details in the screenshot below.

Unlike file system and network interface discovery, the item does not necessarily have to have ”snmp.discovery” key - item type
of SNMP agent is sufficient.

The OIDs to discover are defined in SNMP OID field in the following format: discovery[{#MACRO1}, oid1, {#MACRO2},
oid2, …,]

where {#MACRO1}, {#MACRO2}… are valid lld macro names and oid1, oid2... are OIDs capable of generating meaningful values
for these macros. A built-in macro {#SNMPINDEX} containing index of the discovered OID is applied to discovered entities. The
discovered entities are grouped by {#SNMPINDEX} macro value.

To understand what we mean, let us perform few snmpwalks on our switch:

$ snmpwalk -v 2c -c public 192.168.1.1 IF-MIB::ifDescr
IF-MIB::ifDescr.1 = STRING: WAN
IF-MIB::ifDescr.2 = STRING: LAN1
IF-MIB::ifDescr.3 = STRING: LAN2

$ snmpwalk -v 2c -c public 192.168.1.1 IF-MIB::ifPhysAddress
IF-MIB::ifPhysAddress.1 = STRING: 8:0:27:90:7a:75
IF-MIB::ifPhysAddress.2 = STRING: 8:0:27:90:7a:76
IF-MIB::ifPhysAddress.3 = STRING: 8:0:27:2b:af:9e

And set SNMP OID to: discovery[{#IFDESCR}, ifDescr, {#IFPHYSADDRESS}, ifPhysAddress]

Now this rule will discover entities with {#IFDESCR} macros set to WAN, LAN1 and LAN2, {#IFPHYSADDRESS} macros set to
8:0:27:90:7a:75, 8:0:27:90:7a:76, and 8:0:27:2b:af:9e, {#SNMPINDEX} macros set to the discovered OIDs indexes 1, 2 and
3:

{
"data": [

{
"{#SNMPINDEX}": "1",
"{#IFDESCR}": "WAN",
"{#IFPHYSADDRESS}": "8:0:27:90:7a:75"

},
{

"{#SNMPINDEX}": "2",
"{#IFDESCR}": "LAN1",
"{#IFPHYSADDRESS}": "8:0:27:90:7a:76"

},
{

"{#SNMPINDEX}": "3",
"{#IFDESCR}": "LAN2",
"{#IFPHYSADDRESS}": "8:0:27:2b:af:9e"

}
]

}

If an entity does not have the specified OID, then the corresponding macro will be omitted for this entity. For example if we have
the following data:

ifDescr.1 "Interface #1"
ifDescr.2 "Interface #2"
ifDescr.4 "Interface #4"

ifAlias.1 "eth0"
ifAlias.2 "eth1"

419

ifAlias.3 "eth2"
ifAlias.5 "eth4"

Then in this case SNMP discovery discovery[{#IFDESCR}, ifDescr, {#IFALIAS}, ifAlias] will return the following
structure:

{
"data": [

{
"{#SNMPINDEX}": 1,
"{#IFDESCR}": "Interface #1",
"{#IFALIAS}": "eth0"

},
{

"{#SNMPINDEX}": 2,
"{#IFDESCR}": "Interface #2",
"{#IFALIAS}": "eth1"

},
{

"{#SNMPINDEX}": 3,
"{#IFALIAS}": "eth2"

},
{

"{#SNMPINDEX}": 4,
"{#IFDESCR}": "Interface #4"

},
{

"{#SNMPINDEX}": 5,
"{#IFALIAS}": "eth4"

}
]

}

420

The following screenshot illustrates how we can use these macros in item prototypes:

421

Again, creating as many item prototypes as needed:

422

As well as trigger prototypes:

423

And graph prototypes:

424

A summary of our discovery rule:

425

When server runs, it will create real items, triggers and graphs based on the values the SNMP discovery rule returns. In the host
configuration they are prefixed with an orange link to a discovery rule they come from.

426

3.5 Discovery using ODBC SQL queries

This type of discovery is done using SQL queries, whose results get automatically transformed into a JSON object suitable for
low-level discovery. SQL queries are performed using items of type ”Database monitor”. Therefore, most of the instructions
on ODBC monitoring page apply in order to get a working ”Database monitor” discovery rule, the only difference being that
”db.odbc.discovery[<description>,<dsn>]” key should be used instead of ”db.odbc.select[<description>,<dsn>]”.

As a practical example to illustrate how the SQL query is transformed into JSON, let us consider low-level discovery of Zabbix proxies
by performing an ODBC query on Zabbix database. This is useful for automatic creation of ”zabbix[proxy,<name>,lastaccess]”
internal items to monitor which proxies are alive.

Let us start with discovery rule configuration:

427

Here, the following direct query on Zabbix database is used to select all Zabbix proxies, together with the number of hosts they
are monitoring. The number of hosts can be used, for instance, to filter out empty proxies:

mysql> SELECT h1.host, COUNT(h2.host) AS count FROM hosts h1 LEFT JOIN hosts h2 ON h1.hostid = h2.proxy_hostid WHERE h1.status IN (5, 6) GROUP BY h1.host;
+---------+-------+
| host | count |
+---------+-------+
| Japan 1 | 5 |
| Japan 2 | 12 |

428

| Latvia | 3 |
+---------+-------+
3 rows in set (0.01 sec)

By the internal workings of ”db.odbc.discovery[]” item, the result of this query gets automatically transformed into the following
JSON:

{
"data": [

{
"{#HOST}": "Japan 1",
"{#COUNT}": "5"

},
{

"{#HOST}": "Japan 2",
"{#COUNT}": "12"

},
{

"{#HOST}": "Latvia",
"{#COUNT}": "3"

}
]

}

It can be seen that column names become macro names and selected rows become the values of these macros.

Note:
If it is not obvious how a column name would be transformed into a macro name, it is suggested to use column aliases like
”COUNT(h2.host) AS count” in the example above.
In case a column name cannot be converted into a valid macro name, the discovery rule becomes not supported, with
the error message detailing the offending column number. If additional help is desired, the obtained column names are
provided under DebugLevel=4 in Zabbix server log file:
$ grep db.odbc.discovery /tmp/zabbix_server.log
...
23876:20150114:153410.856 In db_odbc_discovery() query:'SELECT h1.host, COUNT(h2.host) FROM hosts h1 LEFT JOIN hosts h2 ON h1.hostid = h2.proxy_hostid WHERE h1.status IN (5, 6) GROUP BY h1.host;'
23876:20150114:153410.860 db_odbc_discovery() column[1]:'host'
23876:20150114:153410.860 db_odbc_discovery() column[2]:'COUNT(h2.host)'
23876:20150114:153410.860 End of db_odbc_discovery():NOTSUPPORTED
23876:20150114:153410.860 Item [Zabbix server:db.odbc.discovery[proxies,{$DSN}]] error: Cannot convert column #2 name to macro.

Now that we understand how a SQL query is transformed into a JSON object, we can use {#HOST} macro in item prototypes:

429

Once discovery is performed, an item will be created for each proxy:

3.6 Discovery of Windows services

Windows service discovery is done in the same way as discovery of file systems. The key to use in the discovery rule is ”ser-
vice.discovery” and the following macros are supported for use in the filter and item/trigger/graph prototypes:

{#SERVICE.NAME}
{#SERVICE.DISPLAYNAME}
{#SERVICE.DESCRIPTION}

430

{#SERVICE.STATE}
{#SERVICE.STATENAME}
{#SERVICE.PATH}
{#SERVICE.USER}
{#SERVICE.STARTUP}
{#SERVICE.STARTUPNAME}

Based on Windows service discovery you may create an item prototype like ”service.info[{#SERVICE.NAME},<param>]”, where
param accepts the following values: state, displayname, path, user, startup or description. For example, to acquire the display
name of a service you should use a ”service.info[{#SERVICE.NAME},displayname]” item. If param value is not specified (”ser-
vice.info[{#SERVICE.NAME}]”), the default parameter state is used.

{#SERVICE.STATE} and {#SERVICE.STATENAME} macros return the same content, however, {#SERVICE.STATE} returns a numeri-
cal value (0-7), while {#SERVICE.STATENAME} returns text (running, paused, start pending, pause pending, continue pending, stop
pending, stopped or unknown). The same applies to {#SERVICE.STARTUP} and {#SERVICE.STARTUPNAME}, where one returns a
numerical value (0-4) while the other - text (automatic, automatic delayed, manual, disabled, unknown).

3.7 Setting up multiple LLD rules for the same item

Since Zabbix agent version 3.2 it is possible to alter low-level discovery item keys using ”Alias” parameter in zabbix_agentd.conf
file to enable configuration of several LLD rules for the same item.

3.8 Creating custom LLD rules

It is also possible to create a completely custom LLD rule, discovering any type of entities - for example, databases on a database
server.

To do so, a custom item should be created that returns JSON, specifying found objects and optionally - some properties of them.
The amount of macros per entity is not limited - while the built-in discovery rules return either one or two macros (for example,
two for filesystem discovery), it is possible to return more.

The required JSON format is best illustrated with an example. Suppose we are running an old Zabbix 1.8 agent (one that does not
support ”vfs.fs.discovery”), but we still need to discover file systems. Here is a simple Perl script for Linux that discovers mounted
file systems and outputs JSON, which includes both file system name and type. One way to use it would be as a UserParameter
with key ”vfs.fs.discovery_perl”:

###!/usr/bin/perl

$first = 1;

print "{\n";
print "\t\"data\":[\n\n";

for (`cat /proc/mounts`)
{

($fsname, $fstype) = m/\S+ (\S+) (\S+)/;

print "\t,\n" if not $first;
$first = 0;

print "\t{\n";
print "\t\t\"{#FSNAME}\":\"$fsname\",\n";
print "\t\t\"{#FSTYPE}\":\"$fstype\"\n";
print "\t}\n";

}

print "\n\t]\n";
print "}\n";

Attention:
Allowed symbols for LLD macro names are 0-9 , A-Z , _ , .

Lowercase letters are not supported in the names.

An example of its output (reformatted for clarity) is shown below. JSON for custom discovery checks has to follow the same format.

{
"data":[

431

{ "{#FSNAME}":"/", "{#FSTYPE}":"rootfs" },
{ "{#FSNAME}":"/sys", "{#FSTYPE}":"sysfs" },
{ "{#FSNAME}":"/proc", "{#FSTYPE}":"proc" },
{ "{#FSNAME}":"/dev", "{#FSTYPE}":"devtmpfs" },
{ "{#FSNAME}":"/dev/pts", "{#FSTYPE}":"devpts" },
{ "{#FSNAME}":"/lib/init/rw", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"/dev/shm", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"/home", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/tmp", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/usr", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/var", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/sys/fs/fuse/connections", "{#FSTYPE}":"fusectl" }

]
}

Then, in the discovery rule’s ”Filter” field, we could specify ”{#FSTYPE}” as a macro and ”rootfs|ext3” as a regular expression.

Note:
You don’t have to use macro names FSNAME/FSTYPE with custom LLD rules, you are free to use whatever names you like.

Note that, if using a user parameter, the return value is limited to 512 KB. For more details, see data limits for LLD return values.

3.9 Using LLD macros in user macro contexts

User macros with context can be used to accomplish more flexible thresholds in trigger expressions. Different thresholds may be
defined on user macro level and then used in trigger constants depending on the discovered context. Discovered context appears
when the low-level discovery macros used in the macros are resolved to real values.

To illustrate we can use data from the example above and assume that the following file systems will be discovered: /, /home,
/tmp, /usr, /var.

We may define a free-disk-space trigger prototype for a host, where the threshold is expressed by a user macro with context:

{host:vfs.fs.size[{#FSNAME},pfree].last()}<{$LOW_SPACE_LIMIT:"{#FSNAME}"}

Then add user macros:

• {$LOW_SPACE_LIMIT} 10
• {$LOW_SPACE_LIMIT:/home} 20
• {$LOW_SPACE_LIMIT:/tmp} 50

Now, once the file systems are discovered, events will be generated if /, /usr and /var filesystems have less than 10% of free
disk space, the /home filesystem - less than 20% of free disk space or the /tmp filesystem - less than 50% of free disk space.

Attention:
LLD macros are not supported inside of user macro contexts in trigger function parameters.

Notes on low-level discovery

Application discovery

Application prototypes support LLD macros.

One application prototype can be used by several item prototypes of the same discovery rule.

If created application prototype is not used by any item prototype it gets removed from ’Application prototypes’ list automatically.

Like other discovered entities applications follow the lifetime defined in discovery rule (’keep lost resources period’ setting) - they
are removed after not being discovered for the specified number of days.

If an application is not discovered anymore all discovered items are automatically removed from it, even if the application itself is
not yet removed because of the ’lost resources period’ setting.

Application prototypes defined by one discovery rule can’t discover the same application. In this situation only the first prototype
discovery will succeed, the rest will report appropriate LLD error. Only application prototypes defined in different discovery rules
can result in discovering the same application.

432

15. Distributed monitoring

Overview Zabbix provides an effective and reliable way of monitoring a distributed IT infrastructure using Zabbix proxies.

Proxies can be used to collect data locally on behalf of a centralized Zabbix server and then report the data to the server.

Proxy features

When making a choice of using/not using a proxy, several considerations must be taken into account.

Proxy

Lightweight Yes
GUI No
Works independently Yes
Easy maintenance Yes
Automatic DB creation1 Yes
Local administration No
Ready for embedded hardware Yes
One way TCP connections Yes
Centralised configuration Yes
Generates notifications No

Note:
[1] Automatic DB creation feature only works with SQLite. Other databases require a manual setup.

1 Proxies

Overview

A Zabbix proxy can collect performance and availability data on behalf of the Zabbix server. This way, a proxy can take on itself
some of the load of collecting data and offload the Zabbix server.

Also, using a proxy is the easiest way of implementing centralized and distributed monitoring, when all agents and proxies report
to one Zabbix server and all data is collected centrally.

A Zabbix proxy can be used to:

• Monitor remote locations
• Monitor locations having unreliable communications
• Offload the Zabbix server when monitoring thousands of devices
• Simplify the maintenance of distributed monitoring

433

The proxy requires only one TCP connection to the Zabbix server. This way it is easier to get around a firewall as you only need to
configure one firewall rule.

Attention:
Zabbix proxy must use a separate database. Pointing it to the Zabbix server database will break the configuration.

All data collected by the proxy is stored locally before transmitting it over to the server. This way no data is lost due to any temporary
communication problems with the server. The ProxyLocalBuffer and ProxyOfflineBuffer parameters in the proxy configuration file
control for how long the data are kept locally.

Attention:
It may happen that a proxy, which receives the latest configuration changes directly from Zabbix server database, has
a more up-to-date configuration than Zabbix server whose configuration may not be updated as fast due to the value of
CacheUpdateFrequency. As a result, proxy may start gathering data and send them to Zabbix server that ignores these
data.

Zabbix proxy is a data collector. It does not calculate triggers, process events or send alerts. For an overview of what proxy
functionality is, review the following table:

Function Supported by proxy

Items
Zabbix agent checks Yes
Zabbix agent checks (active) Yes 1

Simple checks Yes
Trapper items Yes
SNMP checks Yes
SNMP traps Yes
IPMI checks Yes
JMX checks Yes
Log file monitoring Yes
Internal checks Yes
SSH checks Yes
Telnet checks Yes
External checks Yes

Built-in web monitoring Yes
Network discovery Yes
Low-level discovery Yes
Calculating triggers No
Processing events No
Event correlation No
Sending alerts No
Remote commands No

Note:
[1] To make sure that an agent asks the proxy (and not the server) for active checks, the proxy must be listed in the
ServerActive parameter in the agent configuration file.

Configuration

Once you have installed and configured a proxy, it is time to configure it in the Zabbix frontend.

Adding proxies

To configure a proxy in Zabbix frontend:

• Go to: Administration → Proxies
• Click on Create proxy

434

Parameter Description

Proxy name Enter the proxy name. It must be the same name as in the
Hostname parameter in the proxy configuration file.

Proxy mode Select the proxy mode.
Active - the proxy will connect to the Zabbix server and request
configuration data
Passive - Zabbix server connects to the proxy
Note that without encrypted communications (sensitive) proxy
configuration data may become available to parties having access
to the Zabbix server trapper port when using an active proxy. This
is possible because anyone may pretend to be an active proxy and
request configuration data if authentication does not take place.

Hosts Add hosts to be monitored by the proxy.
Hosts already monitored by another proxy are greyed out in the
Other hosts selection.

Description Enter the proxy description.

The Encryption tab allows you to require encrypted connections with the proxy.

Parameter Description

Connections to proxy How the server connects to the passive proxy: no encryption
(default), using PSK (pre-shared key) or certificate.

435

Parameter Description

Connections from proxy Select what type of connections are allowed from the active proxy.
Several connection types can be selected at the same time (useful
for testing and switching to other connection type). Default is ”No
encryption”.

Issuer Allowed issuer of certificate. Certificate is first validated with CA
(certificate authority). If it is valid, signed by the CA, then the
Issuer field can be used to further restrict allowed CA. This field is
optional, intended to use if your Zabbix installation uses
certificates from multiple CAs.

Subject Allowed subject of certificate. Certificate is first validated with CA.
If it is valid, signed by the CA, then the Subject field can be used to
allow only one value of Subject string. If this field is empty then
any valid certificate signed by the configured CA is accepted.

PSK identity Pre-shared key identity string.
PSK Pre-shared key (hex-string). Maximum length: 512 hex-digits

(256-byte PSK) if Zabbix uses GnuTLS or OpenSSL library, 64
hex-digits (32-byte PSK) if Zabbix uses mbed TLS (PolarSSL)
library. Example:
1f87b595725ac58dd977beef14b97461a7c1045b9a1c963065002c5473194952

Host configuration

You can specify that an individual host should be monitored by a proxy in the host configuration form, using the Monitored by proxy
field.

Host mass update is another way of specifying that hosts should be monitored by a proxy.

16. Encryption

Overview Zabbix supports encrypted communications between Zabbix server, Zabbix proxy, Zabbix agent, zabbix_sender and
zabbix_get utilities using Transport Layer Security (TLS) protocol v.1.2. Encryption is supported starting with Zabbix 3.0. Certificate-
based and pre-shared key-based encryption is supported.

Encryption is optional and configurable for individual components (e.g. some proxies and agents can be configured to use
certificate-based encryption with the server, while others can use pre-shared key-based encryption, and yet others continue with
unencrypted communications as before).

Server (proxy) can use different encryption configurations for different hosts.

Zabbix daemon programs use one listening port for encrypted and unencrypted incoming connections. Adding an encryption does
not require opening new ports on firewalls.

Limitations

• Private keys are stored in plain text in files readable by Zabbix components during startup.
• Pre-shared keys are entered in Zabbix frontend and stored in Zabbix database in plain text.
• Built-in encryption does not protect communications:

* between web server running Zabbix frontend and user web browser,
* between Zabbix frontend and Zabbix server,
* between Zabbix server (proxy) and Zabbix database.

* Currently each encrypted connection opens with a full TLS handshake, no session caching and tickets are implemented.
* Adding encryption increases time of checks and actions, depending on network latency.\\ For example, if packet delay is 100ms then opening a TCP connection and sending unencrypted request takes around 200ms.\\ With encryption about 1000 ms are added for establishing TLS connection.\\ Timeouts may need to be increased, otherwise some items and actions running remote scripts on agents may work with unencrypted connections but fail with timeout with encrypted.
* Encryption is not supported by [[/manual/discovery/network_discovery|network discovery]]. Zabbix agent checks performed by network discovery will be unencrypted and if Zabbix agent is configured to reject unencrypted connections such checks will not succeed.

436

Compiling Zabbix with encryption support To support encryption Zabbix must be compiled and linked with one of three
crypto libraries:

• mbed TLS (formerly PolarSSL)(version 1.3.9 and later 1.3.x). mbed TLS 2.x is not currently supported, it is not a drop-in
replacement for 1.3 branch, Zabbix will not compile with mbed TLS 2.x.

• GnuTLS (from version 3.1.18)
• OpenSSL (from version 1.0.1)

The library is selected by specifying an option to ”configure” script:

• --with-mbedtls[=DIR]
• --with-gnutls[=DIR]
• --with-openssl[=DIR]

For example, to configure the sources for server and agent with OpenSSL you may use something like:
./configure --enable-server --enable-agent --with-mysql --enable-ipv6 --with-net-snmp --with-libcurl --with-libxml2 --with-openssl

Different Zabbix components may be compiled with different crypto libraries (e.g. a server with OpenSSL, an agent with GnuTLS).

Attention:
If you plan to use pre-shared keys (PSK) consider using GnuTLS or mbed TLS libraries in Zabbix components using PSKs.
GnuTLS and mbed TLS libraries support PSK ciphersuites with Perfect Forward Secrecy. OpenSSL library (versions 1.0.1,
1.0.2c) does support PSKs but available PSK ciphersuites do not provide Perfect Forward Secrecy.

Connection encryption management Connections in Zabbix can use:

• no encryption (default)
• RSA certificate-based encryption
• PSK-based encryption

There are two important parameters used to specify encryption for connections between Zabbix components:

• TLSConnect
• TLSAccept

TLSConnect specifies what encryption to use for outgoing connections and can take one of 3 values (unencrypted, PSK,
certificate). TLSConnect is used in configuration files for Zabbix proxy (in active mode, specifies only connections to server)
and Zabbix agentd (for active checks). In Zabbix frontend the TLSConnect equivalent is Connections to host field in Configura-
tion→Hosts→<some host>→Encryption tab and Connections to proxy field in Administration→Proxies→<some proxy>→Encryption
tab. If the configured encryption type for connection fails, no other encryption types will be tried.

TLSAccept specifies what types of connections are allowed for incoming connections. Connection types are: unencrypted,
PSK, certificate. One or more values can be specified. TLSAccept is used in configuration files for Zabbix proxy (in passive
mode, specifies only connections from server) and Zabbix agentd (for passive checks). In Zabbix frontend the TLSAccept equiv-
alent is Connections from host field in Configuration→Hosts→<some host>→Encryption tab and Connections from proxy field in
Administration→Proxies→<some proxy>→Encryption tab.

Normally you configure only one type of encryption for incoming encryptions. But you may want to switch encryption type, e.g.
from unencrypted to certificate-based with minimum downtime and rollback possibility.
To achieve this you can set TLSAccept=unencrypted,cert in agentd configuration file and restart Zabbix agent.
Then you can test connection with zabbix_get to the agent using certificate. If it works, you can reconfigure encryption for that
agent in Zabbix frontend in Configuration→Hosts→<some host>→Encryption tab by setting Connections to host to ”Certificate”.
When server configuration cache gets updated (and proxy configuration is updated if the host is monitoring by proxy) then con-
nections to that agent will be encrypted.
If everything works as expected you can set TLSAccept=cert in agent configuration file and restart Zabbix agent.
Now the agent will be accepting only encrypted certificate-based connections. Unencrypted and PSK-based connections will be
rejected.

In a similar way it works on server and proxy. If in Zabbix frontend in host configuration Connections from host is set to ”Certificate”
then only certificate-based encrypted connections will be accepted from agent (active checks) and zabbix_sender (trapper
items).

Most likely you will configure incoming and outgoing connections to use the same encryption type or no encryption at all. But
technically it is possible to configure it asymmetrically, e.g. certificate-based encryption for incoming and PSK-based for outgoing
connections.

For overview, encryption configuration for each host is displayed in Zabbix frontend Configuration→Hosts on the right side, in
column AGENT ENCRYPTION. Configuration display examples:

437

https://en.wikipedia.org/wiki/Forward_secrecy#Perfect_forward_secrecy_.28PFS.29

Example Connections TO host Allowed connections FROM host Rejected connections FROM host

Unencrypted Unencrypted Encrypted certificate and PSK-based
Encrypted,
certificate-based

Encrypted certificate-based Unencrypted and PSK-based

Encrypted, PSK-based Encrypted PSK-based Unencrypted and certificate-based
Encrypted, PSK-based Unencrypted and PSK-based encrypted Certificate-based
Encrypted,
certificate-based

Unencrypted, PSK or certificate-based
encrypted

-

Attention:
Default is unencrypted connections. Encryption must be configured for each host and proxy individually.

zabbix_get and zabbix_sender with encryption See man-pages zabbix_get and zabbix_sender for using them with encryp-
tion.

Ciphersuites Ciphersuites are configured internally during Zabbix startup and depend on crypto library, currently they are not
user-configurable.

Configured ciphersuites by library type in order from higher to lower priority:

Library Certificate ciphersuites PSK ciphersuites

mbed TLS
(PolarSSL) 1.3.9

TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256
TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA256
TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA
TLS-RSA-WITH-AES-128-GCM-SHA256
TLS-RSA-WITH-AES-128-CBC-SHA256
TLS-RSA-WITH-AES-128-CBC-SHA

TLS-ECDHE-PSK-WITH-AES-128-CBC-
SHA256
TLS-ECDHE-PSK-WITH-AES-128-CBC-
SHA
TLS-PSK-WITH-AES-128-GCM-SHA256
TLS-PSK-WITH-AES-128-CBC-SHA256
TLS-PSK-WITH-AES-128-CBC-SHA

GnuTLS 3.1.18 TLS_ECDHE_RSA_AES_128_GCM_SHA256
TLS_ECDHE_RSA_AES_128_CBC_SHA256
TLS_ECDHE_RSA_AES_128_CBC_SHA1
TLS_RSA_AES_128_GCM_SHA256
TLS_RSA_AES_128_CBC_SHA256
TLS_RSA_AES_128_CBC_SHA1

TLS_ECDHE_PSK_AES_128_CBC_SHA256
TLS_ECDHE_PSK_AES_128_CBC_SHA1
TLS_PSK_AES_128_GCM_SHA256
TLS_PSK_AES_128_CBC_SHA256
TLS_PSK_AES_128_CBC_SHA1

OpenSSL 1.0.2c ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES128-SHA
AES128-GCM-SHA256
AES128-SHA256
AES128-SHA

PSK-AES128-CBC-SHA

OpenSSL 1.1.0 ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES128-SHA
AES128-GCM-SHA256
AES128-CCM8
AES128-CCM
AES128-SHA256
AES128-SHA

ECDHE-PSK-AES128-CBC-SHA256
ECDHE-PSK-AES128-CBC-SHA
PSK-AES128-GCM-SHA256
PSK-AES128-CCM8
PSK-AES128-CCM
PSK-AES128-CBC-SHA256
PSK-AES128-CBC-SHA

Cipher suites using certificates:

TLS server
TLS client mbed TLS (PolarSSL) GnuTLS OpenSSL 1.0.2
mbed TLS (PolarSSL) TLS-ECDHE-RSA-WITH-AES-

128-GCM-SHA256
TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

GnuTLS TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

438

OpenSSL 1.0.2 TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-
128-GCM-SHA256

Cipher suites using PSK:

TLS server
TLS client mbed TLS (PolarSSL) GnuTLS OpenSSL 1.0.2
mbed TLS (PolarSSL) TLS-ECDHE-PSK-WITH-AES-

128-CBC-SHA256
TLS-ECDHE-PSK-WITH-AES-
128-CBC-SHA256

TLS-PSK-WITH-AES-128-CBC-
SHA

GnuTLS TLS-ECDHE-PSK-WITH-AES-
128-CBC-SHA256

TLS-ECDHE-PSK-WITH-AES-
128-CBC-SHA256

TLS-PSK-WITH-AES-128-CBC-
SHA

OpenSSL 1.0.2 TLS-PSK-WITH-AES-128-CBC-
SHA

TLS-PSK-WITH-AES-128-CBC-
SHA

TLS-PSK-WITH-AES-128-CBC-
SHA

1 Using certificates

Overview

Zabbix can use RSA certificates in PEM format, signed by a public or in-house certificate authority (CA). Certificate verification is
done against a pre-configured CA certificate. Optionally certificate revocation lists (CRL) can be used. Each Zabbix component
can have only one certificate configured.

For more information how to set up and operate internal CA, how to generate certificate requests and sign them, how to revoke
certificates you can find numerous online how-tos, for example, OpenSSL PKI Tutorial v1.1 .

Carefully consider and test your certificate extensions - see Limitations on using X.509 v3 certificate extensions.

Certificate configuration parameters

Parameter Mandatory Description

TLSCAFile * Full pathname of a file containing the
top-level CA(s) certificates for peer
certificate verification.
In case of certificate chain with several
members they must be ordered: lower level
CA certificates first followed by certificates of
higher level CA(s).
Certificates from multiple CA(s) can be
included in a single file.

TLSCRLFile Full pathname of a file containing Certificate
Revocation Lists. See notes in Certificate
Revocation Lists (CRL).

TLSCertFile * Full pathname of a file containing certificate
(certificate chain).
In case of certificate chain with several
members they must be ordered: server,
proxy, or agent certificate first, followed by
lower level CA certificates then certificates of
higher level CA(s).

TLSKeyFile * Full pathname of a file containing private key.
Set access rights to this file - it must be
readable only by Zabbix user.

TLSServerCertIssuer Allowed server certificate issuer.
TLSServerCertSubject Allowed server certificate subject.

Configuring certificate on Zabbix server

1. In order to verify peer certificates, Zabbix server must have access to file with their top-level self-signed root CA cer-
tificates. For example, if we expect certificates from two independent root CAs, we can put their certificates into file
/home/zabbix/zabbix_ca_file like this:

439

http://pki-tutorial.readthedocs.org/en/latest/

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 1 (0x1)

Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Root1 CA

...
Subject: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Root1 CA
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

...
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical
CA:TRUE

...
-----BEGIN CERTIFICATE-----
MIID2jCCAsKgAwIBAgIBATANBgkqhkiG9w0BAQUFADB+MRMwEQYKCZImiZPyLGQB
....
9wEzdN8uTrqoyU78gi12npLj08LegRKjb5hFTVmO
-----END CERTIFICATE-----
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)

Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Root2 CA

...
Subject: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Root2 CA
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

....
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical
CA:TRUE

....
-----BEGIN CERTIFICATE-----
MIID3DCCAsSgAwIBAgIBATANBgkqhkiG9w0BAQUFADB/MRMwEQYKCZImiZPyLGQB
...
vdGNYoSfvu41GQAR5Vj5FnRJRzv5XQOZ3B6894GY1zY=
-----END CERTIFICATE-----

2. Put Zabbix server certificate chain into file, for example, /home/zabbix/zabbix_server.crt:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 1 (0x1)

Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Signing CA
...
Subject: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Zabbix server
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
...

X509v3 extensions:
X509v3 Key Usage: critical

Digital Signature, Key Encipherment

440

X509v3 Basic Constraints:
CA:FALSE

...
-----BEGIN CERTIFICATE-----
MIIECDCCAvCgAwIBAgIBATANBgkqhkiG9w0BAQUFADCBgTETMBEGCgmSJomT8ixk
...
h02u1GHiy46GI+xfR3LsPwFKlkTaaLaL/6aaoQ==
-----END CERTIFICATE-----
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 2 (0x2)

Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Root1 CA
...
Subject: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Signing CA
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

...
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical
CA:TRUE, pathlen:0

...
-----BEGIN CERTIFICATE-----
MIID4TCCAsmgAwIBAgIBAjANBgkqhkiG9w0BAQUFADB+MRMwEQYKCZImiZPyLGQB
...
dyCeWnvL7u5sd6ffo8iRny0QzbHKmQt/wUtcVIvWXdMIFJM0Hw==
-----END CERTIFICATE-----

Here the first is Zabbix server certificate, followed by intermediate CA certificate.

3. Put Zabbix server private key into file, for example, /home/zabbix/zabbix_server.key:

-----BEGIN PRIVATE KEY-----
MIIEwAIBADANBgkqhkiG9w0BAQEFAASCBKowggSmAgEAAoIBAQC9tIXIJoVnNXDl
...
IJLkhbybBYEf47MLhffWa7XvZTY=
-----END PRIVATE KEY-----

4. Edit TLS parameters in Zabbix server configuration file like this:

TLSCAFile=/home/zabbix/zabbix_ca_file
TLSCertFile=/home/zabbix/zabbix_server.crt
TLSKeyFile=/home/zabbix/zabbix_server.key

Configuring certificate-based encryption for Zabbix proxy

1. Prepare files with top-level CA certificates, proxy certificate (chain) and private key as described in Configuring certificate on
Zabbix server. Edit parameters TLSCAFile, TLSCertFile, TLSKeyFile in proxy configuration accordingly.

2. For active proxy edit TLSConnect parameter:

TLSConnect=cert

For passive proxy edit TLSAccept parameter:

TLSAccept=cert

3. Now you have a minimal certificate-based proxy configuration. You may prefer to improve proxy security by setting
TLSServerCertIssuer and TLSServerCertSubject parameters (see Restricting allowed certificate Issuer and Subject).

4. In final proxy configuration file TLS parameters may look like:

TLSConnect=cert
TLSAccept=cert
TLSCAFile=/home/zabbix/zabbix_ca_file
TLSServerCertIssuer=CN=Signing CA,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com

441

TLSServerCertSubject=CN=Zabbix server,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
TLSCertFile=/home/zabbix/zabbix_proxy.crt
TLSKeyFile=/home/zabbix/zabbix_proxy.key

5. Configure encryption for this proxy in Zabbix frontend:

• Go to: Administration → Proxies
• Select proxy and click on Encryption tab

In examples below Issuer and Subject fields are filled in - see Restricting allowed certificate Issuer and Subject why and how to use
these fields.

For active proxy

For passive proxy

Configuring certificate-based encryption for Zabbix agent

1. Prepare files with top-level CA certificates, agent certificate (chain) and private key as described in Configuring certificate on
Zabbix server. Edit parameters TLSCAFile, TLSCertFile, TLSKeyFile in agent configuration accordingly.

2. For active checks edit TLSConnect parameter:

TLSConnect=cert

For passive checks edit TLSAccept parameter:

TLSAccept=cert

442

3. Now you have a minimal certificate-based agent configuration. You may prefer to improve agent security by setting
TLSServerCertIssuer and TLSServerCertSubject parameters. (see Restricting allowed certificate Issuer and Subject).

4. In final agent configuration file TLS parameters may look like:

TLSConnect=cert
TLSAccept=cert
TLSCAFile=/home/zabbix/zabbix_ca_file
TLSServerCertIssuer=CN=Signing CA,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
TLSServerCertSubject=CN=Zabbix proxy,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
TLSCertFile=/home/zabbix/zabbix_agentd.crt
TLSKeyFile=/home/zabbix/zabbix_agentd.key

(Example assumes that host is monitored via proxy, hence proxy certificate Subject.)

5. Configure encryption for this agent in Zabbix frontend:

• Go to: Configuration → Hosts
• Select host and click on Encryption tab

In example below Issuer and Subject fields are filled in - see Restricting allowed certificate Issuer and Subject why and how to use
these fields.

Restricting allowed certificate Issuer and Subject

When two Zabbix components (e.g. server and agent) establish a TLS connection they both check each others certificates. If a
peer certificate is signed by a trusted CA (with pre-configured top-level certificate in TLSCAFile), is valid, has not expired and
passes some other checks then communication can proceed. Certificate issuer and subject are not checked in this simplest case.

Here is a risk - anybody with a valid certificate can impersonate anybody else (e.g. a host certificate can be used to impersonate
server). This may be acceptable in small environments where certificates are signed by a dedicated in-house CA and risk of
impersonating is low.

If your top-level CA is used for issuing other certificates which should not be accepted by Zabbix or you want to reduce risk of
impersonating you can restrict allowed certificates by specifying their Issuer and Subject strings.

For example, you can write in Zabbix proxy configuration file:

TLSServerCertIssuer=CN=Signing CA,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
TLSServerCertSubject=CN=Zabbix server,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com

With these settings, an active proxy will not talk to Zabbix server with different Issuer or Subject string in certificate, a passive
proxy will not accept requests from such server.

A few notes about Issuer or Subject string matching:

1. Issuer and Subject strings are checked independently. Both are optional.
2. UTF-8 characters are allowed.
3. Unspecified string means any string is accepted.
4. Strings are compared ”as-is”, they must be exactly the same to match.
5. Wildcards and regexp’s are not supported in matching.

443

6. Only some requirements from RFC 4514 Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished
Names are implemented:

- escape characters '"' (U+0022), '+' U+002B, ',' U+002C, ';' U+003B, '<' U+003C, '>' U+003E, '\' U+005C anywhere in string.
- escape characters space (' ' U+0020) or number sign ('#' U+0023) at the beginning of string.
- escape character space (' ' U+0020) at the end of string.

- Match fails if a null character (U+0000) is encountered ([[http://tools.ietf.org/html/rfc4514|RFC 4514]] allows it).
- Requirements of [[http://tools.ietf.org/html/rfc4517| RFC 4517 Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching Rules]] and [[http://tools.ietf.org/html/rfc4518|RFC 4518 Lightweight Directory Access Protocol (LDAP): Internationalized String Preparation]] are not supported due to amount of work required.

Order of fields in Issuer and Subject strings and formatting are important! Zabbix follows RFC 4514 recommendation and uses
”reverse” order of fields.

The reverse order can be illustrated by example:

TLSServerCertIssuer=CN=Signing CA,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
TLSServerCertSubject=CN=Zabbix proxy,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com

Note that it starts with low level (CN), proceeds to mid-level (OU, O) and ends with top-level (DC) fields.

OpenSSL by default shows certificate Issuer and Subject fields in ”normal” order, depending on additional options used:

$ openssl x509 -noout -in /home/zabbix/zabbix_proxy.crt -issuer -subject
issuer= /DC=com/DC=zabbix/O=Zabbix SIA/OU=Development group/CN=Signing CA
subject= /DC=com/DC=zabbix/O=Zabbix SIA/OU=Development group/CN=Zabbix proxy

$ openssl x509 -noout -text -in /home/zabbix/zabbix_proxy.crt
Certificate:

...
Issuer: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Signing CA

...
Subject: DC=com, DC=zabbix, O=Zabbix SIA, OU=Development group, CN=Zabbix proxy

Here Issuer and Subject strings start with top-level (DC) and end with low-level (CN) field, spaces and field separators depend on
options used. None of these values will match in Zabbix Issuer and Subject fields!

Attention:
To get proper Issuer and Subject strings usable in Zabbix invoke OpenSSL with special options
-nameopt esc_2253,esc_ctrl,utf8,dump_nostr,dump_unknown,dump_der,sep_comma_plus,dn_rev,sname:

$ openssl x509 -noout -issuer -subject \
-nameopt esc_2253,esc_ctrl,utf8,dump_nostr,dump_unknown,dump_der,sep_comma_plus,dn_rev,sname \
-in /home/zabbix/zabbix_proxy.crt

issuer= CN=Signing CA,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com
subject= CN=Zabbix proxy,OU=Development group,O=Zabbix SIA,DC=zabbix,DC=com

Now string fields are in reverse order, fields are comma-separated, can be used in Zabbix configuration files and frontend.

Limitations on using X.509 v3 certificate extensions

• Subject Alternative Name (subjectAltName) extension.
Alternative subject names from subjectAltName extension (like IP address, e-mail address) are not supported by Zabbix.
Only value of ”Subject” field can be checked in Zabbix (see Restricting allowed certificate Issuer and Subject).
If certificate uses the subjectAltName extension then result depends on particular combination of crypto toolkits Zabbix
components are compiled with (it may or may not work, Zabbix may refuse to accept such certificates from peers).

• Extended Key Usage extension.
If used then generally both clientAuth (TLS WWW client authentication) and serverAuth (TLS WWW server authentication)
are necessary.
For example, in passive checks Zabbix agent acts in a TLS server role, so serverAuth must be set in agent certificate. For
active checks agent certificate needs clientAuth to be set.
GnuTLS issues a warning in case of key usage violation but allows communication to proceed.

• Name Constraints extension.
Not all crypto toolkits support it. This extension may prevent Zabbix from loading CA certificates where this section is marked
as critical (depends on particular crypto toolkit).

Certificate Revocation Lists (CRL)

If a certificate is compromised CA can revoke it by including in CRL. CRLs can be configured in server, proxy and agent configuration
file using parameter TLSCRLFile. For example:

TLSCRLFile=/home/zabbix/zabbix_crl_file

444

http://tools.ietf.org/html/rfc4514
http://tools.ietf.org/html/rfc4514
http://tools.ietf.org/html/rfc4514

where zabbix_crl_file may contain CRLs from several CAs and look like:

-----BEGIN X509 CRL-----
MIIB/DCB5QIBATANBgkqhkiG9w0BAQUFADCBgTETMBEGCgmSJomT8ixkARkWA2Nv
...
treZeUPjb7LSmZ3K2hpbZN7SoOZcAoHQ3GWd9npuctg=
-----END X509 CRL-----
-----BEGIN X509 CRL-----
MIIB+TCB4gIBATANBgkqhkiG9w0BAQUFADB/MRMwEQYKCZImiZPyLGQBGRYDY29t
...
CAEebS2CND3ShBedZ8YSil59O6JvaDP61lR5lNs=
-----END X509 CRL-----

CRL file is loaded only on Zabbix start. CRL update requires restart.

Attention:
If Zabbix component is compiled with OpenSSL and CRLs are used then each top and intermediate level CA in certificate
chains must have a corresponding CRL (it can be empty) in TLSCRLFile.

Limitations on using CRL extensions

• Authority Key Identifier extension.
CRLs for CAs with identical namesmay not work in case ofmbedTLS (PolarSSL), evenwith ”Authority Key Identifier” extension.

2 Using pre-shared keys

Overview

Each pre-shared key (PSK) in Zabbix actually is a pair of:

• non-secret PSK identity string,
• secret PSK string value.

PSK identity string is a non-empty UTF-8 string. For example, ”PSK ID 001 Zabbix agentd”. It is a unique name by which this
specific PSK is referred to by Zabbix components. Do not put sensitive information in PSK identity string - it is transmitted over the
network unencrypted.

PSK value is a hard to guess string of hexadecimal digits, for example, ”e560cb0d918d26d31b4f642181f5f570ad89a390931102e5391d08327ba434e9”.

Size limits

There are size limits for PSK identity and value in Zabbix, in some cases a crypto library can have lower limit:

Component PSK identity max size PSK value min size PSK value max size

Zabbix 128 UTF-8 characters 128-bit (16-byte PSK, entered
as 32 hexadecimal digits)

2048-bit (256-byte PSK,
entered as 512 hexadecimal
digits)

GnuTLS 128 bytes (may include UTF-8
characters)

- 2048-bit (256-byte PSK,
entered as 512 hexadecimal
digits)

mbed TLS
(PolarSSL)

128 UTF-8 characters - 256-bit (default limit) (32-byte
PSK, entered as 64
hexadecimal digits)

OpenSSL 127 bytes (may include UTF-8
characters)

- 2048-bit (256-byte PSK,
entered as 512 hexadecimal
digits)

Attention:
Zabbix frontend allows configuring up to 128-character long PSK identity string and 2048-bit long PSK regardless of crypto
libraries used.
If some Zabbix components support lower limits it is a user responsibility to configure PSK identity and value with allowed
length for these components.
Exceeding length limits results in communication failures between Zabbix components.

445

Before Zabbix server connects to agent using PSK, the server looks up the PSK identity and PSK value configured for that agent
in database (actually in configuration cache). Upon receiving a connection the agent uses PSK identity and PSK value from its
configuration file. If both parties have the same PSK identity string and PSK value the connection may succeed.

Attention:
It is a user responsibility to ensure that there are no two PSKs with the same identity string but different values. Failing
to do so may lead to unpredictable disruptions of communication between Zabbix components using PSKs with this PSK
identity string.

Generating PSK

For example, a 256-bit (32 bytes) PSK can be generated using the following commands:

• with OpenSSL:

$ openssl rand -hex 32
af8ced32dfe8714e548694e2d29e1a14ba6fa13f216cb35c19d0feb1084b0429

• with GnuTLS:

$ psktool -u psk_identity -p database.psk -s 32
Generating a random key for user 'psk_identity'
Key stored to database.psk

$ cat database.psk
psk_identity:9b8eafedfaae00cece62e85d5f4792c7d9c9bcc851b23216a1d300311cc4f7cb

Note that ”psktool” above generates a database file with a PSK identity and its associated PSK. Zabbix expects just a PSK in the
PSK file, so the identity string and colon (’:’) should be removed from the file.

Configuring PSK for server-agent communication (example)

On the agent host, write the PSK value into a file, for example, /home/zabbix/zabbix_agentd.psk. The file must contain PSK
in the first text string, for example:

1f87b595725ac58dd977beef14b97461a7c1045b9a1c963065002c5473194952

Set access rights to PSK file - it must be readable only by Zabbix user.

Edit TLS parameters in agent configuration file zabbix_agentd.conf, for example, set:

TLSConnect=psk
TLSAccept=psk
TLSPSKFile=/home/zabbix/zabbix_agentd.psk
TLSPSKIdentity=PSK 001

The agent will connect to server (active checks) and accept from server and zabbix_get only connections using PSK. PSK identity
will be ”PSK 001”.

Restart the agent. Now you can test the connection using zabbix_get, for example:

$ zabbix_get -s 127.0.0.1 -k "system.cpu.load[all,avg1]" --tls-connect=psk \
--tls-psk-identity="PSK 001" --tls-psk-file=/home/zabbix/zabbix_agentd.psk

(To minimize downtime see how to change connection type in Connection encryption management).

Configure PSK encryption for this agent in Zabbix frontend:

• Go to: Configuration → Hosts
• Select host and click on Encryption tab

Example:

446

When configuration cache is synchronized with database the new connections will use PSK. Check server and agent logfiles for
error messages.

Configuring PSK for server - active proxy communication (example)

On the proxy, write the PSK value into a file, for example, /home/zabbix/zabbix_proxy.psk. The file must contain PSK in the
first text string, for example:

e560cb0d918d26d31b4f642181f5f570ad89a390931102e5391d08327ba434e9

Set access rights to PSK file - it must be readable only by Zabbix user.

Edit TLS parameters in proxy configuration file zabbix_proxy.conf, for example, set:

TLSConnect=psk
TLSPSKFile=/home/zabbix/zabbix_proxy.psk
TLSPSKIdentity=PSK 002

The proxy will connect to server using PSK. PSK identity will be ”PSK 002”.

(To minimize downtime see how to change connection type in Connection encryption management).

Configure PSK for this proxy in Zabbix frontend. Go to Administration→Proxies, select the proxy, go to ”Encryption” tab. In ”Connec-
tions from proxy”mark PSK. Paste into ”PSK identity” field ”PSK 002” and ”e560cb0d918d26d31b4f642181f5f570ad89a390931102e5391d08327ba434e9”
into ”PSK” field. Click ”Update”.

Restart proxy. It will start using PSK-based encrypted connections to server. Check server and proxy logfiles for error messages.

For a passive proxy the procedure is very similar. The only difference - set TLSAccept=psk in proxy configuration file and set
”Connections to proxy” in Zabbix frontend to PSK.

3 Troubleshooting

General recommendations

• Start with understanding which component acts as a TLS client and which one acts as a TLS server in problem case.
Zabbix server, proxies and agents, depending on interaction between them, all can work as TLS servers and clients.
For example, Zabbix server connecting to agent for a passive check, acts as a TLS client. The agent is in role of TLS server.
Zabbix agent, requesting a list of active checks from proxy, acts as a TLS client. The proxy is in role of TLS server.
zabbix_get and zabbix_sender utilities always act as TLS clients.

• Zabbix uses mutual authentication.
Each side verifies its peer and may refuse connection.
For example, Zabbix server connecting to agent can close connection immediately if agent’s certificate is invalid. And vice
versa - Zabbix agent accepting a connection from server can close connection if server is not trusted by agent.

• Examine logfiles in both sides - in TLS client and TLS server.
The side which refuses connection may log a precise reason why it was refused. Other side often reports rather general error
(e.g. ”Connection closed by peer”, ”connection was non-properly terminated”).

447

• Sometimes misconfigured encryption results in confusing error messages in no way pointing to real cause.
In subsections below we try to provide a (far from exhaustive) collection of messages and possible causes which could help
in troubleshooting.
Please note that different crypto toolkits (OpenSSL, GnuTLS, mbed TLS (PolarSSL)) often produce different error messages
in same problem situations.
Sometimes error messages depend even on particular combination of crypto toolkits on both sides.

1 Connection type or permission problems

Server is configured to connect with PSK to agent but agent accepts only unencrypted connections

In server or proxy log (with mbed TLS (PolarSSL) 1.3.11)

Get value from agent failed: ssl_handshake(): SSL - The connection indicated an EOF

In server or proxy log (with GnuTLS 3.3.16)

Get value from agent failed: zbx_tls_connect(): gnutls_handshake() failed: \
-110 The TLS connection was non-properly terminated.

In server or proxy log (with OpenSSL 1.0.2c)

Get value from agent failed: TCP connection successful, cannot establish TLS to [[127.0.0.1]:10050]: \
Connection closed by peer. Check allowed connection types and access rights

One side connects with certificate but other side accepts only PSK or vice versa

In any log (with mbed TLS (PolarSSL)):

failed to accept an incoming connection: from 127.0.0.1: ssl_handshake():\
SSL - The server has no ciphersuites in common with the client

In any log (with GnuTLS):

failed to accept an incoming connection: from 127.0.0.1: zbx_tls_accept(): gnutls_handshake() failed:\
-21 Could not negotiate a supported cipher suite.

In any log (with OpenSSL 1.0.2c):

failed to accept an incoming connection: from 127.0.0.1: TLS handshake returned error code 1:\
file .\ssl\s3_srvr.c line 1411: error:1408A0C1:SSL routines:ssl3_get_client_hello:no shared cipher:\
TLS write fatal alert "handshake failure"

2 Certificate problems

OpenSSL used with CRLs and for some CA in the certificate chain its CRL is not included in TLSCRLFile

In TLS server log in case of mbed TLS (PolarSSL) and OpenSSL peers:

failed to accept an incoming connection: from 127.0.0.1: TLS handshake with 127.0.0.1 returned error code 1: \
file s3_srvr.c line 3251: error:14089086: SSL routines:ssl3_get_client_certificate:certificate verify failed: \
TLS write fatal alert "unknown CA"

In TLS server log in case of GnuTLS peer:

failed to accept an incoming connection: from 127.0.0.1: TLS handshake with 127.0.0.1 returned error code 1: \
file rsa_pk1.c line 103: error:0407006A: rsa routines:RSA_padding_check_PKCS1_type_1:\
block type is not 01 file rsa_eay.c line 705: error:04067072: rsa routines:RSA_EAY_PUBLIC_DECRYPT:paddin

CRL expired or expires during server operation

OpenSSL, in server log:

• before expiration:

cannot connect to proxy "proxy-openssl-1.0.1e": TCP successful, cannot establish TLS to [[127.0.0.1]:20004]:\
SSL_connect() returned SSL_ERROR_SSL: file s3_clnt.c line 1253: error:14090086:\
SSL routines:ssl3_get_server_certificate:certificate verify failed:\
TLS write fatal alert "certificate revoked"

• after expiration:

448

cannot connect to proxy "proxy-openssl-1.0.1e": TCP successful, cannot establish TLS to [[127.0.0.1]:20004]:\
SSL_connect() returned SSL_ERROR_SSL: file s3_clnt.c line 1253: error:14090086:\
SSL routines:ssl3_get_server_certificate:certificate verify failed:\
TLS write fatal alert "certificate expired"

The point here is that with valid CRL a revoked certificate is reported as ”certificate revoked”. When CRL expires the error message
changes to ”certificate expired” which is quite misleading.

GnuTLS, in server log:

• before and after expiration the same:

cannot connect to proxy "proxy-openssl-1.0.1e": TCP successful, cannot establish TLS to [[127.0.0.1]:20004]:\
invalid peer certificate: The certificate is NOT trusted. The certificate chain is revoked.

mbed TLS (PolarSSL), in server log:

• before expiration:

cannot connect to proxy "proxy-openssl-1.0.1e": TCP successful, cannot establish TLS to [[127.0.0.1]:20004]:\
invalid peer certificate: revoked

• after expiration:

cannot connect to proxy "proxy-openssl-1.0.1e": TCP successful, cannot establish TLS to [[127.0.0.1]:20004]:\
invalid peer certificate: revoked, CRL expired

3 PSK problems

PSK contains an odd number of hex-digits

Proxy or agent does not start, message in the proxy or agent log:

invalid PSK in file "/home/zabbix/zabbix_proxy.psk"

PSK identity string longer than 128 bytes is passed to GnuTLS

In TLS client side log:

gnutls_handshake() failed: -110 The TLS connection was non-properly terminated.

In TLS server side log.

gnutls_handshake() failed: -90 The SRP username supplied is illegal.

PSK longer than 32 bytes is passed to mbed TLS (PolarSSL)

In any Zabbix log:

ssl_set_psk(): SSL - Bad input parameters to function

17. Web interface

Overview For an easy access to Zabbix from anywhere and from any platform, the web-based interface is provided.

Note:
Trying to access two Zabbix frontend installations on the same host, on different ports, simultaneously will fail. Logging
into the second one will terminate the session on the first one and so on.

1 Frontend sections

449

1 Monitoring

Overview

The Monitoring menu is all about displaying data. Whatever information Zabbix is configured to gather, visualize and act upon, it
will be displayed in the various sections of the Monitoring menu.

1 Dashboard

Overview

The Monitoring → Dashboard section, similar to the dashboard on your car, displays a summary of all the important information.

Favourites

There are some widgets for favourites where you can create quick shortcuts to the most needed graphs, custom graphs, screens,
slide shows and maps.

Just click on the Menu button in the widget, select to add, for example, some screen and then select from the configured screens.
The selected screens will be displayed as shortcuts in the favourites widget.

450

Status widgets

A number of status widgets - Status of Zabbix, System status, Host status, Last 20 issues, Web monitoring, Discovery status each
display a summary of the respective data.

As you may have noticed from the screenshot, the widgets can be arranged in up to three columns. Additionally, all widgets can
be freely moved around. Just grab a widget by its title bar, drag and drop wherever you would like it.

Dashboard filter

Clicking on in the title bar allows you to access the dashboard filter.

451

By enabling the filter you can limit what hosts and triggers are displayed in the dashboard and define how the problem count is
displayed.

Parameter Description

Dashboard filter Click the link to enable/disable the dashboard filter.
Host groups Select to display host data from:

All - all host groups
Selected - selected host groups.

Show selected groups This field is available if Selected is chosen in the Host groups field.
Enter host groups to display. This field is auto-complete so starting
to type the name of a group will offer a dropdown of matching
groups.
Specifying a parent host group implicitly selects all nested host
groups since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1, nested host
groups are selected if the parent group is specified by a parent
group/* syntax.
Host data from these host groups will be displayed in the
Dashboard.
If no host groups are entered, all host groups will be displayed.

452

Parameter Description

Hide selected groups This field is available if Selected is chosen in the Host groups field.
Enter host groups to hide. This field is auto-complete so starting to
type the name of a group will offer a dropdown of matching groups.
Specifying a parent host group implicitly selects all nested host
groups since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1, nested host
groups are selected if the parent group is specified by a parent
group/* syntax.
Host data from these host groups will not be displayed in the
Dashboard. For example, hosts 001, 002, 003 may be in Group A
and hosts 002, 003 in Group B as well. If we select to show Group A
and hide Group B at the same time, only data from host 001 will be
displayed in the Dashboard.

Hosts Mark the Show hosts in maintenance option to display data from
hosts in maintenance in the Dashboard.

Triggers with severity Mark the trigger severities to be displayed in the Dashboard.
Trigger name like Limit the number of triggers displayed in the System status, Host

status and Last 20 issues widgets with this string.
Problem display Display problem count as:

All - full problem count will be displayed
Separated - unacknowledged problem count will be displayed
separated as a number of the total problem count
Unacknowledged only - only the unacknowledged problem count
will be displayed.

If dashboard filtering is applied, it is indicated by a green indicator with the filter icon: .

Host menu

Clicking on a host in the Last 20 issues widget brings up the host menu. It includes links to custom scripts, latest data, triggers,
inventory, graphs and screens for the host.

453

The host menu is accessible by clicking on a host in several other frontend sections:

• Monitoring → Problems
• Monitoring → Problems → Event details
• Monitoring → Overview (on Hosts: left)
• Monitoring → Latest data
• Monitoring → Triggers
• Monitoring → Screens (in Host issues and Host group issues widgets)
• Monitoring → Maps
• Reports → Triggers top 100

Trigger event popup

Clicking on Issue in the Last 20 issues widget brings up the trigger event popup. It includes a list of events and, if defined, the
trigger description and a clickable URL.

454

2 Problems

Overview

In Monitoring → Problems you can see what problems you currently have. Problems are those triggers that are in the ”Problem”
state.

Column Description

Time Problem start time is displayed.
Severity Problem severity is displayed.

Problem severity is based on the severity of the underlying problem trigger.
Colour of the trigger severity is used as cell background. For resolved
problems, green background is used.

Recovery time Problem resolution time is displayed.
Status Problem status is displayed:

Problem - unresolved problem
Resolved - recently resolved problem. You can hide recently resolved
problems using the filter.
New and recently resolved problems blink for 30 minutes. Resolved problems
are displayed for 30 minutes in total. Both of these values are configurable in
Administration → General → Trigger displaying options.

Info An green information icon is displayed if a problem is closed by global
correlation or manually by acknowledgement. Rolling a mouse over the icon
will display more details:

Host Problem host is displayed.
Problem Problem name is displayed.

Problem name is based on the name of the underlying problem trigger.
Duration Problem duration is displayed.
Ack The acknowledgement status of the problem is displayed:

Yes - green text indicating that the problem is acknowledged. A problem is
considered to be acknowledged if all events for it are acknowledged.
No - a red link indicating unacknowledged events.
If you click on the link you will be taken to a bulk acknowledgement screen
where all problems for this trigger can be acknowledged at once.
This column is displayed if problem acknowledgement is activated in
Administration → General.

Actions Action status is displayed:
In progress - action is being taken
Done - action is completed
Failures - action has failed
The number of actions taken on the problem (such as notifications sent or
executed remote commands) is also displayed.

Tags Event tags are displayed (if any).

455

Using filter

You can use the filter to display only the problems you are interested in. The filter is located above the table.

Parameter Description

Show Filter by problem status:
Recent problems - unresolved and recently resolved problems
are displayed (default)
Problems - unresolved problems are displayed
History - history of all events is displayed

Host groups Filter by one or more host groups.
Specifying a parent host group implicitly selects all nested host
groups since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1, nested host
groups are selected if the parent group is specified by a parent
group/* syntax.

Host Filter by one or more hosts.
Application Filter by application name.
Trigger Filter by one or more triggers.
Problem Filter by problem name.
Minimum trigger severity Filter by minimum trigger severity.
Age less than Filter by how old the problem is.
Host inventory Filter by inventory type and value.
Tags Filter by event tag name and value.
Show hosts in maintenance Mark the checkbox to display problems of hosts in maintenance,

too.
Show unacknowledged only Mark the checkbox to display unacknowledged problems only.
Show details Mark the checkbox to display underlying trigger expressions of the

problems.

Viewing details

The times for problem start and recovery in Monitoring → Problems are links. Clicking on them opens more details of the event.

456

3 Overview

Overview

The Monitoring → Overview section offers an overview of trigger states or a comparison of data for various hosts at once.

The following display options are available:

• select all hosts or specific host groups in the Group dropdown
• choose what type of information to display (triggers or data) in the Type dropdown
• select horizontal or vertical display of information in the Hosts location dropdown

Overview of triggers

In the next screenshot Triggers are selected in the Type dropdown. As a result, trigger states of two local hosts are displayed, as
coloured blocks (the colour depending on the state of the trigger):

457

Note that recent trigger changes (within the last 30 minutes) will be displayed as blinking blocks.

Blue up and down arrows indicate triggers that have dependencies. On mouseover, dependency details are revealed.

Clicking on a trigger block provides links to trigger events, configuration, the acknowledgement screen, URL or a simple graph/latest
values list.

Overview of data

In the next screenshot Data is selected in the Type dropdown. As a result, performance item data of two local hosts are displayed.

458

Only values that fall within the last 24 hours are displayed by default. This limit has been introduced with the aim of improv-
ing initial loading times for large pages of latest data. It is also possible to change this limitation by changing the value of
ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

Clicking on a piece of data offers links to some predefined graphs or latest values.

4 Web

Overview

In the Monitoring → Web section current information about web scenarios is displayed.

459

Note: The name of a disabled host is displayed in red (in both the host dropdown and the list). Data of disabled hosts is accessible
starting with Zabbix 2.2.0.

Starting with Zabbix 3.2.4, only values that fall within the last 24 hours are displayed by default. This limit has been introduced
with the aim of improving initial loading times for large pages of web monitoring. It is also possible to change this limitation by
changing the value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

The scenario name is link to more detailed statistics about it:

5 Latest data

Overview

The section in Monitoring → Latest data can be used to view latest values gathered by items as well as to access various graphs
for the items.

When you open this page for the first time, nothing is displayed.

460

To access data, you need to make selections in the filter such as host group, host, application or item name.

In the list displayed, click on before a host and the relevant application to reveal latest values of that host and application.

You can expand all hosts and all applications, thus revealing all items by clicking on in the header row.

Note: The name of a disabled host is displayed in red. Data of disabled hosts, including graphs and item value lists, is accessible
in Latest data since Zabbix 2.2.0.

Items are displayed with their name, last check time, last value, change amount and a link to a simple graph/history of item values.

Only values that fall within the last 24 hours are displayed by default. This limit has been introduced with the aim of improv-
ing initial loading times for large pages of latest data. It is also possible to change this limitation by changing the value of
ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

Using filter

461

You can use the filter to display only the items you are interested in. The Filter link is located above the table in the middle. You
can use it to filter items by host group, host, application, a string in the item name; you can also select to display items that have
no data gathered.

Specifying a parent host group implicitly selects all nested host groups since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1, nested host
groups are selected if the parent group is specified by a parent group/* syntax.

Show details allows to extend displayable information on the items. Such details as refresh interval, history and trends settings,
item type and item errors (fine/unsupported) are displayed. A link to item configuration is also available.

By default, items without data are shown but details are not displayed.

Graphs for comparing items

You may use the checkbox in the second column to select several items and then compare their data in a simple graph or stacked
graph. To do that, select items of interest, then click on the required graph button below the table.

Links to value history/simple graph

The last column in the latest value list offers:

• a History link (for all textual items) - leading to listings (Values/500 latest values) displaying the history of previous item
values.

• a Graph link (for all numeric items) - leading to a simple graph. However, once the graph is displayed, a dropdown on the
upper right offers a possibility to switch to Values/500 latest values as well.

462

The values displayed in this list are ”raw”, that is, no postprocessing is applied.

Note:
The total amount of values displayed is defined by the value of Limit for search and filter results parameter, set in Admin-
istration → General.

6 Triggers

Overview

The Monitoring → Triggers section displays the status of triggers.

463

Column Description

Severity The trigger severity is displayed.
The color of the severity is used as cell background for problem triggers. For
OK triggers, green background is used.

Status The trigger status is displayed - OK or PROBLEM.
By default, it will be blinking for 30 minutes for triggers that have recently
changed their state. Additionally, triggers that have recently changed their
state to OK, will be displayed for 30 minutes even if the filter is set to show
only problems.
Text color and blinking options can be configured in Administration → General
→ Trigger displaying options.

Info A grey icon with a question mark indicates that there is some relevant
information to be displayed. If you move your mouse pointer over it, the
message will be displayed.

Time For triggers - the date and time of last trigger status change is displayed.
For trigger events - the date and time of the trigger changing status to
’Problem’ is displayed.
Note: This column is named ”Last change” in Zabbix 3.2.0, 3.2.1.

Recovery time For trigger events - the date and time of the trigger changing status to ’OK’ is
displayed.
Recovery time is displayed when expanding the trigger entry to view its
events. Trigger events can be seen if ’Show all’ or ’Show acknowledged’
options are selected for Events in the filter.
Note: This column is available since Zabbix 3.2.2.

Age The age of last trigger status change is displayed.
Duration The duration of the problem state is displayed. Duration is displayed for trigger

events.
Acknowledged The acknowledgement status of the trigger is displayed:

Yes - green text indicating that the trigger is acknowledged. A trigger is
considered to be acknowledged if all problem events for it are acknowledged.
No - a red link indicating unacknowledged problem events (and their number
in grey text).
If you click on the link you will be taken to a bulk acknowledgement screen
where all events for this trigger can be acknowledged at once.
Note: If you wish to acknowledge a single event only, go to Monitoring →
Problems.
No events - if there have been no problem events for the trigger. Displaying
this string is supported since Zabbix 2.0.4; prior to that these triggers were
displayed as Acknowledged.

Host The host of the trigger is displayed.
It is also a link to the defined custom scripts, latest host data, host inventory
overview and host screens.

Name The name of the trigger is displayed.
It is also a link to the trigger event list and the trigger configuration page, as
well as to a simple graph of item data. The link list may also contain a custom
trigger URL, if one is defined in trigger configuration.

Description A link to trigger description.
The link for adding descriptions to triggers created by low-level discovery has
been removed in Zabbix 3.2.2. Such descriptions were later deleted anyway by
low-level discovery, if they were not present in the original trigger prototype.

Using filter

You can use the filter to display only the triggers you are interested in. The filter is located above the table.

By default only triggers in a ’Recent problem’ status are displayed - including both problem triggers and triggers that only very
recently changed to OK. You may also select to display triggers in ’Problem’ status (only problem triggers) or ’Any’.

Note that if you select ’Any’ then the amount of data processed on large installations may be overwhelming and the page may
take a very long time to load, if ever. You can fix this by replacing URL parameters with ?filter_rst=1 to reset the filter.

Mass editing options

A button below the list offers one mass-editing option:

464

• Bulk acknowledge - acknowledge the selected triggers

To use this option, mark the checkboxes before the respective triggers and click on Bulk acknowledge.

7 Graphs

Overview

In the Monitoring → Graphs section any custom graph that has been configured can be displayed.

To display a graph, select the host group, host and then the graph from the dropdowns to the right.

Note: In the host dropdown, a disabled host is highlighted in red. Graphs for disabled hosts are accessible starting with Zabbix
2.2.0.

Time period selector

The filter section above the graph contains a time period selector. It allows you to select the desired time period easily.

The slider within the selector can be dragged back and forth, as well as resized, effectively changing the time period displayed.
Links on the left hand side allow to choose some often-used predefined periods (above the slider area) and move them back and
forth in time (below the slider area). The dates on the right hand side actually work as links, popping up a calendar and allowing
to set a specific start/end time.

The fixed/dynamic link in the lower right hand corner has the following effects:

• controls whether the time period is kept constant when you change the start/end time in the calendar popup.
• when fixed, time moving controls (« 1m 7d 1d 12h 1h 5m | 5m 1h 12h 1d 7d 1m ») will move the slider, while not changing
its size, whereas when dynamic, the control used will enlarge the slider in the respective direction.

• when fixed, pressing the larger < and > buttons will move the slider, while not changing its size, whereas when dynamic, <
and > will enlarge the slider in the respective direction. The slider will move by the amount of its size, so, for example, if it
is one month, it will move by a month; whereas the slider will enlarge by 1 day.

Another way of controlling the displayed time is to highlight an area in the graph with the left mouse button. The graph will zoom
into the highlighted area once you release the left mouse button.

Controls

Three control buttons are available in the title bar:

• - add graph to the favourites widget in the Dashboard

• - reset graph display to the original setting of displaying the last hour data

465

• - use the full browser window to display the graph

8 Screens

Overview

In the Monitoring → Screens section you can configure, manage and view Zabbix screens and slide shows.

When you open this section, you will either see the last screen/slide show you accessed or a listing of all entities you have access
to. Screen/slide show listing can be filtered by name.

Since Zabbix 3.0 all screens/slide shows can be either public or private. The public ones are available to all users, while private
ones are accessible only to their owner and the users the entity is shared with.

Use the dropdown in the title bar to switch between screens and slide shows.

Screen listing

Displayed data:

Column Description

Name Name of the screen. Click on the name to view the screen.
Dimensions The number of columns and rows of the screen.
Actions Two actions are available:

Properties - edit general screen properties (name and dimensions)
Constructor - access the grid of screen elements for editing

To create a new screen, click on the Create screen button in the top right-hand corner. To import a screen from an XML file, click
on the Import button in the top right-hand corner. The user who imports the screen will be set as its owner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Export - export the screens to an XML file
• Delete - delete the screens

To use these options, mark the checkboxes before the respective screens, then click on the required button.

Viewing screens

To view a screen, click on its name in the list of all screens.

466

Time period selector

The filter section above the screen contains a time period selector. It allows you to select the desired time period easily, affecting
the data displayed in graphs etc.

Controls

Three control buttons are available in the title bar:

• - go to screen constructor to edit the screen

• - add screen to the favourites widget in the Dashboard

• - use the full browser window to display the screen

Slide show listing

Use the dropdown in the title bar to switch from screens to slide shows.

Displayed data:

467

Column Description

Name Name of the slide show. Click on the name to view the slide show.
Delay The default duration of showing one slide is displayed.
Number of slides The number of slides in the slide show is displayed.
Actions One action is available:

Properties - edit slide show properties

To create a new slide show, click on the Create slide show button in the top right-hand corner.

Mass editing options

A button below the list offers one mass-editing option:

• Delete - delete the slide shows

To use this option, mark the checkboxes before the respective slide shows and click on Delete.

Viewing slide shows

To view a slide show, click on its name in the list of all slide shows.

Controls

Four control buttons are available in the title bar:

• - go to slide show properties

• - add slide show to the favourites widget in the Dashboard

• - use the full browser window to display the slide show

• - slow down or speed up a slide show

Referencing a screen

Screens can be referenced by both elementid and screenname GET parameters. For example,

http://zabbix/zabbix/screens.php?screenname=Zabbix%20server

will open the screen with that name (Zabbix server).

If both elementid (screen ID) and screenname (screen name) are specified, screenname has higher priority.

9 Maps

Overview

In the Monitoring → Maps section you can configure, manage and view network maps.

When you open this section, you will either see the last map you accessed or a listing of all maps you have access to. Map listing
can be filtered by name.

Since Zabbix 3.0 all maps can be either public or private. Public maps are available to all users, while private maps are accessible
only to their owner and the users the map is shared with.

Map listing

468

Displayed data:

Column Description

Name Name of the map. Click on the name to view the map.
Width Map width is displayed.
Height Map height is displayed.
Actions Two actions are available:

Properties - edit general map properties
Constructor - access the grid for adding map elements

To configure a new map, click on the Create map button in the top right-hand corner. To import a map from an XML file, click on
the Import button in the top right-hand corner. The user who imports the map will be set as its owner.

Two buttons below the list offer some mass-editing options:

• Export - export the maps to an XML file
• Delete - delete the maps

To use these options, mark the checkboxes before the respective maps, then click on the required button.

Viewing maps

To view a map, click on its name in the list of all maps.

469

You can use the dropdown in the map title bar to select the lowest severity level of the problem triggers to display. The severity
marked as default is the level set in map configuration. If the map contains a submap, navigating to the submap will retain the
higher-level map severity.

Icon highlighting

If a map element is in problem status, it is highlighted with a round circle. The fill colour of the circle corresponds to the severity
colour of the problem trigger. Only problems on or above the selected severity level will be displayed with the element. If all
problems are acknowledged, a thick green border around the circle is displayed.

Additionally, a host in maintenance is highlighted with an orange, filled square and a disabled (not-monitored) host is highlighted
with a grey, filled square. Highlighting is displayed if the Icon highlighting check-box is marked in map configuration.

Recent change markers

Inward pointing red triangles around an element indicate a recent trigger status change - one that’s happened within the last 30
minutes. These triangles are shown if the Mark elements on trigger status change check-box is marked in map configuration.

Links

Clicking on a map element opens a menu with some available links.

Controls

Three control buttons are available in the title bar:

• - go to map constructor to edit the map content

• - add map to the favourites widget in the Dashboard

• - use the full browser window to display the map

10 Discovery

Overview

In the Monitoring → Discovery section results of network discovery are shown. Discovered devices are sorted by the discovery rule.

470

If a device is already monitored, the host name will be listed in the Monitored host column, and the duration of the device being
discovered or lost after previous discovery is shown in the Uptime/Downtime column.

After that follow the columns showing the state of individual services for each discovered device. A tooltip for each cell will show
individual service uptime or downtime.

Attention:
Only those services that have been found on at least one device will have a column showing their state.

11 IT services

Overview

In the Monitoring → IT services section the status of IT services is displayed.

A list of the existing IT services is displayed along with data of their status and SLA. From the dropdown in the upper right corner
you can select a desired period for display.

Displayed data:

Parameter Description

Service Service name.
Status Status of service:

OK - no problems
(trigger colour and severity) - indicates a problem and its
severity

Reason Indicates the reason of problem (if any).
Problem time Displays SLA bar. Green/red ratio indicates the proportion of

availability/problems. The bar displays the last 20% of SLA (from
80% to 100%).
The bar contains a link to a graph of availability data.

SLA/Acceptable SLA Displays current SLA/expected SLA value. If current value is below
the acceptable level, it is displayed in red.

You can also click on the service name to access the IT Services Availability Report.

471

Here you can assess IT service availability data over a longer period of time on daily/weekly/monthly/yearly basis.

2 Inventory

Overview

The Inventory menu features sections providing an overview of host inventory data by a chosen parameter as well as the ability
to view host inventory details.

1 Overview

Overview

The Inventory → Overview section provides ways of having an overview of host inventory data.

For an overview to be displayed, choose a host group (or all groups) and the inventory field by which to display data. The number
of hosts corresponding to each entry of the chosen field will be displayed.

The completeness of an overview depends on how much inventory information is maintained with the hosts.

Numbers in the Host count column are links; they lead to these hosts being filtered out in the Host Inventories table.

2 Hosts

Overview

In the Inventory → Hosts section inventory data of hosts are displayed.

Select a group from the dropdown in the upper right corner to display the inventory data of hosts in that group. You can also filter
the hosts by any inventory field to display only the hosts you are interested in.

472

To display all host inventories, select ”all” in the group dropdown, clear the comparison field in the filter and press ”Filter”.

While only some key inventory fields are displayed in the table, you can also view all available inventory information for that host.
To do that, click on the host name in the first column.

Inventory details

The Overview tab contains some general information about the host along with links to predefined scripts, latest monitoring data
and host configuration options:

The Details tab contains all available inventory details for the host:

The completeness of inventory data depends on how much inventory information is maintained with the host. If no information is
maintained, the Details tab is disabled.

3 Reports

Overview

473

The Reports menu features several sections that contain a variety of predefined and user-customizable reports focused on display-
ing an overview of such parameters as the status of Zabbix, triggers and gathered data.

1 Status of Zabbix

Overview

In Reports → Status of Zabbix a summary of key system data is displayed.

This report is also displayed as a widget in the Dashboard.

Displayed data

Parameter Value Details

Zabbix server is running Status of Zabbix server:
Yes - server is running
No - server is not running
Note: To make sure the web
frontend knows that the
server is running there must
be at least one trapper
process started on the
server (StartTrappers
parameter in
zabbix_server.conf file>0).

Location and port of Zabbix server.

Number of hosts Total number of hosts
configured is displayed.
Templates are counted as a
type of host too.

Number of monitored hosts/not
monitored hosts/templates.

Number of items Total number of items is
displayed. Only items
assigned to enabled hosts
are counted.

Number of
monitored/disabled/unsupported
items.

Number of triggers Total number of triggers is
displayed. Only triggers
assigned to enabled hosts
and depending on enabled
items are counted.

Number of enabled/disabled triggers.
[Triggers in problem/ok state.]

Number of users Total number of users
configured is displayed.

Number of users online.

474

Parameter Value Details

Required server performance, new values per
second

The expected number of
new values processed by
Zabbix server per second is
displayed.

Required server performance is an
estimate and can be useful as a
guideline. For precise numbers of
values processed, use the
zabbix[wcache,values,all]
internal item.

Enabled items from monitored hosts
are included in the calculation. Log
items are counted as one value per
item update interval. Regular interval
values are counted; flexible and
scheduling interval values are not.
The calculation is not adjusted during
a ”nodata” maintenance period.
Trapper items are not counted.

2 Availability report

Overview

In Reports → Availability report you can see what proportion of time each trigger has been in problem/ok state. The percentage of
time for each state is displayed.

Thus it is easy to determine the availability situation of various elements on your system.

From the dropdown in the upper right corner you can choose the selection mode - whether to display triggers by hosts or by triggers
belonging to a template. Then in the filter you can narrow down the selection to the desired options and the time period.

475

The name of the trigger is a link to the latest events of that trigger.

Clicking on Show in the Graph column displays a bar graph where availability information is displayed in bar format each bar
representing a past week of the current year.

The green part of a bar stands for OK time and red for problem time.

3 Triggers top 100

Overview

In Reports → Triggers top 100 you can see the triggers that have changed their state most often within the period of evaluation,
sorted by the number of status changes.

476

Both host and trigger column entries are links that offer some useful options:

• for host - links to user-defined scripts, latest data, inventory, graphs and screens for the host
• for trigger - links to latest events, the trigger configuration form and a simple graph

Using filter

You may use the filter to display triggers by host group, host, trigger severity, predefined time period or a custom time period.

Specifying a parent host group implicitly selects all nested host groups since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1, nested host
groups are selected if the parent group is specified by a parent group/* syntax.

4 Audit

Overview

In the Reports → Audit section users can view records of changes made in the frontend.

Audit log

In this screen the audit log of various changes made in the frontend can be seen. You can use the filter, located below the Audit
log bar, to narrow down the records by user, activity type, affected resource and the time period.

477

Displayed data:

Column Description

Time Timestamp of the audit record.
User User of the activity.
IP IP that was used in the activity.
Resource Affected resource is displayed.
Action Activity type is displayed - Login, Logout, Added, Updated, Deleted, Enabled or

Disabled.
ID ID of the affected resource is displayed.
Description Description of the resource is displayed.
Details Detailed information on the performed activity is displayed.

5 Action log

Overview

In this screen details of operations (notifications, remote commands) executed within an action are displayed.

You can use the filter, located below the Action log bar, to narrow down the records by recipient of e-mail and time period.

478

Displayed data:

Column Description

Time Timestamp of the operation.
Action Name of the action causing operations is displayed.

Action name is displayed since Zabbix 2.4.0.
Type Operation type is displayed - Email or Command.
Recipient(s) User alias, name and surname (in parenthesis) and e-mail address of the

notification recipient is displayed.
User alias, name and surname are displayed since Zabbix 2.4.0.

Message The content of the message/remote command is displayed.
Status Operation status is displayed:

In progress - action is in progress
For actions in progress the number of retries left is displayed - the remaining
number of times the server will try to send the notification.
Sent - notification has been sent
Executed - command has been executed
Not sent - action has not been completed.

Info Error information (if any) regarding the action execution is displayed.

6 Notifications

Overview

In the Reports → Notifications section a report on the number of notifications sent to each user is displayed.

From the dropdowns in the top right-hand corner you can choose themedia type (or all), period (data for each day/week/month/year)
and year for the notifications sent.

479

Each column displays totals per one system user.

4 Configuration

Overview

The Configuration menu contains sections for setting up major Zabbix functions, such as hosts and host groups, data gathering,
data thresholds, sending problem notifications, creating data visualisation and others.

1 Host groups

Overview

In the Configuration → Host groups section users can configure and maintain host groups. A host group can contain both templates
and hosts.

A listing of existing host groups with their details is displayed. You can search and filter host groups by name.

Displayed data:

480

Column Description

Name Name of the host group. Clicking on the group name opens the host group
configuration form.

Hosts Number of hosts in the group (displayed in grey). Clicking on ”Hosts” will, in
the whole listing of hosts, filter out those that belong to the group.

Templates Number of templates in the group (displayed in grey). Clicking on ”Templates”
will, in the whole listing of templates, filter out those that belong to the group.

Members Names of group members. Template names are displayed in grey, monitored
host names in blue and non-monitored host names in red. Clicking on a name
will open the template/host configuration form.

Info Error information (if any) regarding the host group is displayed.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable hosts - change the status of all hosts in the group to ”Monitored”
• Disable hosts - change the status of all hosts in the group to ”Not monitored”
• Delete - delete the host groups

To use these options, mark the checkboxes before the respective host groups, then click on the required button.

2 Templates

Overview

In the Configuration → Templates section users can configure and maintain templates.

A listing of existing templates with their details is displayed.

From the dropdown to the right in the title bar you can choose whether to display all templates or only those belonging to a group.
You can also search and filter templates by name.

Displayed data:

Column Description

Templates Name of the template. Clicking on the template name opens the template
configuration form.

Entities (Applications, Items, Triggers,
Graphs, Screens, Discovery, Web)

Number of the respective entities in the template (displayed in grey). Clicking
on the entity name will, in the whole listing of that entity, filter out those that
belong to the template.

Linked templates Templates that are linked to the template, in a nested setup where the
template will inherit all entities of the linked templates.

Linked to The hosts and templates that the template is linked to.

481

To configure a new template, click on the Create template button in the top right-hand corner. To import a template from an XML
file, click on the Import button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Export - export the template to an XML file
• Delete - delete the template while leaving its linked entities (items, triggers etc.) with the hosts
• Delete and clear - delete the template and its linked entities from the hosts

To use these options, mark the checkboxes before the respective templates, then click on the required button.

3 Hosts

Overview

In the Configuration → Hosts section users can configure and maintain hosts.

A listing of existing hosts with their details is displayed.

From the dropdown to the right in the Hosts bar you can choose whether to display all hosts or only those belonging to one particular
group.

Displayed data:

Column Description

Name Name of the host. Clicking on the host name opens the host configuration
form.

Elements (Applications, Items, Triggers,
Graphs, Discovery, Web)

Clicking on the element name will display items, triggers etc. of the host. The
number of the respective elements is displayed in gray.

Interface The main interface of the host is displayed.
Templates The templates linked to the host are displayed. If other templates are

contained in the linked template, those are displayed in parentheses,
separated by a comma. Clicking on a template name will open its
configuration form.

Status Host status is displayed - Enabled or Disabled. By clicking on the status you
can change it.

Availability Availability of the host is displayed. Four icons each represent a supported
interface (Zabbix agent, SNMP, IPMI, JMX).
The current status of the interface is displayed by the respective colour:
Green - available
Red - not available (upon mouseover, details of why the interface cannot be
reached are displayed)
Gray - unknown or not configured

Agent encryption Encryption status for connections to the host is displayed:
None - no encryption
PSK - using pre-shared key
Cert - using certificate

Info Error information (if any) regarding the host is displayed.

To configure a new host, click on the Create host button in the top right-hand corner. To import a host from an XML file, click on
the Import button in the top right-hand corner.

482

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change host status to Monitored
• Disable - change host status to Not monitored
• Export - export the hosts to an XML file
• Mass update - update several properties for a number of hosts at once
• Delete - delete the hosts

To use these options, mark the checkboxes before the respective hosts, then click on the required button.

Filter

As the list may contain very many hosts, it may be needed to filter out the ones you really need.

The Filter link is available above the list of hosts. If you click on it, a filter becomes available where you can filter hosts by name,
DNS, IP or port number.

Reading host availability

Host availability icons reflect the current host interface status on Zabbix server. Therefore, in the frontend:

• If you disable a host, availability icons will not immediately turn gray (unknown status), because the server has to synchronize
the configuration changes first;

• If you enable a host, availability icons will not immediately turn green (available), because the server has to synchronize the
configuration changes and start polling the host first.

Unknown host status

Zabbix server sets the host availability icon to gray (unknown status) for the corresponding agent interface (Zabbix, SNMP, IMP,
JMX) if:

• there are no enabled items on the interface (they were removed or disabled);
• host is disabled;
• host is set to be monitored by proxy, a different proxy or by server if it was monitored by proxy;
• host is monitored by a proxy that appears to be offline (no updates received from the proxy during the maximum heartbeat
interval - 1 hour).

See also more details about host unreachability.

1 Applications

Overview

The application list for a template can be accessed from Configuration → Templates and then clicking on Applications for the
respective template.

The application list for a host can be accessed from Configuration → Hosts and then clicking on Applications for the respective host.

A list of existing applications is displayed.

483

Displayed data:

Column Description

Application Name of the application, displayed as a blue link for directly created
applications.
Clicking on the application name link opens the application configuration form.
If the host application belongs to a template, the template name is displayed
before the application name, as a grey link. Clicking on the template link will
open the application list on the template level.

Items Click on Items to view the items contained in the application. The number of
items is displayed in grey.

Info Error information (if any) regarding the application is displayed.

To configure a new application, click on the Create application button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change application status to Enabled
• Disable - change application status to Disabled
• Delete - delete the applications

To use these options, mark the checkboxes before the respective applications, then click on the required button.

2 Items

Overview

The item list for a template can be accessed from Configuration → Templates and then clicking on Items for the respective template.

The item list for a host can be accessed from Configuration → Hosts and then clicking on Items for the respective host.

A list of existing items is displayed.

484

Displayed data:

Column Description

Wizard The wizard icon is a link to a wizard for creating a trigger based on the item.
Name Name of the item, displayed as a blue link to item details.

Clicking on the item name link opens the item configuration form.
If the host item belongs to a template, the template name is displayed before
the item name, as a grey link. Clicking on the template link will open the item
list on the template level.
If the item has been created from an item prototype, its name is preceded by
the low level discovery rule name, in orange. Clicking on the discovery rule
name will open the item prototype list.

Triggers Moving the mouse over Triggers will display an info box displaying the triggers
associated with the item.
The number of the triggers is displayed in grey.

Key Item key is displayed.
Interval Frequency of the check is displayed.
History How many days item data history will be kept is displayed.
Trends How many days item trends history will be kept is displayed.
Type Item type is displayed (Zabbix agent, SNMP agent, simple check, etc).
Applications Item applications are displayed.
Status Item status is displayed - Enabled, Disabled or Not supported. By clicking on

the status you can change it - from Enabled to Disabled (and back); from Not
supported to Disabled (and back).

Info If everything is fine, no icon is displayed in this column. If there are errors, a
red square icon with a cross is displayed. Move the mouse over the icon and
you will see a tooltip with the error description.

To configure a new item, click on the Create item button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change item status to Enabled
• Disable - change item status to Disabled
• Clear history - delete history and trend data for items
• Copy - copy the items to other hosts or templates
• Mass update - update several properties for a number of items at once
• Delete - delete the items

To use these options, mark the checkboxes before the respective items, then click on the required button.

Filter

As the list may contain very many items, it may be needed to filter out the ones you really need.

The Filter link is available above the list. If you click on it, a filter becomes available where you can filter items by several properties.

485

The Subfilter below the filter offers further filtering options (for the data already filtered). You can select groups of items with a
common parameter value. If you click on a group it gets highlighted and only the items with this parameter value remain in the
list.

3 Triggers

Overview

The trigger list for a template can be accessed from Configuration → Templates and then clicking on Triggers for the respective
template.

The trigger list for a host can be accessed from Configuration → Hosts and then clicking on Triggers for the respective host.

Displayed data:

Column Description

Severity Severity of the trigger is displayed by both name and cell background colour.

486

Column Description

Name Name of the trigger, displayed as a blue link to trigger details.
Clicking on the trigger name link opens the trigger configuration form.
If the host trigger belongs to a template, the template name is displayed
before the trigger name, as a grey link. Clicking on the template link will open
the trigger list on the template level.
If the trigger has been created from a trigger prototype, its name is preceded
by the low level discovery rule name, in orange. Clicking on the discovery rule
name will open the trigger prototype list.

Expression Trigger expression is displayed. The host-item part of the expression is
displayed as a link, leading to the item configuration form.

Status Trigger status is displayed - Enabled, Disabled or Unknown. By clicking on the
status you can change it - from Enabled to Disabled (and back); from Unknown
to Disabled (and back).

Info If everything is fine, no icon is displayed in this column. If there are errors, a
red square icon with a cross is displayed. Move the mouse over the icon and
you will see a tooltip with the error description.

To configure a new trigger, click on the Create trigger button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change trigger status to Enabled
• Disable - change trigger status to Disabled
• Copy - copy the triggers to other hosts or templates
• Mass update - update several properties for a number of triggers at once
• Delete - delete the triggers

To use these options, mark the checkboxes before the respective triggers, then click on the required button.

4 Graphs

Overview

The custom graph list for a template can be accessed from Configuration → Templates and then clicking on Graphs for the respective
template.

The custom graph list for a host can be accessed from Configuration → Hosts and then clicking on Graphs for the respective host.

A list of existing graphs is displayed.

Displayed data:

487

Column Description

Name Name of the custom graph, displayed as a blue link to graph details.
Clicking on the graph name link opens the graph configuration form.
If the host graph belongs to a template, the template name is displayed before
the graph name, as a grey link. Clicking on the template link will open the
graph list on the template level.
If the graph has been created from a graph prototype, its name is preceded by
the low level discovery rule name, in orange. Clicking on the discovery rule
name will open the graph prototype list.

Width Graph width is displayed.
Height Graph height is displayed.
Graph type Graph type is displayed - Normal, Stacked, Pie or Exploded.

To configure a new graph, click on the Create graph button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Copy - copy the graphs to other hosts or templates
• Delete - delete the graphs

To use these options, mark the checkboxes before the respective graphs, then click on the required button.

5 Discovery rules

Overview

The list of low-level discovery rules for a template can be accessed from Configuration → Templates and then clicking on Discovery
for the respective template.

The list of low-level discovery rules for a host can be accessed from Configuration → Hosts and then clicking on Discovery for the
respective host.

A list of existing low-level discovery rules is displayed.

Displayed data:

Column Description

Name Name of the rule, displayed as a blue link.
Clicking on the rule name opens the low-level discovery rule configuration
form.
If the discovery rule belongs to a template, the template name is displayed
before the rule name, as a grey link. Clicking on the template link will open the
rule list on the template level.

Items A link to the list of item prototypes is displayed.
The number of existing item prototypes is displayed in grey.

Triggers A link to the list of trigger prototypes is displayed.
The number of existing trigger prototypes is displayed in grey.

Graphs A link to the list of graph prototypes displayed.
The number of existing graph prototypes is displayed in grey.

Hosts A link to the list of host prototypes displayed.
The number of existing host prototypes is displayed in grey.

Key The item key used for discovery is displayed.
Interval The frequency of performing discovery is displayed.
Type The item type used for discovery is displayed (Zabbix agent, SNMP agent, etc).

488

Column Description

Status Discovery rule status is displayed - Enabled, Disabled or Not supported. By
clicking on the status you can change it - from Enabled to Disabled (and back);
from Not supported to Disabled (and back).

Info If everything is fine, no icon is displayed in this column. If there are errors, a
red square icon with a cross is displayed. Move the mouse over the icon and
you will see a tooltip with the error description.

To configure a new low-level discovery rule, click on the Create discovery rule button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the low-level discovery rule status to Enabled
• Disable - change the low-level discovery rule status to Disabled
• Delete - delete the low-level discovery rules

To use these options, mark the checkboxes before the respective discovery rules, then click on the required button.

6 Web scenarios

Overview

The web scenario list for a template can be accessed from Configuration → Templates and then clicking on Web for the respective
template.

The web scenario list for a host can be accessed from Configuration → Hosts and then clicking on Web for the respective host.

A list of existing web scenarios is displayed. From the dropdown to the right in the Scenarios bar you can choose whether to display
all web scenarios or only those belonging to one particular group and host. Additionally you can choose to hide disabled scenarios
(or show them again) by clicking on the respective link.

Displayed data:

Column Description

Name Name of the web scenario. Clicking on the web scenario name opens the web
scenario configuration form.

Number of steps The number of steps contained in the scenario.
Update interval How often the scenario is performed.
Attempts How many attempts for executing web scenario steps are performed.
Authentication Authentication method is displayed - Basic, NTLM on None.
HTTP proxy Displays HTTP proxy or ’No’ if not used.
Application Web scenario application is displayed.
Status Web scenario status is displayed - Enabled or Disabled.

By clicking on the status you can change it.
Info If everything is fine, no icon is displayed in this column. If there are errors, a

red square icon with a cross is displayed. Move the mouse over the icon and
you will see a tooltip with the error description.

To configure a new web scenario, click on the Create web scenario button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the scenario status to Enabled

489

• Disable - change the scenario status to Disabled
• Clear history - clear history and trend data for the scenarios
• Delete - delete the web scenarios

To use these options, mark the checkboxes before the respective web scenarios, then click on the required button.

4 Maintenance

Overview

In the Configuration → Maintenance section users can configure and maintain maintenance periods for hosts.

A listing of existing maintenance periods with their details is displayed.

From the dropdown to the right in the Maintenance periods bar you can choose whether to display all maintenance periods or only
those belonging to one particular group.

Displayed data:

Column Description

Name Name of the maintenance period. Clicking on the maintenance period name
opens the maintenance period configuration form.

Type The type of maintenance is displayed: With data collection or No data
collection

Active since The date and time when executing maintenance periods becomes active.
Active till The date and time when executing maintenance periods stops being active.
State The state of the maintenance period:

Approaching - will become active soon
Active - is active
Expired - is not active any more

Description Description of the maintenance period is displayed.

Name, Type, Active since and Active till are sortable columns that can be sorted in ascending/descending order. To sort, click on
the column name.

To configure a new maintenance period, click on the Create maintenance period button in the top right-hand corner.

Mass editing options

A button below the list offers one mass-editing option:

• Delete - delete the maintenance periods

To use this option, mark the checkboxes before the respective maintenance periods and click on Delete.

Filter

As the list may contain a number of maintenance periods, it may be needed to filter out the ones you really need.

The Filter link is available above the list of maintenance periods. If you click on it, a filter becomes available where you can filter
maintenance periods by name and state.

490

5 Actions

Overview

In the Configuration → Actions section users can configure and maintain actions.

A listing of existing actions with their details is displayed. The actions displayed are actions assigned to the selected event source
(triggers, discovery, auto-registration).

To view actions assigned to a different event source, change the source from the dropdown to the right in the Actions bar.

For users without Super-admin rights actions are displayed according to permission settings. That means in some cases a user
without Super-admin rights isn’t able to view the complete action list because of certain permission restrictions. An action is
displayed to the user without Super-admin rights if the following conditions are fulfilled:

• The user has read-write access to host groups, hosts, templates and triggers in action conditions
• The user has read-write access to host groups, hosts and templates in action operations and recovery operations
• The user has read access to user groups and users in action operations and recovery operations

Displayed data:

Column Description

Name Name of the action. Clicking on the action name opens the action
configuration form.

Conditions Action conditions are displayed.
Operations Action operations are displayed.

Since Zabbix 2.2, the operation list also displays the media type (e-mail, SMS,
Jabber, etc) used for notification as well as the name and surname (in
parentheses after the alias) of a notification recipient.

Status Action status is displayed - Enabled or Disabled.
By clicking on the status you can change it.
See the Escalations section for more details as to what happens if an action is
disabled during an escalation in progress.

To configure a new action, click on the Create action button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the action status to Enabled
• Disable - change the action status to Disabled
• Delete - delete the actions

To use these options, mark the checkboxes before the respective actions, then click on the required button.

Filter

As the list may contain a number of actions, it may be needed to filter out the ones you really need.

The Filter link is available above the list of actions. If you click on it, a filter becomes available where you can filter actions by
name and status.

491

6 Event correlation

Overview

In the Configuration → Event correlation section users can configure and maintain global correlation rules for Zabbix events.

Displayed data:

Column Description

Name Name of the correlation rule. Clicking on the correlation rule name opens the
rule configuration form.

Conditions Correlation rule conditions are displayed.
Operations Correlation rule operations are displayed.
Status Correlation rule status is displayed - Enabled or Disabled.

By clicking on the status you can change it.

To configure a new correlation rule, click on the Create correlation button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the correlation rule status to Enabled
• Disable - change the correlation rule status to Disabled
• Delete - delete the correlation rules

To use these options, mark the checkboxes before the respective correlation rules, then click on the required button.

Filter

As the list may contain a number of correlation rules, it may be needed to filter out the ones you really need.

The Filter link is available above the list of correlation rules. If you click on it, a filter becomes available where you can filter
correlation rules by name and status.

7 Discovery

Overview

In the Configuration → Discovery section users can configure and maintain discovery rules.

A listing of existing discovery rules with their details is displayed.

492

Displayed data:

Column Description

Name Name of the discovery rule. Clicking on the discovery rule name opens the
discovery rule configuration form.

IP range The range of IP addresses to use for network scanning is displayed.
Delay The frequency of performing discovery displayed.
Checks The types of checks used for discovery are displayed.
Status Action status is displayed - Enabled or Disabled.

By clicking on the status you can change it.

To configure a new discovery rule, click on the Create discovery rule button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the discovery rule status to Enabled
• Disable - change the discovery rule status to Disabled
• Delete - delete the discovery rules

To use these options, mark the checkboxes before the respective discovery rules, then click on the required button.

Filter

As the list may contain a number of discovery rules, it may be needed to filter out the ones you really need.

The Filter link is available above the list of discovery rules. If you click on it, a filter becomes available where you can filter discovery
rules by name and status.

8 IT services

Overview

In the Configuration → IT services section users can configure and maintain an IT services hierarchy.

When you first open this section it only contains a root entry.

You can use it as a starting point of building the hierarchy of monitored infrastructure. Click on Add child to add services and then
other services below the ones you have added.

For details on adding services, see the IT services section.

493

5 Administration

Overview

The Administration menu is for administrative functions of Zabbix. This menu is available to users of Super Administrators type
only.

1 General

Overview

The Administration → General section contains a number of screens for setting frontend-related defaults and customizing Zabbix.

The dropdown to the right allows you to switch between different configuration screens.

1 GUI

This screen provides customization of several frontend-related defaults.

494

Configuration parameters:

Parameter Description

Default theme Default theme for users who have not set a specific one in their
profiles.

Dropdown first entry Whether first entry in element selection dropdowns should be All or
None.
With remember selected checked, the last selected element in the
dropdown will be remembered (instead of the default) when
navigating to another page.

Limit for search and filter results Maximum amount of elements (rows) that will be displayed in a
web-interface list, like, for example, in Monitoring → Triggers or
Configuration → Hosts.
Note: If set to, for example, ’50’, only the first 50 elements will be
displayed in all affected frontend lists. If some list contains more
than fifty elements, the indication of that will be the ’+’ sign in
”Displaying 1 to 50 of 50+ found”. Also, if filtering is used and still
there are more than 50 matches, only the first 50 will be displayed.

Max count of elements
to show inside table cell For entries that are displayed in a single table cell, no more than
configured here will be shown.

Enable event acknowledgement This parameter defines if event acknowledgments are activated in
Zabbix interface.

Show events not older
than (in days) This parameter defines for how many days events are displayed in
Status of Triggers screen. Default is 7 days.

Max count of events per trigger to show Maximum number of event to show for each trigger in Status of
Triggers screen. Default is 100.

Show warning if Zabbix server is down This parameter enables a warning message to be displayed in the
browser window if Zabbix server cannot be reached (may be
down). The message remains visible even if the user scrolls down
the page. If the mouse is moved over it, the message is
temporarily hidden to reveal the contents below.
This parameter is supported since Zabbix 2.0.1.

495

2 Housekeeper

The housekeeper is a periodical process, executed by Zabbix server. The process removes outdated information and information
deleted by user.

496

497

In this section housekeeping tasks can be enabled or disabled on a per-task basis separately for: events and alerts/IT ser-
vices/audit/user sessions/history/trends. If housekeeping is enabled, it is possible to set for how many days data records will be
kept before being removed by the housekeeper.

Deleting an item/trigger will also delete problems generated by that item/trigger.

Since Zabbix 3.2.11, an event will only be deleted by the housekeeper if it is not associated with a problem in any way. This means
that if an event is either a problem or recovery event, it will not be deleted until the related problem record is removed. The
housekeeper will delete problems first and events after, to avoid potential problems with stale events or problem records.

For history and trends an additional option is available: Override item history period and Override item trends period. This option
allows to globally set for how many days item history/trends will be kept, in this case overriding the values set for individual items
in Keep history/Keep trends fields in item configuration.

It is possible to override the history/trend storage period even if internal housekeeping is disabled. Thus, when using an external
housekeeper, the history storage period could be set using the history Data storage period field.

Reset defaults button allows to revert any changes made.

3 Images

The Images section displays all the images available in Zabbix. Images are stored in the database.

The Type dropdown allows you to switch between icon and background images:

• Icons are used to display network map elements
• Backgrounds are used as background images of network maps

Adding image

You can add your own image by clicking on the Create icon or Create background button in the top right corner.

498

Image attributes:

Parameter Description

Name Unique name of an image.
Upload Select the file (PNG, JPEG) from a local system to be uploaded to

Zabbix.

Note:
Maximum size of the upload file is limited by value of ZBX_MAX_IMAGE_SIZE that is 1024x1024 bytes or 1 MB.

The upload of an image may fail if the image size is close to 1 MB and the max_allowed_packet MySQL configu-
ration parameter is at a default of 1MB. In this case, increase the max_allowed_packet parameter.

4 Icon mapping

This section allows to create the mapping of certain hosts with certain icons. Host inventory field information is used to create the
mapping.

The mappings can then be used in network map configuration to assign appropriate icons to matching hosts automatically.

To create a new icon map, click on Create icon map in the top right corner.

Configuration parameters:

Parameter Description

Name Unique name of icon map.
Mappings A list of mappings. The order of mappings determines which one

will have priority. You can move mappings up and down the list
with drag-and-drop.

Inventory field Host inventory field that will be looked into to seek a match.
Expression Regular expression describing the match.
Icon Icon to use if a match for the expression is found.
Default Default icon to use.

5 Regular expressions

499

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

This section allows to create custom regular expressions that can be used in several places in the frontend. See Regular expressions
section for details.

6 Macros

This section allows to define system-wide macros.

See User macros section for more details.

7 Value mapping

This section allows to manage value maps that are useful for human-readable representation of incoming data in Zabbix frontend.

See Value mapping section for more details.

8 Working time

Working time is system-wide parameter, which defines working time. Working time is displayed as a white background in graphs,
while non-working time is displayed in grey.

500

See Time period specification page for description of the time format.

9 Trigger severities

This section allows to customize trigger severity names and colors.

You can enter new names and color codes or click on the color to select another from the provided palette.

See Customising trigger severities page for more information.

10 Trigger displaying options

This section allows to customize how trigger status is displayed in the frontend.

The colors for acknowledged/unacknowledged events can be customized and blinking enabled or disabled.

Also the time period for displaying OK triggers and for blinking upon trigger status change can be customized. The maximum value
is 86400 seconds (24 hours).

11 Other parameters

This section allows to configure several other frontend parameters.

501

Parameter Description

Refresh unsupported items (in sec) Some items may become unsupported due to errors in user
parameters or because of an item not being supported by
agent. Zabbix can be configured to periodically make
unsupported items active.
Zabbix will activate unsupported item every N seconds set
here. If set to 0, the automatic activation will be disabled.
The configured value also applies to how often Zabbix proxies
reactivate unsupported items.

Group for discovered hosts Hosts discovered by network discovery and agent
auto-registration will be automatically placed in the host
group, selected here.

502

Parameter Description

Default host inventory mode Default mode for host inventory. It will be followed whenever
a new host or host prototype is created by server or frontend,
unless overriden during host discovery/auto registration by
the //Set host inventory mode operation. | |User group for
database down message//

User
group
for
send-
ing
alarm
mes-
sage
or
’None’.
Availability
of
Zab-
bix
server
de-
pends
on
avail-
abil-
ity of
back-
end
database.
It
can-
not
work
with-
out a
database.
Database
watch-
dog,
a
spe-
cial
Zab-
bix
server
pro-
cess,
will
alarm
se-
lected
users
in
case
of
dis-
as-
ter.
If the
database
is
down,
the
watch-
dog
will
send
noti-
fica-
tions
to
the
user
group
set
here,
us-
ing
all
con-
fig-
ured
user
me-
dia
en-
tries.
Zab-
bix
server
will
not
stop;
it
will
wait
until
the
database
is
back
again
to
con-
tinue
pro-
cess-
ing.
Note:
Until
Zab-
bix
ver-
sion
1.8.2
database
watch-
dog
was
sup-
ported
for
MySQL
only.
Since
1.8.2,
it is
sup-
ported
for
all
databases.

503

Parameter Description

Log unmatched SNMP traps Log SNMP trap if no corresponding SNMP interfaces have been
found.

2 Proxies

Overview

In the Administration → Proxies section proxies for distributed monitoring can be configured in the Zabbix frontend.

Proxies

A listing of existing proxies with their details is displayed.

Displayed data:

Column Description

Name Name of the proxy. Clicking on the proxy name opens the proxy configuration
form.

Mode Proxy mode is displayed - Active or Passive.
Encryption Encryption status for connections from the proxy is displayed:

None - no encryption
PSK - using pre-shared key
Cert - using certificate

Last seen (age) The time when the proxy was last seen by the server is displayed.
Host count The number of hosts monitored by the proxy is displayed.
Item count The number of items monitored by the proxy is displayed.
Required performance (vps) Required proxy performance is displayed (the number of values that need to

be collected per second).
Hosts All hosts monitored by the proxy are listed. Clicking on the host name opens

the host configuration form.

To configure a new proxy, click on the Create proxy button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable hosts - change the status of hosts monitored by the proxy to Monitored
• Disable hosts - change the status of hosts monitored by the proxy to Not monitored
• Delete - delete the proxies

To use these options, mark the checkboxes before the respective proxies, then click on the required button.

Filter

As the list may contain many proxies, it may be needed to filter out the ones you really need.

The Filter link is available above the list of proxies. If you click on it, a filter becomes available where you can filter proxies by
name and mode.

504

3 Authentication

Overview

In Administration → Authentication the user authentication method to Zabbix can be changed. The available methods are internal,
LDAP and HTTP authentication.

By default, internal Zabbix authentication is used. To change, click on the button with the method name and press Update.

Internal

Internal Zabbix authentication is used.

LDAP

External LDAP authentication can be used to check user names and passwords. Note that a user must exist in Zabbix as well,
however its Zabbix password will not be used.

Zabbix LDAP authentication works at least with Microsoft Active Directory and OpenLDAP.

Configuration parameters:

505

Parameter Description

LDAP host Name of LDAP server. For example: ldap://ldap.zabbix.com
For secure LDAP server use ldaps protocol.
ldaps://ldap.zabbix.com
With OpenLDAP 2.x.x and later, a full LDAP URI of the form
ldap://hostname:port or ldaps://hostname:port may be used.

Port Port of LDAP server. Default is 389.
For secure LDAP connection port number is normally 636.
Not used when using full LDAP URIs.

Base DN Base path to search accounts:
ou=Users,ou=system (for OpenLDAP),
DC=company,DC=com (for Microsoft Active Directory)

Search attribute LDAP account attribute used for search:
uid (for OpenLDAP),
sAMAccountName (for Microsoft Active Directory)

Bind DN LDAP account for binding and searching over the LDAP server,
examples:
uid=ldap_search,ou=system (for OpenLDAP),
CN=ldap_search,OU=user_group,DC=company,DC=com (for
Microsoft Active Directory)

Required, anonymous binding is not supported.
Bind password LDAP password of the account for binding and searching over the

LDAP server.
Test authentication Header of a section for testing
Login Name of a test user (which is currently logged in the Zabbix

frontend). This user name must exist in the LDAP server.
Zabbix will not activate LDAP authentication if it is unable to
authenticate the test user.

User password LDAP password of the test user.

Warning:
In case of trouble with certificates, to make a secure LDAP connection (ldaps) work you may need to add a TLS_REQCERT
allow line to the /etc/openldap/ldap.conf configuration file. It may decrease the security of connection to the LDAP catalog.

Note:
It is recommended to create a separate LDAP account (Bind DN) to perform binding and searching over the LDAP server
with minimal privileges in the LDAP instead of using real user accounts (used for logging in the Zabbix frontend).
Such an approach provides more security and does not require changing the Bind password when the user changes his
own password in the LDAP server.
In the table above it’s ldap_search account name.

Note:
Some user groups can still be authenticated by Zabbix. These groups must have frontend access set to Internal.

HTTP

Apache-based (HTTP) authentication can be used to check user names and passwords. Note that a user must exist in Zabbix as
well, however its Zabbix password will not be used.

Attention:
Be careful! Make sure that Apache authentication is configured and works properly before switching it on.

Note:
In case of Apache authentication all users (even with frontend access set to Internal) will be authenticated by Apache, not
by Zabbix!

4 User groups

506

Overview

In the Administration → User groups section user groups of the system are maintained.

User groups

A listing of existing user groups with their details is displayed.

Displayed data:

Column Description

Name Name of the user group. Clicking on the user group name opens the user
group configuration form.

The number of users in the group. Clicking on Users will display the respective
users filtered out in the user list.

Members Aliases of individual users in the user group (with name and surname in
parentheses). Clicking on the alias will open the user configuration form. Users
from disabled groups are displayed in red.

Frontend access Frontend access level is displayed:
System default - Zabbix, LDAP or HTTP authentication; depending on the
chosen authentication method
Internal - the user is authenticated by Zabbix regardless of system settings
Disabled - frontend access for this user is disabled.
By clicking on the current level you can change it.

Debug mode Debug mode status is displayed - Enabled or Disabled. By clicking on the
status you can change it.

Status User group status is displayed - Enabled or Disabled. By clicking on the status
you can change it.

To configure a new user group, click on the Create user group button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the user group status to Enabled
• Disable - change the user group status to Disabled
• Enable debug mode - enable debug mode for the user groups
• Disable debug mode - disable debug mode for the user groups
• Delete - delete the user groups

To use these options, mark the checkboxes before the respective user groups, then click on the required button.

Filter

507

As the list may contain many user groups, it may be needed to filter out the ones you really need.

The Filter link is available above the list of user groups. If you click on it, a filter becomes available where you can filter user groups
by name and status.

5 Users

Overview

In the Administration → Users section users of the system are maintained.

Users

A listing of existing users with their details is displayed.

From the dropdown to the right in the Users bar you can choose whether to display all users or those belonging to one particular
group.

Displayed data:

Column Description

Alias Alias of the user, used for logging into Zabbix. Clicking on the alias opens the
user configuration form.

Name First name of the user.
Surname Second name of the user.
User type User type is displayed - Zabbix Super Admin, Zabbix Admin or Zabbix User.
Groups Groups that the user is member of are listed. Clicking on the user group name

opens the user group configuration form. Disabled groups are displayed in red.
Is online? The on-line status of the user is displayed - Yes or No. The time of last user

activity is displayed in parentheses.
Login The login status of the user is displayed - Ok or Blocked. A user can become

temporarily blocked upon more than five unsuccessful login attempts. By
clicking on Blocked you can unblock the user.

Frontend access Frontend access level is displayed - System default, Internal or Disabled,
depending on the one set for the whole user group.

Debug mode Debug mode status is displayed - Enabled or Disabled, depending on the one
set for the whole user group.

Status User status is displayed - Enabled or Disabled, depending on the one set for
the whole user group.

To configure a new user, click on the Create user button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Unblock - re-enable system access to blocked users
• Delete - delete the users

508

To use these options, mark the check-boxes before the respective users, then click on the required button.

Filter

As the list may contain many users, it may be needed to filter out the ones you really need.

The Filter link is available above the list of users. If you click on it, a filter becomes available where you can filter users by alias,
name, surname and user type.

6 Media types

Overview

In the Administration → Media types section users can configure and maintain media type information.

Media type information contains general instructions for using a medium as delivery channel for notifications. Specific details,
such as the individual e-mail addresses to send a notification to are kept with individual users.

A listing of existing media types with their details is displayed.

Displayed data:

Column Description

Name Name of the media type. Clicking on the name opens the media type
configuration form.

Type Type of the media (e-mail, SMS, etc) is displayed.
Status Media type status is displayed - Enabled or Disabled.

By clicking on the status you can change it.
Used in actions All actions where the media type is used directly (selected in the Send only to

dropdown) are displayed. Clicking on the action name opens the action
configuration form.

Details Detailed information of the media type is displayed.

To configure a new media type, click on the Create media type button in the top right-hand corner.

Mass editing options

Buttons below the list offer some mass-editing options:

• Enable - change the media type status to Enabled
• Disable - change the media type status to Disabled
• Delete - delete the media types

To use these options, mark the checkboxes before the respective media types, then click on the required button.

Filter

As the list may contain a number of media types, it may be needed to filter out the ones you really need.

The Filter link is available above the list of media types. If you click on it, a filter becomes available where you can filter media
types by name and status.

509

7 Scripts

Overview

In the Administration → Scripts section user-defined global scripts can be configured and maintained.

These scripts, depending on the set user permissions, then become available for execution by clicking on the host in various
frontend locations (Dashboard, Problems, Latest data, Status of triggers, Maps) and can also be run as an action operation. The
scripts are executed on the Zabbix server or agent.

A listing of existing scripts with their details is displayed.

Displayed data:

Column Description

Name Name of the script. Clicking on the script name opens the script configuration
form.

Type Script type is displayed - Script or IPMI command.
Execute on It is displayed whether the script will be executed on Zabbix server or agent.
Commands All commands to be executed within the script are displayed.
User group The user group that the script is available to is displayed (or All for all user

groups).
Host group The host group that the script is available for is displayed (or All for all host

groups).
Host access The permission level for the host group is displayed - Read or Write. Only users

with the required permission level will have access to executing the script.

To configure a new script, click on the Create script button in the top right-hand corner.

Mass editing options

A button below the list offers one mass-editing option:

• Delete - delete the scripts

To use this option, mark the checkboxes before the respective scripts and click on Delete.

Filter

As the list may contain a number of scripts, it may be needed to filter out the ones you really need.

The Filter link is available above the list of scripts. If you click on it, a filter becomes available where you can filter scripts by name.

Configuring a global script

510

Script attributes:

Parameter Description

Name Unique name of the script.
Since Zabbix 2.2 the name can be prefixed with the desired path,
for example, Default/, putting the script into the respective
directory. When accessing scripts through the menu in monitoring
sections, they will be organized according to the given directories.
A script cannot have the same name as an existing directory (and
vice versa). A script name must be unique within its directory.
Unescaped script names are validated for uniqueness, i.e. ”Ping”
and ”\Ping” cannot be added in the same folder. A single backslash
escapes any symbol directly after it. For example, characters ’/’
and ’\’ can be escaped by backslash, i.e. \/ or \\.

Type Click the respective button to select script type - IPMI command or
Script.

511

Parameter Description

Execute on Click the respective button to execute the script on Zabbix server
or agent.
The option to execute scripts on Zabbix agent is available since
Zabbix 2.0 version (providing remote commands are enabled in the
EnableRemoteCommands parameter in Zabbix agent configuration
file).

Commands Enter full path to the commands to be executed within the script.
The following macros are supported in the commands:
{HOST.CONN}, {HOST.IP}, {HOST.DNS}, {HOST.HOST},
{HOST.NAME}. If a macro may resolve to a value with spaces (for
example, host name), don’t forget to quote as needed.
Since Zabbix 2.2, user macros are supported in script commands.

Description Enter a description for the script.
User group Select the user group that the script will be available to (or All for

all user groups).
Host group Select the host group that the script will be available for (or All for

all host groups).
Required host permissions Select the permission level for the host group - Read or Write. Only

users with the required permission level will have access to
executing the script.

Enable confirmation Mark the checkbox to display a confirmation message before
executing the script. This feature might be especially useful with
potentially dangerous operations (like a reboot script) or ones that
might take a long time.

Confirmation text Enter a custom confirmation text for the confirmation popup
enabled with the checkbox above (for example, Remote system
will be rebooted. Are you sure?). To see how the text will look like,
click on Test confirmation next to the field.
Since Zabbix 2.2, the confirmation text will expand host name
macros - {HOST.HOST}, {HOST.NAME}, host connection macros -
{HOST.IP}, {HOST.DNS}, {HOST.CONN} and user macros. Note:
The macros will not be expanded when testing the confirmation
message.

Script result

The script result will be displayed in a pop-up window that will appear after the script is run.

Note: The return value of the script is standard output together with standard error.

See example of a script and the result window below:

uname
uname --non-existing-flag
/tmp/non_existing_script.sh

512

8 Queue

Overview

In the Administration → Queue section items that are waiting to be updated are displayed.

Ideally, when you open this section it should all be ”green” meaning no items in the queue. If all items are updated without delay,
there are none waiting. However, due to lacking server performance, connection problems or problems with agents, some items
may get delayed and the information is displayed in this section. For more details, see the Queue section.

Note:
Queue is available only if Zabbix server is running.

From the dropdown in the upper right corner you can select:

• queue overview by item type
• queue overview by proxy
• list of delayed items

Overview by item type

In this screen it is easy to locate if the problem is related to one or several item types.

Each line contains an item type. Each column shows the number of waiting items - waiting for 5-10 seconds/10-30 seconds/30-60
seconds/1-5 minutes/5-10 minutes or over 10 minutes respectively.

Overview by proxy

In this screen it is easy to locate if the problem is related to one of the proxies or the server.

513

Each line contains a proxy, with the server last in the list. Each column shows the number of waiting items - waiting for 5-10
seconds/10-30 seconds/30-60 seconds/1-5 minutes/5-10 minutes or over 10 minutes respectively.

List of waiting items

In this screen, each waiting item is listed.

In the host column, hosts monitored by proxy are prefixed with the proxy name (since Zabbix 2.4.0).

Displayed data:

Column Description

Next check The time when the check was due is displayed.
Delayed by The length of the delay is displayed.
Host Host of the item is displayed.
Name Name of the waiting item is displayed.

Possible error messages

You may encounter a situation when no data is displayed and the following error message appears:

Error message in this case is the following:

Cannot display item queue. Permission denied

This happens when PHP configuration parameters $ZBX_SERVER_PORT or $ZBX_SERVER in zabbix.conf.php point to existing Zabbix
server which uses different database.

2 User profile

Overview

In the user profile you can customize some Zabbix frontend features, such as the interface language, color theme, number of rows
displayed in the lists etc. The changes made here will apply for the user only.

To access the user profile configuration form, click on the user profile link in the upper right corner of Zabbix window.

Configuration

514

The User tab allows you to set various user preferences.

Parameter Description

Password Click on the link to display two fields for entering a new password.
Language Select the interface language of your choice.

The php gettext extension is required for the translations to work.
Theme Select a color theme specifically for your profile.
Auto-login Mark this checkbox to make Zabbix remember you and log you in

automatically for 30 days. Browser cookies are used for this.
Auto-logout With this checkbox marked you will be logged out automatically,

after the set amount of seconds (minimum 90 seconds).
Note that this option will not work:
* If the ”Show warning if Zabbix server is down” global
configuration option is enabled and Zabbix frontend is kept open;
* When Monitoring menu pages perform background information
refreshes;
* If logging in with the Remember me for 30 days option checked.

Refresh (in seconds) You can set how often the information in the pages will be
refreshed on the Monitoring menu, except for Dashboard, which
uses its own refresh parameters for every widget.

Rows per page You can set how many rows will be displayed per page in the lists.
Fewer rows (and fewer records to display) mean faster loading
times.

URL (after login) You can set a specific URL to be displayed after the login. Instead
of the default Monitoring → Dashboard it can be, for example, the
URL of Monitoring → Triggers.

515

Note:
If some language is not available for selection in the user profile it means that a locale for it is not installed on the web
server. See the link at the bottom of this page to find out how to install them.

TheMedia tab allows you to specify the media details for the user, such as the types, the addresses to use and when to use them
to deliver notifications.

Note:
Only admin level users (Admin and Super Admin) can change their own media details.

The Messaging tab allows you to set global notifications.

See also

1. How to install additional locales to be able to select unavailable languages in the user profile

1 Global notifications

Overview

Global notifications are a way of displaying issues that are currently happening right on the screen you’re at in Zabbix frontend.

Without global notifications, working in some other location than Status of triggers or Dashboard pages would not show any
information regarding issues that are currently happening. Global notifications will display this information regardless of where
you are.

Global notifications involve both showing a message and playing a sound.

Configuration

Global notifications can be enabled per user in the Messaging tab of profile configuration.

516

http://www.zabbix.org/wiki/How_to/install_locale

Parameter Description

Frontend messaging Mark the checkbox to enable global notifications.
Message timeout You can set for how long the message will be displayed. By default,

messages will stay on screen for 60 seconds.
Play sound You can set how long the sound will be played.

Once - sound is played once and fully.
10 seconds - sound is repeated for 10 seconds.
Message timeout - sound is repeated while the message is
visible.

Trigger severity You can set the trigger severities that global notifications and
sounds will be activated for. You can also select the sounds
appropriate for various severities.
If no severity is marked then no messages will be displayed at all.
Also, recovery messages will only be displayed for those severities
that are marked. So if you mark Recovery and Disaster, global
notifications will be displayed for the problems and the recoveries
of disaster severity triggers.

Global messages displayed

As the messages arrive, they are displayed in a floating section on the right hand side. This section can be repositioned vertically
by dragging the section header.

517

For this section, several controls are available:

• Snooze button silences currently active alarm sound;

• Mute/Unmute button switches between playing and not playing the alarm sounds.

2 Sound in browsers

Overview

For the sounds to be played in Zabbix frontend, Frontend messaging must be enabled in the user profile Messaging tab, with all
trigger severities checked, and sounds should also be enabled in the global notification pop-up window.

The sounds of Zabbix frontend have been successfully tested in the following web browser versions and no additional configuration
was required:

• Firefox 3.5.16 on Linux
• Opera 11.01 on Linux
• Google Chrome 9.0 on Windows
• Firefox 3.5.16 on Windows
• IE7 browser on Windows
• Opera v11.01 on Windows
• Chrome v9.0 on Windows
• Safari v5.0 on Windows, but this browser requires Quick Time Player to be installed

Additional requirements

Firefox v 3.5.16

For playing wav files in the Firefox browser you can use one of the following applications:

• Windows Media Player
• Quick Time plug-in.

Then, in Tools → Options → Applications, in ”Wave sound (audio/wav)” set Windows Media Player to play these files.

Safari 5.0

518

Quick Time Player is required.

Microsoft Internet Explorer

To play sounds in MSIE7 and MSIE8:

• In Tools → Internet Options → Advanced enable Play sounds in webpages
• In Tools → Manage Add-ons... enableWindows Media Player
• In the Windows Media Player, in Tools→Options→File Types enable Windows audio file (wav)

In the Windows Media Player, in Tools→Options tab, ”File Types” is only available if the user is a member of ”Power Users” or
”Administrators” group, i.e. a regular user does not have access to this tab and does not see it.

An additional thing - if IE does not have some *.wav file in the local cache directory (%userprofile%\Local Settings\Temporary
Internet Files) the sound will not play the first time.

Known not to work

Browsers where the sound did not work:

• Opera 10.11 on Linux.

3 Global search

It is possible to search Zabbix frontend for hosts, host groups and templates.

The search input box is located in the upper right corner. The search can be started by pressing Enter or clicking on the
search icon.

If there is a host that starts with the entered string, a dropdown will appear, listing all such hosts.

Properties searched

Hosts can be searched by the following properties:

• Host name
• Visible name
• IP address
• DNS name

Host groups can be searched by name. Starting with Zabbix 3.2.2, specifying a parent host group implicitly selects all nested host
groups.

Templates can be searched by name or visible name. If you search by a name that is different from the visible name (of a
template/host), in the search results it is displayed below the visible name in parentheses.

Search results

Search results consist of three separate blocks for hosts, host groups and templates.

519

It is possible to collapse/expand each individual block. The entry count is displayed at the bottom of each block, for example,
Displaying 13 of 13 found. Total entries displayed within one block are limited to 100.

Each entry provides links to monitoring and configuration data. See links available.

For all configuration data (such as items, triggers, graphs) the amount of entities found is displayed by a number next to the entity
name, in grey. Note that if there are zero entities, no number is displayed.

Enabled hosts are displayed in blue, disabled hosts in red.

Links available

For each entry the following links are available:

• Hosts
– Monitoring

∗ Latest data
∗ Triggers
∗ Problems
∗ Graphs
∗ Host screens
∗ Web scenarios

– Configuration
∗ Host properties
∗ Applications
∗ Items
∗ Triggers
∗ Graphs
∗ Discovery rules
∗ Web scenarios

• Host groups
– Monitoring

∗ Latest data
∗ Triggers
∗ Problems
∗ Graphs
∗ Web scenarios

– Configuration
∗ Host group properties
∗ Host group members (hosts and templates)

• Templates
– Configuration

∗ Template properties
∗ Applications
∗ Items
∗ Triggers
∗ Graphs
∗ Template screens

520

∗ Discovery rules
∗ Web scenarios

4 Frontend maintenance mode

Overview

Zabbix web frontend can be temporarily disabled in order to prohibit access to it. This can be useful for protecting the Zabbix
database from any changes initiated by users, thus protecting the integrity of database.

Zabbix database can be stopped and maintenance tasks can be performed while Zabbix frontend is in maintenance mode.

Users from defined IP addresses will be able to work with the frontend normally during maintenance mode.

Configuration

In order to enable maintenance mode, the maintenance.inc.php file (located in /conf of the Zabbix HTML document directory
on the webserver) must be modified to uncomment the following lines:

// Maintenance mode.
define('ZBX_DENY_GUI_ACCESS', 1);

// Array of IP addresses, which are allowed to connect to frontend (optional).
$ZBX_GUI_ACCESS_IP_RANGE = array('127.0.0.1');

// Message shown on warning screen (optional).
$ZBX_GUI_ACCESS_MESSAGE = 'We are upgrading MySQL database till 15:00. Stay tuned...';

Parameter Details

ZBX_DENY_GUI_ACCESS Enable maintenance mode:
1 – maintenance mode is enabled, disabled
otherwise

ZBX_GUI_ACCESS_IP_RANGE Array of IP addresses, which are allowed to connect
to frontend (optional).
For example:
array('192.168.1.1', '192.168.1.2')

ZBX_GUI_ACCESS_MESSAGE A message you can enter to inform users about the
maintenance (optional).

Display

The following screen will be displayed when trying to access the Zabbix frontend while in maintenance mode. The screen is
refreshed every 30 seconds in order to return to a normal state without user intervention when the maintenance is over.

IP addresses defined in ZBX_GUI_ACCESS_IP_RANGE will be able to access the frontend as always.

5 Page parameters

Overview

Most Zabbix web interface pages support various HTTP GET parameters that control what will be displayed. They may be passed
by specifying parameter=value pairs after the URL, separated from the URL by a question mark (?) and from each other by
ampersands (&).

Status of triggers

521

Accessed as Monitoring → Triggers, page name tr_status.php.

Attention:
To set the filter, parameter filter_set=1 must be passed. Fields that are not specified will be reset to default values.

Generic parameters

• groupid
• hostid
• fullscreen

Page specific parameters

• show_triggers - filter option Triggers status, 1 - Recent problem, 2 - Any, 3 - Problem
• show_events - filter option Events, 1 - Hide all, 2 - Show all, 3 - Show unacknowledged
• ack_status - filter optionAcknowledge status, 1 - Any, 2 - With unacknowledged events, 3 - With last event unacknowledged
• show_severity - filter option Min severity, 0-5 - corresponding severity
• show_details - filter option Show details, 0 - do not show, 1 - show
• status_change_days - filter option Age less than, in days
• status_change - filter option Age less than, 0 - disabled, 1 - enabled (status_change_days will be used)
• txt_select - filter option Filter by name, freeform string
• application - filter option Application, freeform string
• show_maintenance - filter option Show hosts in maintenance, 0 - do not show hosts in maintenance, 1 - show hosts in
maintenance

Inventory filter

Since Zabbix 2.4.0, triggers can also be filtered by inventory. Here the syntax is a bit more complicated. Inventory fields and their
values are added as zero-based index entries, for example:

inventory[0][field]=type_full
inventory[0][value]=Virtual machine
inventory[1][field]=os_full
inventory[1][value]=Linux

These must be URL-encoded, though. The passed values would look like:

inventory%5B0%5D%5Bfield%5D=type_full
inventory%5B0%5D%5Bvalue%5D=Virtual machine
inventory%5B1%5D%5Bfield%5D=os_full
inventory%5B1%5D%5Bvalue%5D=Linux

Inventory field codes can be found in the Zabbix API host object documentation.

Trigger events

Access to events of a specific trigger, which may be useful for notifications is to use a URL like:

http://<server_ip_or_name>/zabbix/events.php?triggerid={TRIGGER.ID}&filter_set=1

6 Definitions

Overview

While many things in the frontend can be configured using the frontend itself, some customisations are currently only possible by
editing a definitions file.

This file is defines.inc.php located in /include of the Zabbix HTML document directory.

Parameters

Parameters in this file that could be of interest to users:

• ZBX_LOGIN_ATTEMPTS

Number of unsuccessful login attempts that is allowed to an existing system user before a login block in applied (see
ZBX_LOGIN_BLOCK). By default 5 attempts. Once the set number of login attempts is tried unsuccessfully, each additional
unsuccessful attempt results in a login block. Used with internal authentication only.

• ZBX_LOGIN_BLOCK

522

Number of seconds for blocking a user from accessing Zabbix frontend after a number of unsuccessful login attempts (see
ZBX_LOGIN_ATTEMPTS). By default 30 seconds. Used with internal authentication only.

• ZBX_PERIOD_DEFAULT

Default graph period, in seconds. One hour by default.

• ZBX_MIN_PERIOD

Minimum graph period, in seconds. One minute by default.

• ZBX_MAX_PERIOD

Maximum graph period, in seconds. Two years by default since 1.6.7, one year before that.

• ZBX_HISTORY_PERIOD

The maximum period to display history data in Latest data, Overview pages and Data overview screen element in seconds. By
default set to 86400 seconds (24 hours). Unlimited period, if set to 0 seconds.

• GRAPH_YAXIS_SIDE_DEFAULT

Default location of Y axis in simple graphs and default value for drop down box when adding items to custom graphs. Possible
values: 0 - left, 1 - right.

Default: 0

• DEFAULT_LATEST_ISSUES_CNT

Controls how many issues are shown in the dashboard’s Last n issues widget. By default 20 issues are shown.

• SCREEN_REFRESH_TIMEOUT (available since 2.0.4)

Used in screens and defines the timeout seconds for a screen element update. When the defined number of seconds after launching
an update pass and the screen element has still not been updated, the screen element will be darkened.

Default: 30

• SCREEN_REFRESH_RESPONSIVENESS (available since 2.0.4)

Used in screens and defines the number of seconds after which query skipping will be switched off. Otherwise, if a screen element
is in update status all queries on update are skipped until a response is received. With this parameter in use, another update query
might be sent after N seconds without having to wait for the response to the first one.

Default: 10

• QUEUE_DETAIL_ITEM_COUNT

Defines retrieval limit of the total items queued. Since Zabbix 3.2.4 may be set higher than default value.

Default: 500

• VALIDATE_URI_SCHEMES (available since 3.2.11)

Validate a URI against the scheme whitelist defined in ZBX_URI_VALID_SCHEMES.

Default: true

• ZBX_URI_VALID_SCHEMES (available since 3.2.8)

A comma-separated list of allowed URI schemes. Affects all places in the frontend where URIs are used, for example, in map
element URLs.

Default: http,https,ftp,file,mailto,tel,ssh

• ZBX_SHOW_TECHNICAL_ERRORS (available since 3.2.10)

Show technical errors (PHP/SQL) to non-Zabbix Super admin users and to users that are not part of user groups with debug mode
enabled.

Default: false

7 Creating your own theme

Overview

523

By default, Zabbix provides a number of predefined themes. You may follow the step-by-step procedure provided here in order to
create your own. Feel free to share the result of your work with Zabbix community if you created something nice.

Step 1

To define your own theme you’ll need to create a CSS file and save it in the styles/ folder (for example, custom-theme.css). You
can either copy the files from a different theme and create your theme based on it or start from scratch.

Step 2

Add your theme to the list of themes returned by the Z::getThemes() method. You can do this by overriding the ZBase::getThemes()
method in the Z class. This can be done by adding the following code before the closing brace in include/classes/core/Z.php:

public static function getThemes() {
return array_merge(parent::getThemes(), array(

'custom-theme' => _('Custom theme')
));

}

Attention:
Note that the name you specify within the first pair of quotes must match the name of the theme file without extension.

To add multiple themes, just list them under the first theme, for example:

public static function getThemes() {
return array_merge(parent::getThemes(), array(

'custom-theme' => _('Custom theme'),
'anothertheme' => _('Another theme'),
'onemoretheme' => _('One more theme')

));
}

Note that every theme except the last one must have a trailing comma.

Note:
To change graph colours, the entry must be added in the graph_theme database table.

Step 3

Activate the new theme.

In Zabbix frontend, you may either set this theme to be the default one or change your theme in the user profile.

Enjoy the new look and feel!

8 Debug mode

Overview

Debug mode may be used to diagnose performance problems with frontend pages.

Configuration

Debug mode can be activated for individual users who belong to a user group:

• when configuring a user group;
• when viewing configured user groups.

When Debug mode is enabled for a user group, its users will see a Debug button in the lower right corner of the browser window:

Clicking on the Debug button opens a new window below the page contents which contains the SQL statistics of the page, along
with a list of API calls and individual SQL statements:

524

In case of performance problems with the page, this window may be used to search for the root cause of the problem.

Warning:
Enabled Debug mode negatively affects frontend performance.

18. API

Overview Zabbix API allows you to programmatically retrieve and modify the configuration of Zabbix and provides access to
historical data. It is widely used to:

• Create new applications to work with Zabbix;
• Integrate Zabbix with third party software;
• Automate routine tasks.

The Zabbix API is a web based API and is shipped as part of the web frontend. It uses the JSON-RPC 2.0 protocol which means two
things:

• The API consists of a set of separate methods;
• Requests and responses between the clients and the API are encoded using the JSON format.

More info about the protocol and JSON can be found in the JSON-RPC 2.0 specification and the JSON format homepage.

Structure The API consists of a number of methods that are nominally grouped into separate APIs. Each of the methods performs
one specific task. For example, the host.create method belongs to the host API and is used to create new hosts. Historically,
APIs are sometimes referred to as ”classes”.

Note:
Most APIs contain at least four methods: get, create, update and delete for retrieving, creating, updating and deleting
data respectfully, but some of the APIs may provide a totally different set of methods.

Performing requests Once you’ve set up the frontend, you can use remote HTTP requests to call the API. To do that you need
to send HTTP POST requests to the api_jsonrpc.php file located in the frontend directory. For example, if your Zabbix frontend
is installed under http://company.com/zabbix, the HTTP request to call the apiinfo.version method may look like this:

POST http://company.com/zabbix/api_jsonrpc.php HTTP/1.1
Content-Type: application/json-rpc

{"jsonrpc":"2.0","method":"apiinfo.version","id":1,"auth":null,"params":{}}

The request must have the Content-Type header set to one of these values: application/json-rpc, application/json
or application/jsonrequest.

525

http://www.jsonrpc.org/specification
http://json.org/

Note:
You can use any HTTP client or a JSON-RPC testing tool to perform API requests manually, but for developing applications
we suggest you use one of the community maintained libraries.

Example workflow The following section will walk you through some usage examples in more detail.

Authentication Before you can access any data inside of Zabbix you’ll need to log in and obtain an authentication token. This
can be done using the user.login method. Let us suppose that you want to log in as a standard Zabbix Admin user. Then your JSON
request will look like this:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1,
"auth": null

}

Let’s take a closer look at the request object. It has the following properties:

• jsonrpc - the version of the JSON-RPC protocol used by the API; the Zabbix API implements JSON-RPC version 2.0;
• method - the API method being called;
• params - parameters that will be passed to the API method;
• id - an arbitrary identifier of the request;
• auth - a user authentication token; since we don’t have one yet, it’s set to null.

If you provided the credentials correctly, the response returned by the API will contain the user authentication token:

{
"jsonrpc": "2.0",
"result": "0424bd59b807674191e7d77572075f33",
"id": 1

}

The response object in turn contains the following properties:

• jsonrpc - again, the version of the JSON-RPC protocol;
• result - the data returned by the method;
• id - identifier of the corresponding request.

Retrieving hosts We now have a valid user authentication token that can be used to access the data in Zabbix. For example,
let’s use the host.get method to retrieve the IDs, host names and interfaces of all configured hosts:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": [
"hostid",
"host"

],
"selectInterfaces": [

"interfaceid",
"ip"

]
},
"id": 2,
"auth": "0424bd59b807674191e7d77572075f33"

}

526

http://zabbix.org/wiki/Docs/api/libraries

Attention:
Note that the auth property is now set to the authentication token we’ve obtained by calling user.login.

The response object will contain the requested data about the hosts:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10084",
"host": "Zabbix server",
"interfaces": [

{
"interfaceid": "1",
"ip": "127.0.0.1"

}
]

}
],
"id": 2

}

Note:
For performance reasons we recommend to always list the object properties you want to retrieve and avoid retrieving
everything.

Creating a new item Let’s create a new item on ”Zabbix server” using the data we’ve obtained from the previous host.get
request. This can be done by using the item.create method:

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[/home/joe/,free]",
"hostid": "10084",
"type": 0,
"value_type": 3,
"interfaceid": "1",
"delay": 30

},
"auth": "0424bd59b807674191e7d77572075f33",
"id": 3

}

A successful response will contain the ID of the newly created item, which can be used to reference the item in the following
requests:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24759"

]
},
"id": 3

}

Note:
The item.create method as well as other create methods can also accept arrays of objects and create multiple items
with one API call.

527

Creating multiple triggers So if create methods accept arrays, we can add multiple triggers like so:

{
"jsonrpc": "2.0",
"method": "trigger.create",
"params": [

{
"description": "Processor load is too high on {HOST.NAME}",
"expression": "{Linux server:system.cpu.load[percpu,avg1].last()}>5",

},
{

"description": "Too many processes on {HOST.NAME}",
"expression": "{Linux server:proc.num[].avg(5m)}>300",

}
],
"auth": "0424bd59b807674191e7d77572075f33",
"id": 4

}

A successful response will contain the IDs of the newly created triggers:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"17369",
"17370"

]
},
"id": 4

}

Updating an item Enable an item, that is, set its status to ”0”:

{
"jsonrpc": "2.0",
"method": "item.update",
"params": {

"itemid": "10092",
"status": 0

},
"auth": "0424bd59b807674191e7d77572075f33",
"id": 5

}

A successful response will contain the ID of the updated item:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"10092"

]
},
"id": 5

}

Note:
The item.update method as well as other update methods can also accept arrays of objects and update multiple items
with one API call.

Updating multiple triggers Enable multiple triggers, that is, set their status to 0:

{
"jsonrpc": "2.0",

528

"method": "trigger.update",
"params": [

{
"triggerid": "13938",
"status": 0

},
{

"triggerid": "13939",
"status": 0

}
],
"auth": "0424bd59b807674191e7d77572075f33",
"id": 6

}

A successful response will contain the IDs of the updated triggers:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938",
"13939"

]
},
"id": 6

}

Note:
This is the preferred method of updating. Some API methods like host.massupdate allow to write more simple code, but
it’s not recommended to use those methods, since they will be removed in the future releases.

Error handling Up to that point everything we’ve tried has worked fine. But what happens if we try to make an incorrect call to
the API? Let’s try to create another host by calling host.create but omitting the mandatory groups parameter.
{

"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "Linux server",
"interfaces": [

{
"type": 1,
"main": 1,
"useip": 1,
"ip": "192.168.3.1",
"dns": "",
"port": "10050"

}
]

},
"id": 7,
"auth": "0424bd59b807674191e7d77572075f33"

}

The response will then contain an error message:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "No groups for host \"Linux server\"."

},

529

"id": 7
}

If an error occurred, instead of the result property, the response object will contain an error property with the following data:

• code - an error code;
• message - a short error summary;
• data - a more detailed error message.

Errors can occur in different cases, such as, using incorrect input values, a session timeout or trying to access unexisting objects.
Your application should be able to gracefully handle these kinds of errors.

API versions To simplify API versioning, since Zabbix 2.0.4, the version of the API matches the version of Zabbix itself. You
can use the apiinfo.version method to find out the version of the API you’re working with. This can be useful for adjusting your
application to use version-specific features.

We guarantee feature backward compatibility inside of a major version. When making backward incompatible changes between
major releases, we usually leave the old features as deprecated in the next release, and only remove them in the release after
that. Occasionally, we may remove features between major releases without providing any backward compatibility. It is important
that you never rely on any deprecated features and migrate to newer alternatives as soon as possible.

Note:
You can follow all of the changes made to the API in the API changelog.

Further reading You now know enough to start working with the Zabbix API, but don’t stop here. For further reading we suggest
you have a look at the list of available APIs.

Method reference

This section provides an overview of the functions provided by the Zabbix API and will help you find your way around the available
classes and methods.

Monitoring The Zabbix API allows you to access history and other data gathered during monitoring.

History

Retrieve historical values gathered by Zabbix monitoring processes for presentation or further processing.

History API

Trends

Retrieve trend values calculated by Zabbix server for presentation or further processing.

Trend API

Events

Retrieve events generated by triggers, network discovery and other Zabbix systems for more flexible situation management or
third-party tool integration.

Event API

Problems

Retrieve problems according to the given parameters.

Problem API

Service monitoring

Retrieve detailed service layer availability information about any IT service.

IT service SLA calculation

530

Configuration The Zabbix API allows you to manage the configuration of your monitoring system.

Hosts and host groups

Manage host groups, hosts and everything related to them, including host interfaces, host macros and maintenance periods.

Host API | Host group API | Host interface API | User macro API | Maintenance API

Items and applications

Define items to monitor. Create or remove applications and assign items to them.

Item API | Application API

Triggers

Configure triggers to notify you about problems in your system. Manage trigger dependencies.

Trigger API

Graphs

Edit graphs or separate graph items for better presentation of the gathered data.

Graph API | Graph item API

Templates

Manage templates and link them to hosts or other templates.

Template API

Export and import

Export and import Zabbix configuration data for configuration backups, migration or large-scale configuration updates.

Configuration API

Low-level discovery

Configure low-level discovery rules as well as item, trigger and graph prototypes to monitor dynamic entities.

LLD rule API | Item prototype API | Trigger protototype API | Graph prototype API | Host prototype API

Event correlation

Create custom event correlation rules.

Correlation API

Actions and alerts

Define actions and operations to notify users about certain events or automatically execute remote commands. Gain access to
information about generated alerts and their receivers.

Action API | Alert API

IT services

Manage IT services for service-level monitoring and retrieve detailed SLA information about any service.

IT service API

Screens

Edit global and template-level screens or each screen item individually.

Screen API | Screen item API | Template screen API | Template screen item API

Maps

Configure maps to create detailed dynamic representations of your IT infrastructure.

Map API

Web monitoring

Configure web scenarios to monitor your web applications and services.

Web scenario API

Network discovery

531

Manage network-level discovery rules to automatically find andmonitor new hosts. Gain full access to information about discovered
services and hosts.

Discovery rule API | Discovery check API | Discovery host API | Discovery service API

Administration With the Zabbix API you can change administration settings of your monitoring system.

Users

Add users that will have access to Zabbix, assign them to user groups and grant permissions. Configure media types and the ways
users will receive alerts.

User API | User group API | Media type API | Media API

General

Change certain global configuration options.

Icon map API | Image API | User macro API | Value map API

Proxies

Manage the proxies used in your distributed monitoring setup.

Proxy API

Scripts

Configure and execute scripts to help you with your daily tasks.

Script API

API information Retrieve the version of the Zabbix API so that your application could use version-specific features.

API info API

Action

This class is designed to work with actions.

Object references:

• Action
• Action condition
• Action operation

Available methods:

• action.create - create new actions
• action.delete - delete actions
• action.get - retrieve actions
• action.update - update actions

> Action object

The following objects are directly related to the action API.

Action

The action object has the following properties.

Property Type Description

actionid string (readonly) ID of the action.
esc_period
(required)

integer Default operation step duration. Must be greater than 60
seconds.

eventsource
(required)

integer (constant) Type of events that the action will handle.

Refer to the event ”source” property for a list of
supported event types.

532

Property Type Description

name
(required)

string Name of the action.

def_longdata string Problem message text.
def_shortdata string Problem message subject.
r_longdata string Recovery message text.
r_shortdata string Recovery message subject.
status integer Whether the action is enabled or disabled.

Possible values:
0 - (default) enabled;
1 - disabled.

maintenance_mode integer Whether to pause escalation during maintenance
periods or not.

Possible values:
0 - Don’t pause escalation;
1 - (default) Pause escalation.

Action operation

The action operation object defines an operation that will be performed when an action is executed. It has the following properties.

Property Type Description

operationid string (readonly) ID of the action operation.
operationtype
(required)

integer Type of operation.

Possible values:
0 - send message;
1 - remote command;
2 - add host;
3 - remove host;
4 - add to host group;
5 - remove from host group;
6 - link to template;
7 - unlink from template;
8 - enable host;
9 - disable host;
10 - set host inventory mode.

actionid string ID of the action that the operation belongs to.
esc_period integer Duration of an escalation step in seconds. Must be

greater than 60 seconds. If set to 0, the default action
escalation period will be used.

Default: 0.
esc_step_from integer Step to start escalation from.

Default: 1.
esc_step_to integer Step to end escalation at.

Default: 1.
evaltype integer Operation condition evaluation method.

Possible values:
0 - (default) AND / OR;
1 - AND;
2 - OR.

533

Property Type Description

opcommand object Object containing the data about the command run by
the operation.

The operation command object is described in detail
below.

Required for remote command operations.
opcommand_grp array Host groups to run remote commands on.

Each object has the following properties:
opcommand_grpid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
groupid - (string) ID of the host group.

Required for remote command operations if
opcommand_hst is not set.

opcommand_hst array Host to run remote commands on.

Each object has the following properties:
opcommand_hstid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
hostid - (string) ID of the host; if set to 0 the command
will be run on the current host.

Required for remote command operations if
opcommand_grp is not set.

opconditions array Operation conditions used for trigger actions.

The operation condition object is described in detail
below.

opgroup array Host groups to add hosts to.

Each object has the following properties:
operationid - (string) ID of the operation;
groupid - (string) ID of the host group.

Required for ”add to host group” and ”remove from host
group” operations.

opmessage object Object containing the data about the message sent by
the operation.

The operation message object is described in detail
below.

Required for message operations.
opmessage_grp array User groups to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
usrgrpid - (string) ID of the user group.

Required for message operations if opmessage_usr is
not set.

opmessage_usr array Users to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
userid - (string) ID of the user.

Required for message operations if opmessage_grp is
not set.

534

Property Type Description

optemplate array Templates to link the hosts to to.

Each object has the following properties:
operationid - (string) ID of the operation;
templateid - (string) ID of the template.

Required for ”link to template” and ”unlink from
template” operations.

opinventory object Inventory mode set host to.

Object has the following properties:
operationid - (string) ID of the operation;
inventory_mode - (string) Inventory mode.

Required for ”Set host inventory mode” operations.

Action operation command

The operation command object contains data about the command that will be run by the operation.

Property Type Description

operationid string (readonly) ID of the operation.
command string Command to run. Required when type IN (0,1,2,3).
type
(required)

integer Type of operation command.

Possible values:
0 - custom script;
1 - IPMI;
2 - SSH;
3 - Telnet;
4 - global script.

authtype integer Authentication method used for SSH commands.

Possible values:
0 - password;
1 - public key.

Required for SSH commands.
execute_on integer Target on which the custom script operation command

will be executed.

Possible values:
0 - Zabbix agent;
1 - Zabbix server.

Required for custom script commands.
password string Password used for SSH commands with password

authentication and Telnet commands.
port string Port number used for SSH and Telnet commands.
privatekey string Name of the private key file used for SSH commands

with public key authentication.

Required for SSH commands with public key
authentication.

publickey string Name of the public key file used for SSH commands with
public key authentication.

Required for SSH commands with public key
authentication.

535

Property Type Description

scriptid string ID of the script used for global script commands.

Required for global script commands.
username string User name used for authentication.

Required for SSH and Telnet commands.

Action operation message

The operation message object contains data about the message that will be sent by the operation.

Property Type Description

operationid string (readonly) ID of the action operation.
default_msg integer Whether to use the default action message text and

subject.

Possible values:
0 - (default) use the data from the operation;
1 - use the data from the action.

mediatypeid string ID of the media type that will be used to send the
message.

message string Operation message text.
subject string Operation message subject.

Action operation condition

The action operation condition object defines a condition that must be met to perform the current operation. It has the following
properties.

Property Type Description

opconditionid string (readonly) ID of the action operation condition
conditiontype
(required)

integer Type of condition.

Possible values:
14 - event acknowledged.

value
(required)

string Value to compare with.

operationid string (readonly) ID of the operation.
operator integer Condition operator.

Possible values:
0 - (default) =.

The following operators and values are supported for each operation condition type.

Condition Condition name Supported operators Expected value

14 Event acknowledged = Whether the event is
acknowledged.

Possible values:
0 - not acknowledged;
1 - acknowledged.

Action recovery operation

The action recovery operation object defines an operation that will be performed when a problem is resolved. Recovery operations
are possible for trigger actions and internal actions. It has the following properties.

536

Property Type Description

operationid string (readonly) ID of the action operation.
operationtype
(required)

integer Type of operation.

Possible values for trigger actions:
0 - send message;
1 - remote command;
11 - send recovery message.

Possible values for internal actions:
0 - send message;
11 - send recovery message.

actionid string ID of the action that the recovery operation belongs to.
opcommand object Object containing the data about the command run by

the recovery operation.

The operation command object is described in detail
below.

Required for remote command operations.
opcommand_grp array Host groups to run remote commands on.

Each object has the following properties:
opcommand_grpid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
groupid - (string) ID of the host group.

Required for remote command operations if
opcommand_hst is not set.

opcommand_hst array Host to run remote commands on.

Each object has the following properties:
opcommand_hstid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
hostid - (string) ID of the host; if set to 0 the command
will be run on the current host.

Required for remote command operations if
opcommand_grp is not set.

opmessage object Object containing the data about the message sent by
the recovery operation.

The operation message object is described in detail
below.

Required for message operations.
opmessage_grp array User groups to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
usrgrpid - (string) ID of the user group.

Required for message operations if opmessage_usr is
not set.

opmessage_usr array Users to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
userid - (string) ID of the user.

Required for message operations if opmessage_grp is
not set.

537

Action filter

The action filter object defines a set of conditions that must be met to perform the configured action operations. It has the following
properties.

Property Type Description

conditions
(required)

array Set of filter conditions to use for filtering results.

evaltype
(required)

integer Filter condition evaluation method.

Possible values:
0 - and/or;
1 - and;
2 - or;
3 - custom expression.

eval_formula string (readonly) Generated expression that will be used for
evaluating filter conditions. The expression contains IDs
that reference specific filter conditions by its
formulaid. The value of eval_formula is equal to the
value of formula for filters with a custom expression.

formula string User-defined expression to be used for evaluating
conditions of filters with a custom expression. The
expression must contain IDs that reference specific filter
conditions by its formulaid. The IDs used in the
expression must exactly match the ones defined in the
filter conditions: no condition can remain unused or
omitted.

Required for custom expression filters.

Action filter condition

The action filter condition object defines a specific condition that must be checked before running the action operations.

Property Type Description

conditionid string (readonly) ID of the action condition.

538

Property Type Description

conditiontype
(required)

integer Type of condition.

Possible values for trigger actions:
0 - host group;
1 - host;
2 - trigger;
3 - trigger name;
4 - trigger severity;
6 - time period;
13 - host template;
15 - application;
16 - maintenance status;
25 - event tag;
26 - event tag value.

Possible values for discovery actions:
7 - host IP;
8 - discovered service type;
9 - discovered service port;
10 - discovery status;
11 - uptime or downtime duration;
12 - received value;
18 - discovery rule;
19 - discovery check;
20 - proxy;
21 - discovery object.

Possible values for auto-registration actions:
20 - proxy;
22 - host name;
24 - host metadata.

Possible values for internal actions:
0 - host group;
1 - host;
13 - host template;
15 - application;
23 - event type.

value
(required)

string Value to compare with.

value2 string Secondary value to compare with. Requried for trigger
actions when condition type is 26.

actionid string (readonly) ID of the action that the condition belongs to.
formulaid string Arbitrary unique ID that is used to reference the

condition from a custom expression. Can only contain
capital-case letters. The ID must be defined by the user
when modifying filter conditions, but will be generated
anew when requesting them afterward.

operator integer Condition operator.

Possible values:
0 - (default) =;
1 - <>;
2 - like;
3 - not like;
4 - in;
5 - >=;
6 - <=;
7 - not in.

539

Note:
To better understand how to use filters with various types of expressions, see examples on the action.get and action.create
method pages.

The following operators and values are supported for each condition type.

Condition Condition name Supported operators Expected value

0 Host group =, <> Host group ID.
1 Host =, <> Host ID.
2 Trigger =, <> Trigger ID.
3 Trigger name like, not like Trigger name.
4 Trigger severity =, <>, >=, <= Trigger severity. Refer to the

trigger ”severity” property
for a list of supported
trigger severities.

5 Trigger value = Trigger value. Refer to the
trigger ”value” property for
a list of supported trigger
values.

6 Time period in, not in Time when the event was
triggered as a time period.

7 Host IP =, <> One or several IP ranges to
check separated by
commas. Refer to the
network discovery
configuration section for
more information on
supported formats of IP
ranges.

8 Discovered service type =, <> Type of discovered service.
The type of service matches
the type of the discovery
check used to detect the
service. Refer to the
discovery check ”type”
property for a list of
supported types.

9 Discovered service port =, <> One or several port ranges
separated by commas.

10 Discovery status = Status of a discovered
object.

Possible values:
0 - host or service up;
1 - host or service down;
2 - host or service
discovered;
3 - host or service lost.

11 Uptime or downtime
duration

>=, <= Time indicating how long
has the discovered object
been in the current status in
seconds.

12 Received values =, <>, >=, <=, like, not like Value returned when
performing a Zabbix agent,
SNMPv1, SNMPv2 or
SNMPv3 discovery check.

13 Host template =, <> Linked template ID.
15 Application =, like, not like Name of the application.

540

Condition Condition name Supported operators Expected value

16 Maintenance status in, not in No value required: using the
”in” operator means that
the host must be in
maintenance, ”not in” - not
in maintenance.

18 Discovery rule =, <> ID of the discovery rule.
19 Discovery check =, <> ID of the discovery check.
20 Proxy =, <> ID of the proxy.
21 Discovery object = Type of object that triggered

the discovery event.

Possible values:
1 - discovered host;
2 - discovered service.

22 Host name like, not like Host name.
23 Event type = Specific internal event.

Possible values:
0 - item in ”not supported”
state;
1 - item in ”normal” state;
2 - LLD rule in ”not
supported” state;
3 - LLD rule in ”normal”
state;
4 - trigger in ”unknown”
state;
5 - trigger in ”normal” state.

24 Host metadata like, not like Metadata of the
auto-registered host.

25 Tag =, <>, like, not like Event tag.
26 Tag value =, <>, like, not like Event tag value.

action.create

Description

object action.create(object/array actions)

This method allows to create new actions.

Parameters

(object/array) Actions to create.

Additionally to the standard action properties, the method accepts the following parameters.

Parameter Type Description

filter object Action filter object for the action.
operations array Action operations to create for the action.
recovery_operations array Action recovery operations to create for the action.

Return values

(object) Returns an object containing the IDs of the created actions under the actionids property. The order of the returned
IDs matches the order of the passed actions.

Examples

Create a trigger action

Create an action that will be run when a trigger from host ”30045” that has the word ”memory” in its name goes into problem
state. The action must first send a message to all users in user group ”7”. If the event is not resolved in 4 minutes, it will run script
”3” on all hosts in group ”2”. On trigger recovery it will notify all users who received any messages regarding the problem before.

541

Request:

{
"jsonrpc": "2.0",
"method": "action.create",
"params": {

"name": "Trigger action",
"eventsource": 0,
"status": 0,
"esc_period": 120,
"def_shortdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}",
"def_longdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}\r\nLast value: {ITEM.LASTVALUE}\r\n\r\n{TRIGGER.URL}",
"filter": {

"evaltype": 0,
"conditions": [

{
"conditiontype": 1,
"operator": 0,
"value": "10084"

},
{

"conditiontype": 3,
"operator": 2,
"value": "memory"

}
]

},
"operations": [

{
"operationtype": 0,
"esc_period": 0,
"esc_step_from": 1,
"esc_step_to": 2,
"evaltype": 0,
"opmessage_grp": [

{
"usrgrpid": "7"

}
],
"opmessage": {

"default_msg": 1,
"mediatypeid": "1"

}
},
{

"operationtype": 1,
"esc_step_from": 3,
"esc_step_to": 4,
"evaltype": 0,
"opconditions": [

{
"conditiontype": 14,
"operator": 0,
"value": "0"

}
],
"opcommand_grp": [

{
"groupid": "2"

}
],
"opcommand": {

"type": 4,

542

"scriptid": "3"
}

}
],
"recovery_operations": [

{
"operationtype": "11",
"opmessage": {

"default_msg": 1
}

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"17"

]
},
"id": 1

}

Create a discovery action

Create an action that will link discovered hosts to template ”30085”.

Request:

{
"jsonrpc": "2.0",
"method": "action.create",
"params": {

"name": "Discovery action",
"eventsource": 1,
"status": 0,
"esc_period": 0,
"filter": {

"evaltype": 0,
"conditions": [

{
"conditiontype": 21,
"value": "1"

},
{

"conditiontype": 10,
"value": "2"

}
]

},
"operations": [

{
"esc_step_from": 1,
"esc_period": 0,
"optemplate": [

{
"templateid": "10091"

}
],

543

"operationtype": 6,
"esc_step_to": 1

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"18"

]
},
"id": 1

}

Using a custom expression filter

Create a trigger action that will use a custom filter condition. The action must send a message for each trigger with severity higher
or equal to ”Warning” for hosts ”10084” and ”10106”. The formula IDs ”A”, ”B” and ”C” have been chosen arbitrarily.

Request:

{
"jsonrpc": "2.0",
"method": "action.create",
"params": {

"name": "Trigger action",
"eventsource": 0,
"status": 0,
"esc_period": 120,
"def_shortdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}",
"def_longdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}\r\nLast value: {ITEM.LASTVALUE}\r\n\r\n{TRIGGER.URL}",
"filter": {

"evaltype": 3,
"formula": "A and (B or C)",
"conditions": [

{
"conditiontype": 4,
"operator": 5,
"value": "2",
"formulaid": "A"

},
{

"conditiontype": 1,
"operator": 0,
"value": "10084",
"formulaid": "B"

},
{

"conditiontype": 1,
"operator": 0,
"value": "10106",
"formulaid": "C"

}
]

},
"operations": [

{
"operationtype": 0,

544

"esc_period": 0,
"esc_step_from": 1,
"esc_step_to": 2,
"evaltype": 0,
"opmessage_grp": [

{
"usrgrpid": "7"

}
],
"opmessage": {

"default_msg": 1,
"mediatypeid": "1"

}
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"18"

]
},
"id": 1

}

See also

• Action filter
• Action operation

Source

CAction::create() in frontends/php/include/classes/api/services/CAction.php.

action.delete

Description

object action.delete(array actionIds)

This method allows to delete actions.

Parameters

(array) IDs of the actions to delete.

Return values

(object) Returns an object containing the IDs of the deleted actions under the actionids property.

Examples

Delete multiple actions

Delete two actions.

Request:

{
"jsonrpc": "2.0",
"method": "action.delete",
"params": [

"17",

545

"18"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"17",
"18"

]
},
"id": 1

}

Source

CAction::delete() in frontends/php/include/classes/api/services/CAction.php.

action.get

Description

integer/array action.get(object parameters)

The method allows to retrieve actions according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

actionids string/array Return only actions with the given IDs.
groupids string/array Return only actions that use the given host groups in

action conditions.
hostids string/array Return only actions that use the given hosts in action

conditions.
triggerids string/array Return only actions that use the given triggers in

action conditions.
mediatypeids string/array Return only actions that use the given media types to

send messages.
usrgrpids string/array Return only actions that are configured to send

messages to the given user groups.
userids string/array Return only actions that are configured to send

messages to the given users.
scriptids string/array Return only actions that are configured to run the

given scripts.
selectFilter query Returns the action filter in the filter property.
selectOperations query Return action operations in the operations property.
selectRecoveryOperations query Return action recovery operations in the

recoveryOperations property.
sortfield string/array Sort the result by the given properties.

Possible values are: actionid, name and status.
countOutput flag These parameters being common for all get methods

are described in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer

546

Parameter Type Description

output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovery actions

Retrieve all configured discovery actions together with action conditions and operations. The filter uses the ”and” evaluation type,
so the formula property is empty and eval_formula is generated automatically.

Request:

{
"jsonrpc": "2.0",
"method": "action.get",
"params": {

"output": "extend",
"selectOperations": "extend",
"selectRecoveryOperations": "extend",
"selectFilter": "extend",
"filter": {

"eventsource": 1
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"actionid": "2",
"name": "Auto discovery. Linux servers.",
"eventsource": "1",
"status": "1",
"esc_period": "0",
"def_shortdata": "",
"def_longdata": "",
"r_shortdata": "",
"r_longdata": "",
"maintenance_mode": "1",
"filter": {

"evaltype": "0",
"formula": "",
"conditions": [

{
"conditiontype": "10",
"operator": "0",
"value": "0",
"value2": "",

547

"formulaid": "B"
},
{

"conditiontype": "8",
"operator": "0",
"value": "9",
"value2": "",
"formulaid": "C"

},
{

"conditiontype": "12",
"operator": "2",
"value": "Linux",
"value2": "",
"formulaid": "A"

}
],
"eval_formula": "A and B and C"

},
"operations": [

{
"operationid": "1",
"actionid": "2",
"operationtype": "6",
"esc_period": "0",
"esc_step_from": "1",
"esc_step_to": "1",
"evaltype": "0",
"opconditions": [],
"optemplate": [

{
"operationid": "1",
"templateid": "10001"

}
]

},
{

"operationid": "2",
"actionid": "2",
"operationtype": "4",
"esc_period": "0",
"esc_step_from": "1",
"esc_step_to": "1",
"evaltype": "0",
"opconditions": [],
"opgroup": [

{
"operationid": "2",
"groupid": "2"

}
]

}
],
"recoveryOperations": [

{
"operationid": "585",
"actionid": "2",
"operationtype": "11",
"evaltype": "0",
"opconditions": [],
"opmessage": {

"operationid": "585",

548

"default_msg": "1",
"subject": "{TRIGGER.STATUS}: {TRIGGER.NAME}",
"message": "Trigger: {TRIGGER.NAME}\r\nTrigger status: {TRIGGER.STATUS}\r\nTrigger severity: {TRIGGER.SEVERITY}\r\nTrigger URL: {TRIGGER.URL}\r\n\r\nItem values:\r\n\r\n1. {ITEM.NAME1} ({HOST.NAME1}:{ITEM.KEY1}): {ITEM.VALUE1}\r\n2. {ITEM.NAME2} ({HOST.NAME2}:{ITEM.KEY2}): {ITEM.VALUE2}\r\n3. {ITEM.NAME3} ({HOST.NAME3}:{ITEM.KEY3}): {ITEM.VALUE3}\r\n\r\nOriginal event ID: {EVENT.ID}",
"mediatypeid": "0"

}
}

]
}

],
"id": 1

}

See also

• Action filter
• Action operation

Source

CAction::get() in frontends/php/include/classes/api/services/CAction.php.

action.update

Description

object action.update(object/array actions)

This method allows to update existing actions.

Parameters

(object/array) Action properties to be updated.

The actionid property must be defined for each action, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard action properties, the method accepts the following parameters.

Parameter Type Description

filter object Action filter object to replace the current filter.
operations array Action operations to replace existing operations.
recovery_operations array Action recovery operations to replace existing

recovery operations.

Return values

(object) Returns an object containing the IDs of the updated actions under the actionids property.

Examples

Disable action

Disable action, that is, set its status to ”1”.

Request:

{
"jsonrpc": "2.0",
"method": "action.update",
"params": {

"actionid": "2",
"status": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

549

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"2"

]
},
"id": 1

}

See also

• Action filter
• Action operation

Source

CAction::update() in frontends/php/include/classes/api/services/CAction.php.

Alert

This class is designed to work with alerts.

Object references:

• Alert

Available methods:

• alert.get - retrieve alerts

> Alert object

The following objects are directly related to the alert API.

Alert

Note:
Alerts are created by the Zabbix server and cannot be modified via the API.

The alert object contains information about whether certain action operations have been executed successfully. It has the following
properties.

Property Type Description

alertid string ID of the alert.
actionid string ID of the action that generated the alert.
alerttype integer Alert type.

Possible values:
0 - message;
1 - remote command.

clock timestamp Time when the alert was generated.
error string Error text if there are problems sending a message or

running a command.
esc_step integer Action escalation step during which the alert was

generated.
eventid string ID of the event that triggered the action.
mediatypeid string ID of the media type that was used to send the message.
message text Message text. Used for message alerts.
retries integer Number of times Zabbix tried to send the message.
sendto string Address, user name or other identifier of the recipient.

Used for message alerts.

550

Property Type Description

status integer Status indicating whether the action operation has been
executed successfully.

Possible values for message alerts:
0 - message not sent;
1 - message sent;
2 - failed after a number of retries.

Possible values for command alerts:
1 - command run;
2 - tried to run the command on the Zabbix agent but it
was unavailable.

subject string Message subject. Used for message alerts.
userid string ID of the user that the message was sent to.

alert.get

Description

integer/array alert.get(object parameters)

The method allows to retrieve alerts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

alertids string/array Return only alerts with the given IDs.
actionids string/array Return only alerts generated by the given actions.
eventids string/array Return only alerts generated by the given events.
groupids string/array Return only alerts generated by objects from the

given host groups.
hostids string/array Return only alerts generated by objects from the

given hosts.
mediatypeids string/array Return only message alerts that used the given media

types.
objectids string/array Return only alerts generated by the given objects
userids string/array Return only message alerts that were sent to the

given users.
eventobject integer Return only alerts generated by events related to

objects of the given type.

Refer to the event ”object” property for a list of
supported object types.

Default: 0 - trigger.
eventsource integer Return only alerts generated by events of the given

type.

Refer to the event ”source” property for a list of
supported event types.

Default: 0 - trigger events.
time_from timestamp Return only alerts that have been generated after the

given time.
time_till timestamp Return only alerts that have been generated before

the given time.
selectHosts query Return the hosts that triggered the action operation in

the hosts property.

551

Parameter Type Description

selectMediatypes query Return the media type that was used for the message
alert as an array in the mediatypes property.

selectUsers query Return the user that the message was addressed to as
an array in the users property.

sortfield string/array Sort the result by the given properties.

Possible values are: alertid, clock, eventid and
status.

countOutput flag These parameters being common for all get methods
are described in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve alerts by action ID

Retrieve all alerts generated by action ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "alert.get",
"params": {

"output": "extend",
"actionids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"alertid": "1",
"actionid": "3",
"eventid": "21243",
"userid": "1",
"clock": "1362128008",
"mediatypeid": "1",
"sendto": "support@company.com",
"subject": "PROBLEM: Zabbix agent on Linux server is unreachable for 5 minutes: ",
"message": "Trigger: Zabbix agent on Linux server is unreachable for 5 minutes: \nTrigger status: PROBLEM\nTrigger severity: Not classified",
"status": "0",
"retries": "3",

552

"error": "",
"esc_step": "1",
"alerttype": "0"

}
],
"id": 1

}

See also

• Host
• Media type
• User

Source

CAlert::get() in frontends/php/include/classes/api/services/CAlert.php.

API info

This class is designed to retrieve meta information about the API.

Available methods:

• apiinfo.version - retrieving the version of the Zabbix API

apiinfo.version

Description

string apiinfo.version(array)

This method allows to retrieve the version of the Zabbix API.

Parameters

Attention:
This method is available to unauthenticated users and must be called without the auth parameter in the JSON-RPC request.

(array) The method accepts an empty array.

Return values

(string) Returns the version of the Zabbix API.

Note:
Starting from Zabbix 2.0.4 the version of the API matches the version of Zabbix.

Examples

Retrieving the version of the API

Retrieve the version of the Zabbix API.

Request:

{
"jsonrpc": "2.0",
"method": "apiinfo.version",
"params": [],
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "3.2.0",

553

"id": 1
}

Source

CAPIInfo::version() in frontends/php/include/classes/api/services/CAPIInfo.php.

Application

This class is designed to work with applications.

Object references:

• Application

Available methods:

• application.create - creating new applications
• application.delete - deleting applications
• application.get - retrieving application
• application.massadd - updating application
• application.update - adding items to applications

> Application object

The following objects are directly related to the application API.

Application

The application object has the following properties.

Property Type Description

applicationid string (readonly) ID of the application.
hostid
(required)

string ID of the host that the application belongs to.

Cannot be updated.
name
(required)

string Name of the application

flags integer (readonly) Origin of the application.

Possible values:
0 - a plain application;
4 - a discovered application.

templateids array (readonly) IDs of the parent template applications.

application.create

Description

object application.create(object/array applications)

This method allows to create new applications.

Parameters

(object/array) Applications to create.

The method accepts applications with the standard application properties.

Return values

(object) Returns an object containing the IDs of the created applications under the applicationids property. The order of
the returned IDs matches the order of the passed applications.

Examples

554

Creating an application

Create an application to store SNMP items.

Request:

{
"jsonrpc": "2.0",
"method": "application.create",
"params": {

"name": "SNMP Items",
"hostid": "10050"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"356"

]
},
"id": 1

}

Source

CApplication::create() in frontends/php/include/classes/api/services/CApplication.php.

application.delete

Description

object application.delete(array applicationIds)

This method allows to delete applications.

Parameters

(array) IDs of the applications to delete.

Return values

(object) Returns an object containing the IDs of the deleted applications under the applicationids property.

Examples

Deleting multiple applications

Delete two applications.

Request:

{
"jsonrpc": "2.0",
"method": "application.delete",
"params": [

"356",
"358"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

555

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"356",
"358"

]
},
"id": 1

}

Source

CApplication::delete() in frontends/php/include/classes/api/services/CApplication.php.

application.get

Description

integer/array application.get(object parameters)

The method allows to retrieve applications according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

applicationids string/array Return only applications with the given IDs.
groupids string/array Return only applications that belong to hosts from the

given host groups.
hostids string/array Return only applications that belong to the given

hosts.
inherited boolean If set to true return only applications inherited from a

template.
itemids string/array Return only applications that contain the given items.
templated boolean If set to true return only applications that belong to

templates.
templateids string/array Return only applications that belong to the given

templates.
selectHost query Return the host that the application belongs to in the

host property.
selectItems query Return the items contained in the application in the

items property.
selectDiscoveryRule query Return the LLD rule that created the application in the

discoveryRule property.
selectApplicationDiscovery query Return the application discovery object in the

applicationDiscovery property.
sortfield string/array Sort the result by the given properties.

Possible values are: applicationid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean

556

Parameter Type Description

sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving applications from a host

Retrieve all applications from a host sorted by name.

Request:

{
"jsonrpc": "2.0",
"method": "application.get",
"params": {

"output": "extend",
"hostids": "10001",
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"applicationid": "13",
"hostid": "10001",
"name": "CPU",
"templateids": []

},
{

"applicationid": "5",
"hostid": "10001",
"name": "Filesystems",
"templateids": []

},
{

"applicationid": "21",
"hostid": "10001",
"name": "General",
"templateids": []

},
{

"applicationid": "15",
"hostid": "10001",
"name": "Memory",
"templateids": []

},
],
"id": 1

}

See also

• Host

557

• Item

Source

CApplication::get() in frontends/php/include/classes/api/services/CApplication.php.

application.massadd

Description

object application.massadd(object parameters)

This method allows to simultaneously add multiple items to the given applications.

Parameters

(object) Parameters containing the IDs of the applications to update and the items to add to the applications.

The method accepts the following parameters.

Parameter Type Description

applications
(required)

array/object Applications to be updated.

The applications must have the applicationid
property defined.

items array/object Items to add to the given applications.

The items must have the itemid property defined.

Return values

(object) Returns an object containing the IDs of the updated applications under the applicationids property.

Examples

Adding items to multiple applications

Add the given items to two applications.

Request:

{
"jsonrpc": "2.0",
"method": "application.massadd",
"params": {

"applications": [
{

"applicationid": "247"
},
{

"applicationid": "246"
}

],
"items": [

{
"itemid": "22800"

},
{

"itemid": "22801"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

558

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"247",
"246"

]
},
"id": 1

}

See also

• Item

Source

CApplication::massAdd() in frontends/php/include/classes/api/services/CApplication.php.

application.update

Description

object application.update(object/array applications)

This method allows to update existing applications.

Parameters

(object/array) Application properties to be updated.

The applicationid property must be defined for each application, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated applications under the applicationids property.

Examples

Changing the name of an application

Change the name of the application to ”Processes and performance”.

Request:

{
"jsonrpc": "2.0",
"method": "application.update",
"params": {

"applicationid": "13",
"name": "Processes and performance"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"13"

]
},
"id": 1

}

Source

559

CApplication::update() in frontends/php/include/classes/api/services/CApplication.php.

Configuration

This class is designed to export and import Zabbix configuration data.

Available methods:

• configuration.export - exporting the configuration
• configuration.import - importing the configuration

configuration.export

Description

string configuration.export(object parameters)

This method allows to export configuration data as a serialized string.

Parameters

(object) Parameters defining the objects to be exported and the format to use.

Parameter Type Description

format
(required)

string Format in which the data must be exported.

Possible values:
json - JSON;
xml - XML.

options
(required)

object Objects to be exported.

The options object has the following parameters:
groups - (array) IDs of host groups to export;
hosts - (array) IDs of hosts to export;
images - (array) IDs of images to export;
maps - (array) IDs of maps to export.
screens - (array) IDs of screens to export;
templates - (array) IDs of templates to export;
valueMaps - (array) IDs of value maps to export;

Return values

(string) Returns a serialized string containing the requested configuration data.

Examples

Exporting a host

Export the configuration of a host as an XML string.

Request:

{
"jsonrpc": "2.0",
"method": "configuration.export",
"params": {

"options": {
"hosts": [

"10161"
]

},
"format": "xml"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

560

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<zabbix_export><version>3.2</version><date>2012-04-18T11:20:14Z</date><groups><group><name>Zabbix servers</name></group></groups><hosts><host><host>Export host</host><name>Export host</name><description/><proxy/><status>0</status><ipmi_authtype>-1</ipmi_authtype><ipmi_privilege>2</ipmi_privilege><ipmi_username/><ipmi_password/><tls_connect>1</tls_connect><tls_accept>1</tls_accept><tls_issuer/><tls_subject/><tls_psk_identity/><tls_psk/><templates/><groups><group><name>Zabbix servers</name></group></groups><interfaces><interface><default>1</default><type>1</type><useip>1</useip><ip>127.0.0.1</ip><dns/><port>10050</port><bulk>1</bulk><interface_ref>if1</interface_ref></interface></interfaces><applications><application><name>Application</name></application></applications><items><item><name>Item</name><type>0</type><snmp_community/><multiplier>0</multiplier><snmp_oid/><key>item.key</key><delay>30</delay><history>90</history><trends>365</trends><status>0</status><value_type>3</value_type><allowed_hosts/><units/><delta>0</delta><snmpv3_contextname/><snmpv3_securityname/><snmpv3_securitylevel>0</snmpv3_securitylevel><snmpv3_authprotocol>0</snmpv3_authprotocol><snmpv3_authpassphrase/><snmpv3_privprotocol>0</snmpv3_privprotocol><snmpv3_privpassphrase/><formula>1</formula><delay_flex/><params/><ipmi_sensor/><data_type>0</data_type><authtype>0</authtype><username/><password/><publickey/><privatekey/><port/><description/><inventory_link>0</inventory_link><applications><application><name>Application</name></application></applications><valuemap><name>Host status</name></valuemap><logtimefmt/><interface_ref>if1</interface_ref></item></items><discovery_rules/><httptests><httptest><name>Zabbix</name><application/><delay>60</delay><attempts>1</attempts><agent>Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0)</agent><http_proxy/><variables/><headers/><status>0</status><authentication>0</authentication><http_user/><http_password/><verify_peer>0</verify_peer><verify_host>0</verify_host><ssl_cert_file/><ssl_key_file/><ssl_key_password/><steps><step><name>Main page</name><url>https://zabbix.com</url><posts/><variables/><headers/><follow_redirects>1</follow_redirects><retrieve_mode>0</retrieve_mode><timeout>60</timeout><required/><status_codes>200</status_codes></step></steps></httptest></httptests><macros/><inventory/></host></hosts><triggers><trigger><expression>{Export host:item.key.last()}=0</expression><name>Trigger</name><url/><status>0</status><priority>2</priority><description>Host trigger</description><type>0</type><recovery_mode>1</recovery_mode><recovery_expression>{Export host:item.key.last()}=2</recovery_expression><dependencies/><tags/><correlation_mode>1</correlation_mode><correlation_tag>Tag 01</correlation_tag><manual_close>0</manual_close></trigger></triggers><graphs><graph><name>Graph</name><width>900</width><height>200</height><yaxismin>0.0000</yaxismin><yaxismax>100.0000</yaxismax><show_work_period>1</show_work_period><show_triggers>1</show_triggers><type>0</type><show_legend>1</show_legend><show_3d>0</show_3d><percent_left>0.0000</percent_left><percent_right>0.0000</percent_right><ymin_type_1>0</ymin_type_1><ymax_type_1>0</ymax_type_1><ymin_item_1>0</ymin_item_1><ymax_item_1>0</ymax_item_1><graph_items><graph_item><sortorder>0</sortorder><drawtype>0</drawtype><color>C80000</color><yaxisside>0</yaxisside><calc_fnc>7</calc_fnc><type>0</type><item><host>Export host</host><key>item.key</key></item></graph_item></graph_items></graph></graphs><value_maps><value_map><name>Host status</name><mappings><mapping><value>0</value><newvalue>Up</newvalue></mapping><mapping><value>2</value><newvalue>Unreachable</newvalue></mapping></mappings></value_map></value_maps></zabbix_export>\n",
"id": 1

}

Source

CConfiguration::export() in frontends/php/include/classes/api/services/CConfiguration.php.

configuration.import

Description

boolean configuration.import(object parameters)

This method allows to import configuration data from a serialized string.

Parameters

(object) Parameters containing the data to import and rules how the data should be handled.

Parameter Type Description

format
(required)

string Format of the serialized string.

Possible values:
json - JSON;
xml - XML.

source
(required)

string Serialized string containing the configuration data.

rules
(required)

object Rules on how new and existing objects should be
imported.

The rules parameter is described in detail in the
table below.

Note:
If no rules are given, the configuration will not be updated.

The rules object supports the following parameters.

Parameter Type Description

applications object Rules on how to import applications.

Supported parameters:
createMissing - (boolean) if set to true, new
applications will be created; default: false;
updateExisting - (boolean) if set to true,
existing applications will be updated; default: false;
deleteMissing - (boolean) if set to true,
applications not present in the imported data will be
deleted from the database; default: false.

561

Parameter Type Description

discoveryRules object Rules on how to import LLD rules.

Supported parameters:
createMissing - (boolean) if set to true, new
LLD rules will be created; default: false;
updateExisting - (boolean) if set to true,
existing LLD rules will be updated; default: false;
deleteMissing - (boolean) if set to true, LLD
rules not present in the imported data will be deleted
from the database; default: false.

graphs object Rules on how to import graphs.

Supported parameters:
createMissing - (boolean) if set to true, new
graphs will be created; default: false;
updateExisting - (boolean) if set to true,
existing graphs will be updated; default: false;
deleteMissing - (boolean) if set to true, graphs
not present in the imported data will be deleted from
the database; default: false.

groups object Rules on how to import host groups.

Supported parameters:
createMissing - (boolean) if set to true, new
host groups will be created; default: false.

hosts object Rules on how to import hosts.

Supported parameters:
createMissing - (boolean) if set to true, new
hosts will be created; default: false;
updateExisting - (boolean) if set to true,
existing hosts will be updated; default: false.

httptests object Rules on how to import web scenarios.

Supported parameters:
createMissing - (boolean) if set to true, new
web scenarios will be created; default: false;
updateExisting - (boolean) if set to true,
existing web scenarios will be updated; default:
false;
deleteMissing - (boolean) if set to true, web
scenarios not present in the imported data will be
deleted from the database; default: false.

images object Rules on how to import images.

Supported parameters:
createMissing - (boolean) if set to true, new
images will be created; default: false;
updateExisting - (boolean) if set to true,
existing images will be updated; default: false.

items object Rules on how to import items.

Supported parameters:
createMissing - (boolean) if set to true, new
items will be created; default: false;
updateExisting - (boolean) if set to true,
existing items will be updated; default: false;
deleteMissing - (boolean) if set to true, items
not present in the imported data will be deleted from
the database; default: false.

562

Parameter Type Description

maps object Rules on how to import maps.

Supported parameters:
createMissing - (boolean) if set to true, new
maps will be created; default: false;
updateExisting - (boolean) if set to true,
existing maps will be updated; default: false.

screens object Rules on how to import screens.

Supported parameters:
createMissing - (boolean) if set to true, new
screens will be created; default: false;
updateExisting - (boolean) if set to true,
existing screens will be updated; default: false.

templateLinkage object Rules on how to import template links.

Supported parameters:
createMissing - (boolean) if set to true, new
links between templates and host will be created;
default: false.

templates object Rules on how to import templates.

Supported parameters:
createMissing - (boolean) if set to true, new
templates will be created; default: false;
updateExisting - (boolean) if set to true,
existing templates will be updated; default: false.

templateScreens object Rules on how to import template screens.

Supported parameters:
createMissing - (boolean) if set to true, new
template screens will be created; default: false;
updateExisting - (boolean) if set to true,
existing template screens will be updated; default:
false;
deleteMissing - (boolean) if set to true,
template screens not present in the imported data will
be deleted from the database; default: false.

triggers object Rules on how to import triggers.

Supported parameters:
createMissing - (boolean) if set to true, new
triggers will be created; default: false;
updateExisting - (boolean) if set to true,
existing triggers will be updated; default: false;
deleteMissing - (boolean) if set to true, triggers
not present in the imported data will be deleted from
the database; default: false.

valueMaps object Rules on how to import value maps.

Supported parameters:
createMissing - (boolean) if set to true, new
value maps will be created; default: false;
updateExisting - (boolean) if set to true,
existing value maps will be updated; default: false.

Return values

(boolean) Returns true if importing has been successful.

Examples

563

Importing hosts and items

Import the host and items contained in the XML string. If any items in XML are missing, they will be deleted from the database,
and everything else will be left unchanged.

Request:

{
"jsonrpc": "2.0",
"method": "configuration.import",
"params": {

"format": "xml",
"rules": {

"hosts": {
"createMissing": true,
"updateExisting": true

},
"items": {

"createMissing": true,
"updateExisting": true,
"deleteMissing": true

}
},
"source": "<?xml version=\"1.0\" encoding=\"UTF-8\"?><zabbix_export><version>3.2</version><date>2012-04-18T11:20:14Z</date><groups><group><name>Zabbix servers</name></group></groups><hosts><host><host>Export host</host><name>Export host</name><description/><proxy/><status>0</status><ipmi_authtype>-1</ipmi_authtype><ipmi_privilege>2</ipmi_privilege><ipmi_username/><ipmi_password/><tls_connect>1</tls_connect><tls_accept>1</tls_accept><tls_issuer/><tls_subject/><tls_psk_identity/><tls_psk/><templates/><groups><group><name>Zabbix servers</name></group></groups><interfaces><interface><default>1</default><type>1</type><useip>1</useip><ip>127.0.0.1</ip><dns/><port>10050</port><bulk>1</bulk><interface_ref>if1</interface_ref></interface></interfaces><applications><application><name>Application</name></application></applications><items><item><name>Item</name><type>0</type><snmp_community/><multiplier>0</multiplier><snmp_oid/><key>item.key</key><delay>30</delay><history>90</history><trends>365</trends><status>0</status><value_type>3</value_type><allowed_hosts/><units/><delta>0</delta><snmpv3_contextname/><snmpv3_securityname/><snmpv3_securitylevel>0</snmpv3_securitylevel><snmpv3_authprotocol>0</snmpv3_authprotocol><snmpv3_authpassphrase/><snmpv3_privprotocol>0</snmpv3_privprotocol><snmpv3_privpassphrase/><formula>1</formula><delay_flex/><params/><ipmi_sensor/><data_type>0</data_type><authtype>0</authtype><username/><password/><publickey/><privatekey/><port/><description/><inventory_link>0</inventory_link><applications><application><name>Application</name></application></applications><valuemap><name>Host status</name></valuemap><logtimefmt/><interface_ref>if1</interface_ref></item></items><discovery_rules/><httptests/><macros/><inventory/></host></hosts><triggers><trigger><expression>{Export host:item.key.last()}=0</expression><name>Trigger</name><url/><status>0</status><priority>2</priority><description>Host trigger</description><type>0</type><recovery_mode>1</recovery_mode><recovery_expression>{Export host:item.key.last()}=2</recovery_expression><dependencies/><tags/><correlation_mode>1</correlation_mode><correlation_tag>Tag 01</correlation_tag><manual_close>0</manual_close></trigger></triggers><graphs><graph><name>Graph</name><width>900</width><height>200</height><yaxismin>0.0000</yaxismin><yaxismax>100.0000</yaxismax><show_work_period>1</show_work_period><show_triggers>1</show_triggers><type>0</type><show_legend>1</show_legend><show_3d>0</show_3d><percent_left>0.0000</percent_left><percent_right>0.0000</percent_right><ymin_type_1>0</ymin_type_1><ymax_type_1>0</ymax_type_1><ymin_item_1>0</ymin_item_1><ymax_item_1>0</ymax_item_1><graph_items><graph_item><sortorder>0</sortorder><drawtype>0</drawtype><color>C80000</color><yaxisside>0</yaxisside><calc_fnc>7</calc_fnc><type>0</type><item><host>Export host</host><key>item.key</key></item></graph_item></graph_items></graph></graphs><value_maps><value_map><name>Host status</name><mappings><mapping><value>0</value><newvalue>Up</newvalue></mapping><mapping><value>2</value><newvalue>Unreachable</newvalue></mapping></mappings></value_map></value_maps></zabbix_export>"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CConfiguration::import() in frontends/php/include/classes/api/services/CConfiguration.php.

Correlation

This class is designed to work with correlations.

Object references:

• Correlation

Available methods:

• correlation.create - creating new correlations
• correlation.delete - deleting correlations
• correlation.get - retrieving correlations
• correlation.update - updating correlations

> Correlation object

The following objects are directly related to the correlation API.

Correlation

The correlation object has the following properties.

564

Property Type Description

correlationid string (readonly) ID of the correlation.
name
(required)

string Name of the correlation.

description string Description of the correlation.
status integer Whether the correlation is enabled or disabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

Correlation operation

The correlation operation object defines an operation that will be performed when a correlation is executed. It has the following
properties.

Property Type Description

type
(required)

integer Type of operation.

Possible values:
0 - close old events;
1 - close new event.

Correlation filter

The correlation filter object defines a set of conditions that must be met to perform the configured correlation operations. It has
the following properties.

Property Type Description

evaltype
(required)

integer Filter condition evaluation method.

Possible values:
0 - and/or;
1 - and;
2 - or;
3 - custom expression.

conditions
(required)

array Set of filter conditions to use for filtering results.

eval_formula string (readonly) Generated expression that will be used for
evaluating filter conditions. The expression contains IDs
that reference specific filter conditions by its
formulaid. The value of eval_formula is equal to the
value of formula for filters with a custom expression.

formula string User-defined expression to be used for evaluating
conditions of filters with a custom expression. The
expression must contain IDs that reference specific filter
conditions by its formulaid. The IDs used in the
expression must exactly match the ones defined in the
filter conditions: no condition can remain unused or
omitted.

Required for custom expression filters.

Correlation filter condition

The correlation filter condition object defines a specific condition that must be checked before running the correlation operations.

565

Property Type Description

type
(required)

integer Type of condition.

Possible values:
0 - old event tag;
1 - new event tag;
2 - new event host group;
3 - event tag pair;
4 - old event tag value;
5 - new event tag value.

tag string Event tag (old or new). Required when type of condition
is: 0, 1, 4, 5.

groupid string Host group ID. Required when type of condition is: 2.
oldtag string Old event tag. Required when type of condition is: 3.
newtag string Old event tag. Required when type of condition is: 3.
value string Event tag (old or new) value. Required when type of

condition is: 4, 5.
formulaid string Arbitrary unique ID that is used to reference the

condition from a custom expression. Can only contain
capital-case letters. The ID must be defined by the user
when modifying filter conditions, but will be generated
anew when requesting them afterward.

operator integer Condition operator.

Required when type of condition is: 2, 4, 5.

Note:
To better understand how to use filters with various types of expressions, see examples on the correlation.get and correla-
tion.create method pages.

The following operators and values are supported for each condition type.

Condition Condition name Supported operators Expected value

2 Host group =, <> Host group ID.
4 Old event tag value =, <>, like, not like string
5 New event tag value =, <>, like, not like string

correlation.create

Description

object correlation.create(object/array correlations)

This method allows to create new correlations.

Parameters

(object/array) Correlations to create.

Additionally to the standard correlation properties, the method accepts the following parameters.

Parameter Type Description

operations
(required)

array Correlation operations to create for the correlation.

filter
(required)

object Correlation filter object for the correlation.

Return values

(object) Returns an object containing the IDs of the created correlations under the correlationids property. The order of the
returned IDs matches the order of the passed correlations.

566

Examples

Create a new event tag correlation

Create a correlation using evaluation method AND/OR with one condition and one operation. By default the correlation will be
enabled.

Request:

{
"jsonrpc": "2.0",
"method": "correlation.create",
"params": {

"name": "new event tag correlation",
"filter": {

"evaltype": 0,
"conditions": [

{
"type": 1,
"tag": "ok"

}
]

},
"operations": [

{
"type": 0

}
]

},
"auth": "343baad4f88b4106b9b5961e77437688",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"correlationids": [
"1"

]
},
"id": 1

}

Using a custom expression filter

Create a correlation that will use a custom filter condition. The formula IDs ”A” or ”B” have been chosen arbitrarily. Condition type
will be ”Host group” with operator ”<>”.

Request:

{
"jsonrpc": "2.0",
"method": "correlation.create",
"params": {

"name": "new host group correlation",
"description": "a custom description",
"status": 0,
"filter": {

"evaltype": 3,
"formula": "A or B",
"conditions": [

{
"type": 2,
"operator": 1,
"formulaid": "A"

},

567

{
"type": 2,
"operator": 1,
"formulaid": "B"

}
]

},
"operations": [

{
"type": 1

}
]

},
"auth": "343baad4f88b4106b9b5961e77437688",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"correlationids": [
"2"

]
},
"id": 1

}

See also

• Correlation filter
• Correlation operation

Source

CCorrelation::create() in frontends/php/include/classes/api/services/CCorrelation.php.

correlation.delete

Description

object correlation.delete(array correlationids)

This method allows to delete correlations.

Parameters

(array) IDs of the correlations to delete.

Return values

(object) Returns an object containing the IDs of the deleted correlations under the correlationids property.

Example

Delete multiple correlations

Delete two correlations.

Request:

{
"jsonrpc": "2.0",
"method": "correlation.delete",
"params": [

"1",
"2"

],
"auth": "343baad4f88b4106b9b5961e77437688",

568

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": {

"correlaionids": [
"1",
"2"

]
},
"id": 1

}

Source

CCorrelation::delete() in frontends/php/include/classes/api/services/CCorrelation.php.

correlation.get

Description

integer/array correlation.get(object parameters)

The method allows to retrieve correlations according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

correlationids string/array Return only correlations with the given IDs.
selectFilter query Returns the correlation filter in the filter property.
selectOperations query Return correlation operations in the operations

property.
sortfield string/array Sort the result by the given properties.

Possible values are: correlationid, name and
status.

countOutput flag These parameters being common for all get methods
are described in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve correlations

569

Retrieve all configured correlations together with correlation conditions and operations. The filter uses the ”and/or” evaluation
type, so the formula property is empty and eval_formula is generated automatically.

Request:

{
"jsonrpc": "2.0",
"method": "correlation.get",
"params": {

"output": "extend",
"selectOperations": "extend",
"selectFilter": "extend"

},
"auth": "343baad4f88b4106b9b5961e77437688",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"correlationid": "1",
"name": "Correlation 1",
"description": "",
"status": "0",
"filter": {

"evaltype": "0",
"formula": "",
"conditions": [

{
"type": "3",
"oldtag": "error",
"newtag": "ok",
"formulaid": "A"

}
],
"eval_formula": "A"

},
"operations": [

{
"type": "0"

}
]

}
],
"id": 1

}

See also

• Correlation filter
• Correlation operation

Source

CCorrelation::get() in frontends/php/include/classes/api/services/CCorrelation.php.

correlation.update

Description

object correlation.update(object/array correlations)

This method allows to update existing correlations.

Parameters

570

(object/array) Correlation properties to be updated.

The correlationid property must be defined for each correlation, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard correlation properties, the method accepts the following parameters.

Parameter Type Description

filter object Correlation filter object to replace the current filter.
operations array Correlation operations to replace existing operations.

Return values

(object) Returns an object containing the IDs of the updated correlations under the correlationids property.

Examples

Disable correlation

Request:

{
"jsonrpc": "2.0",
"method": "correlation.update",
"params": {

"correlationid": "1",
"status": "1"

},
"auth": "343baad4f88b4106b9b5961e77437688",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"correlationids": [
"1"

]
},
"id": 1

}

Replace conditions, but keep the evaluation method

Request:

{
"jsonrpc": "2.0",
"method": "correlation.update",
"params": {

"correlationid": "1",
"filter": {

"conditions": [
{

"type": 3,
"oldtag": "error",
"newtag": "ok"

}
]

}
},
"auth": "343baad4f88b4106b9b5961e77437688",
"id": 1

}

Response:

571

{
"jsonrpc": "2.0",
"result": {

"correlationids": [
"1"

]
},
"id": 1

}

See also

• Correlation filter
• Correlation operation

Source

CCorrelation::update() in frontends/php/include/classes/api/services/CCorrelation.php.

Discovered host

This class is designed to work with discovered hosts.

Object references:

• Discovered host

Available methods:

• dhost.get - retrieve discovered hosts

> Discovered host object

The following objects are directly related to the dhost API.

Discovered host

Note:
Discovered host are created by the Zabbix server and cannot be modified via the API.

The discovered host object contains information about a host discovered by a network discovery rule. It has the following properties.

Property Type Description

dhostid string ID of the discovered host.
druleid string ID of the discovery rule that detected the host.
lastdown timestamp Time when the discovered host last went down.
lastup timestamp Time when the discovered host last went up.
status integer Whether the discovered host is up or down. A host is up

if it has at least one active discovered service.

Possible values:
0 - host up;
1 - host down.

dhost.get

Description

integer/array dhost.get(object parameters)

The method allows to retrieve discovered hosts according to the given parameters.

Parameters

572

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dhostids string/array Return only discovered hosts with the given IDs.
druleids string/array Return only discovered hosts that have been created

by the given discovery rules.
dserviceids string/array Return only discovered hosts that are running the

given services.
selectDRules query Return the discovery rule that detected the host as an

array in the drules property.
selectDServices query Return the discovered services running on the host in

the dservices property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectDServices - results will be sorted by
dserviceid.

sortfield string/array Sort the result by the given properties.

Possible values are: dhostid and druleid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovered hosts by discovery rule

Retrieve all hosts and the discovered services they are running that have been detected by discovery rule ”4”.

Request:

{
"jsonrpc": "2.0",
"method": "dhost.get",
"params": {

"output": "extend",
"selectDServices": "extend",
"druleids": "4"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

573

{
"jsonrpc": "2.0",
"result": [

{
"dservices": [

{
"dserviceid": "1",
"dhostid": "1",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697227",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.1",
"dns": "station.company.lan"

}
],
"dhostid": "1",
"druleid": "4",
"status": "0",
"lastup": "1337697227",
"lastdown": "0"

},
{

"dservices": [
{

"dserviceid": "2",
"dhostid": "2",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.4",
"dns": "john.company.lan"

}
],
"dhostid": "2",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

},
{

"dservices": [
{

"dserviceid": "3",
"dhostid": "3",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",

574

"ip": "192.168.1.26",
"dns": "printer.company.lan"

}
],
"dhostid": "3",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

},
{

"dservices": [
{

"dserviceid": "4",
"dhostid": "4",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.7",
"dns": "mail.company.lan"

}
],
"dhostid": "4",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

}
],
"id": 1

}

See also

• Discovered service
• Discovery rule

Source

CDHost::get() in frontends/php/include/classes/api/services/CDHost.php.

Discovered service

This class is designed to work with discovered services.

Object references:

• Discovered service

Available methods:

• dservice.get - retrieve discovered services

> Discovered service object

The following objects are directly related to the dservice API.

Discovered service

575

Note:
Discovered services are created by the Zabbix server and cannot be modified via the API.

The discovered service object contains information about a service discovered by a network discovery rule on a host. It has the
following properties.

Property Type Description

dserviceid string ID of the discovered service.
dcheckid string ID of the discovery check used to detect the service.
dhostid string ID of the discovered host running the service.
dns string DNS of the host running the service.
ip string IP address of the host running the service.
key_ string Key used by a Zabbix agent discovery check to locate

the service.
lastdown timestamp Time when the discovered service last went down.
lastup timestamp Time when the discovered service last went up.
port integer Service port number.
status integer Status of the service.

Possible values:
0 - service up;
1 - service down.

type integer Type of discovered service. The type of service matches
the type of the discovery check used to detect the
service.

Refer to the discovery check ”type” property for a list of
supported types.

value string Value returned by the service when performing a Zabbix
agent, SNMPv1, SNMPv2 or SNMPv3 discovery check.

dservice.get

Description

integer/array dservice.get(object parameters)

The method allows to retrieve discovered services according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dserviceids string/array Return only discovered services with the given IDs.
dhostids string/array Return only discovered services that belong to the

given discovered hosts.
dcheckids string/array Return only discovered services that have been

detected by the given discovery checks.
druleids string/array Return only discovered services that have been

detected by the given discovery rules.
selectDRules query Return the discovery rule that detected the service as

an array in the drules property.
selectDHosts query Return the discovered host that service belongs to as

an array in the dhosts property.
selectHosts query Return the hosts with the same IP address as the

service in the hosts property.

Supports count.

576

Parameter Type Description

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - result will be sorted by hostid.

sortfield string/array Sort the result by the given properties.

Possible values are: dserviceid, dhostid and ip.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve services discovered on a host

Retrieve all discovered services detected on discovered host ”11”.

Request:

{
"jsonrpc": "2.0",
"method": "dservice.get",
"params": {

"output": "extend",
"dhostids": "11"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"dserviceid": "12",
"dhostid": "11",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "1",
"lastup": "0",
"lastdown": "1348650607",
"dcheckid": "5",
"ip": "192.168.1.134",
"dns": "john.local"

577

},
{

"dserviceid": "13",
"dhostid": "11",
"type": "3",
"key_": "",
"value": "",
"port": "21",
"status": "1",
"lastup": "0",
"lastdown": "1348650610",
"dcheckid": "6",
"ip": "192.168.1.134",
"dns": "john.local"

}
],
"id": 1

}

See also

• Discovered host
• Discovery check
• Host

Source

CDService::get() in frontends/php/include/classes/api/services/CDService.php.

Discovery check

This class is designed to work with discovery checks.

Object references:

• Discovery check

Available methods:

• dcheck.get - retrieve discovery checks

> Discovery check object

The following objects are directly related to the dcheck API.

Discovery check

The discovery check object defines a specific check performed by a network discovery rule. It has the following properties.

Property Type Description

dcheckid string (readonly) ID of the discovery check.
druleid string ID of the discovery rule that the check belongs to.
key_ string The value of this property differs depending on the type

type of the check:
- key to query for Zabbix agent checks, required;
- SNMP OID for SNMPv1, SNMPv2 and SNMPv3 checks,
required.

ports string One or several port ranges to check separated by
commas. Used for all checks except for ICMP.

Default: 0.
snmp_community string SNMP community.

Required for SNMPv1 and SNMPv2 agent checks.

578

Property Type Description

snmpv3_authpassphrase string Auth passphrase used for SNMPv3 agent checks with
security level set to authNoPriv or authPriv.

snmpv3_authprotocol integer Authentication protocol used for SNMPv3 agent checks
with security level set to authNoPriv or authPriv.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 checks.
snmpv3_privpassphrase string Priv passphrase used for SNMPv3 agent checks with

security level set to authPriv.
snmpv3_privprotocol integer Privacy protocol used for SNMPv3 agent checks with

security level set to authPriv.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel string Security level used for SNMPv3 agent checks.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string Security name used for SNMPv3 agent checks.
type integer Type of check.

Possible values:
0 - (default) SSH;
1 - LDAP;
2 - SMTP;
3 - FTP;
4 - HTTP;
5 - POP;
6 - NNTP;
7 - IMAP;
8 - TCP;
9 - Zabbix agent;
10 - SNMPv1 agent;
11 - SNMPv2 agent;
12 - ICMP ping;
13 - SNMPv3 agent;
14 - HTTPS;
15 - Telnet.

uniq integer Whether to use this check as a device uniqueness
criteria. Only a single unique check can be configured
for a discovery rule. Used for Zabbix agent, SNMPv1,
SNMPv2 and SNMPv3 agent checks.

Possible values:
0 - (default) do not use this check as a uniqueness
criteria;
1 - use this check as a uniqueness criteria.

dcheck.get

Description

integer/array dcheck.get(object parameters)

The method allows to retrieve discovery checks according to the given parameters.

Parameters

579

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dcheckids string/array Return only discovery checks with the given IDs.
druleids string/array Return only discovery checks that belong to the given

discovery rules.
dserviceids string/array Return only discovery checks that have detected the

given discovered services.
sortfield string/array Sort the result by the given properties.

Possible values are: dcheckid and druleid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovery checks for a discovery rule

Retrieve all discovery checks used by discovery rule ”6”.

Request:

{
"jsonrpc": "2.0",
"method": "dcheck.get",
"params": {

"output": "extend",
"dcheckids": "6"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"dcheckid": "6",
"druleid": "4",
"type": "3",
"key_": "",
"snmp_community": "",
"ports": "21",
"snmpv3_securityname": "",

580

"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],
"id": 1

}

Source

CDCheck::get() in frontends/php/include/classes/api/services/CDCheck.php.

Discovery rule

This class is designed to work with network discovery rules.

Note:
This API is meant to work with network discovery rules. For the low-level discovery rules see the LLD rule API.

Object references:

• Discovery rule

Available methods:

• drule.create - create new discovery rules
• drule.delete - delete discovery rules
• drule.get - retrieve discovery rules
• drule.isreadable - check if discovery rules are readable
• drule.iswritable - check if discovery rules are writable
• drule.update - update discovery rules

> Discovery rule object

The following objects are directly related to the drule API.

Discovery rule

The discovery rule object defines a network discovery rule. It has the following properties.

Property Type Description

druleid string (readonly) ID of the discovery rule.
iprange
(required)

string One or several IP ranges to check separated by commas.

Refer to the network discovery configuration section for
more information on supported formats of IP ranges.

name
(required)

string Name of the discovery rule.

delay integer Execution interval of the discovery rule in seconds.

Default: 3600.
nextcheck timestamp (readonly) Time when the discovery rule will be executed

next.
proxy_hostid string ID of the proxy used for discovery.

581

Property Type Description

status integer Whether the discovery rule is enabled.

Possible values:
0 - (default) enabled;
1 - disabled.

drule.create

Description

object drule.create(object/array discroveryRules)

This method allows to create new discrovery rules.

Parameters

(object/array) Discrovery rules to create.

Additionally to the standard discrovery rule properties, the method accepts the following parameters.

Parameter Type Description

dchecks
(required)

array Discovery checks to create for the discovery rule.

Return values

(object) Returns an object containing the IDs of the created discrovery rules under the druleids property. The order of the
returned IDs matches the order of the passed discrovery rules.

Examples

Create a discovery rule

Create a discovery rule to find machines running the Zabbix agent in the local network. The rule must use a single Zabbix agent
check on port 10050.

Request:

{
"jsonrpc": "2.0",
"method": "drule.create",
"params": {

"name": "Zabbix agent discovery",
"iprange": "192.168.1.1-255",
"dchecks": [

{
"type": "9",
"key_": "system.uname",
"ports": "10050",
"uniq": "0"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"6"

]

582

},
"id": 1

}

See also

• Discovery check

Source

CDRule::create() in frontends/php/include/classes/api/services/CDRule.php.

drule.delete

Description

object drule.delete(array discoveryRuleIds)

This method allows to delete discovery rules.

Parameters

(array) IDs of the discovery rules to delete.

Return values

(object) Returns an object containing the IDs of the deleted discovery rules under the druleids property.

Examples

Delete multiple discovery rules

Delete two discovery rules.

Request:

{
"jsonrpc": "2.0",
"method": "drule.delete",
"params": [

"4",
"6"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"4",
"6"

]
},
"id": 1

}

Source

CDRule::delete() in frontends/php/include/classes/api/services/CDRule.php.

drule.get

Description

integer/array drule.get(object parameters)

The method allows to retrieve discovery rules according to the given parameters.

583

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dhostids string/array Return only discovery rules that created the given
discovered hosts.

druleids string/array Return only discovery rules with the given IDs.
dserviceids string/array Return only discovery rules that created the given

discovered services.
selectDChecks query Return discovery checks used by the discovery rule in

the dchecks property.

Supports count.
selectDHosts query Return the discovered hosts that the discovery rule

created in the dhosts property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectDChecks - results will be sorted by
dcheckid;
selectDHosts - results will be sorted by dhostsid.

sortfield string/array Sort the result by the given properties.

Possible values are: druleid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all discovery rules

Retrieve all configured discovery rules and the discovery checks they use.

Request:

{
"jsonrpc": "2.0",
"method": "drule.get",
"params": {

"output": "extend",
"selectDChecks": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

584

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"druleid": "2",
"proxy_hostid": "0",
"name": "Local network",
"iprange": "192.168.3.1-255",
"delay": "5",
"nextcheck": "1348754327",
"status": "0",
"dchecks": [

{
"dcheckid": "7",
"druleid": "2",
"type": "3",
"key_": "",
"snmp_community": "",
"ports": "21",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"dcheckid": "8",
"druleid": "2",
"type": "4",
"key_": "",
"snmp_community": "",
"ports": "80",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
]

},
{

"druleid": "6",
"proxy_hostid": "0",
"name": "Zabbix agent discovery",
"iprange": "192.168.1.1-255",
"delay": "3600",
"nextcheck": "0",
"status": "0",
"dchecks": [

{
"dcheckid": "10",
"druleid": "6",
"type": "9",
"key_": "system.uname",

585

"snmp_community": "",
"ports": "10050",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
]

}
],
"id": 1

}

See also

• Discovered host
• Discovery check

Source

CDRule::get() in frontends/php/include/classes/api/services/CDRule.php.

drule.isreadable

Description

boolean drule.isreadable(array discoveryRuleIds)

This method checks if the given discovery rules are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use drule.get instead.

Parameters

(array) IDs of the discovery rules to check.

Return values

(boolean) Returns true if the given discovery rules are available for reading.

Examples

Check multiple discovery rules

Check if the two discovery rules are readable.

Request:

{
"jsonrpc": "2.0",
"method": "drule.isreadable",
"params": [

"5",
"8"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,

586

"id": 1
}

See also

• drule.iswritable

Source

CDRule::isReadable() in frontends/php/include/classes/api/services/CDRule.php.

drule.iswritable

Description

boolean drule.iswritable(array discoveryRuleIds)

This method checks if the given discovery rules are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use drule.get instead.

Parameters

(array) IDs of the discovery rules to check.

Return values

(boolean) Returns true if the given discovery rules are available for writing.

Examples

Check multiple discovery rules

Check if the two discovery rules are writable.

Request:

{
"jsonrpc": "2.0",
"method": "drule.iswritable",
"params": [

"5",
"8"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• drule.isreadable

Source

CDRule::isWritable() in frontends/php/include/classes/api/services/CDRule.php.

drule.update

Description

object drule.update(object/array discoveryRules)

587

This method allows to update existing discovery rules.

Parameters

(object/array) Discovery rule properties to be updated.

The druleid property must be defined for each discovery rule, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard discovery rule properties, the method accepts the following parameters.

Parameter Type Description

dchecks array Discovery checks to replace existing checks.

Return values

(object) Returns an object containing the IDs of the updated discovery rules under the druleids property.

Examples

Change the IP range of a discovery rule

Change the IP range of a discovery rule to ”192.168.2.1-255”.

Request:

{
"jsonrpc": "2.0",
"method": "drule.update",
"params": {

"druleid": "6",
"iprange": "192.168.2.1-255"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"6"

]
},
"id": 1

}

See also

• Discovery check

Source

CDRule::update() in frontends/php/include/classes/api/services/CDRule.php.

Event

This class is designed to work with events.

Object references:

• Event

Available methods:

• event.get - retrieving events
• event.acknowledge - acknowledging events

588

> Event object

The following objects are directly related to the event API.

Event

Note:
Events are created by the Zabbix server and cannot be modified via the API.

The event object has the following properties.

Property Type Description

eventid string ID of the event.
source integer Type of the event.

Possible values:
0 - event created by a trigger;
1 - event created by a discovery rule;
2 - event created by active agent auto-registration;
3 - internal event.

object integer Type of object that is related to the event.

Possible values for trigger events:
0 - trigger.

Possible values for discovery events:
1 - discovered host;
2 - discovered service.

Possible values for auto-registration events:
3 - auto-registered host.

Possible values for internal events:
0 - trigger;
4 - item;
5 - LLD rule.

objectid string ID of the related object.
acknowledged integer Whether the event has been acknowledged.
clock timestamp Time when the event was created.
ns integer Nanoseconds when the event was created.
value integer State of the related object.

Possible values for trigger events:
0 - OK;
1 - problem.

Possible values for discovery events:
0 - host or service up;
1 - host or service down;
2 - host or service discovered;
3 - host or service lost.

Possible values for internal events:
0 - ”normal” state;
1 - ”unknown” or ”not supported” state.

This parameter is not used for active agent
auto-registration events.

r_eventid string Recovery event ID
c_eventid string Problem event ID who generated OK event
correlationid string Correlation ID
userid string User ID if the event was manually closed.

589

event.acknowledge

Description

object event.acknowledge(object/array parameters)

This method allows to acknowledge events and add an acknowledgement message. If an event is already acknowledged, a new
message will still be added.

Attention:
Only trigger events can be acknowledged.

Parameters

(object/array) Parameters containing the IDs of the events acknowledge and a message.

Parameter Type Description

eventids
(required)

string/object IDs of the events to acknowledge.

message string Text of the acknowledgement message.
action integer Action on event acknowledgement.

Possible values:
0 - (default) none;
1 - close problem.

Return values

(object) Returns an object containing the IDs of the acknowledged events under the eventids property.

Examples

Acknowledging an event

Acknowledge a single event and leave a message.

Request:

{
"jsonrpc": "2.0",
"method": "event.acknowledge",
"params": {

"eventids": "20427",
"message": "Problem resolved.",
"action": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"eventids": [
"20427"

]
},
"id": 1

}

Source

CEvent::acknowledge() in frontends/php/include/classes/api/services/CEvent.php.

590

event.get

Description

integer/array event.get(object parameters)

The method allows to retrieve events according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

eventids string/array Return only events with the given IDs.
groupids string/array Return only events created by objects that belong to

the given host groups.
hostids string/array Return only events created by objects that belong to

the given hosts.
objectids string/array Return only events created by the given objects.
applicationids string/array Return only events created by objects that belong to

the given applications. Applies only if object is trigger
or item.

source integer Return only events with the given type.

Refer to the event object page for a list of supported
event types.

Default: 0 - trigger events.
object integer Return only events created by objects of the given

type.

Refer to the event object page for a list of supported
object types.

Default: 0 - trigger.
acknowledged boolean If set to true return only acknowledged events.
severities integer/array Return only events with given trigger severities.

Applies only if object is trigger.
tags object Return only events with given tags. Exact match by

tag and case-insensitive search by value.
Format: [{"tag": "<tag>", "value":
"<value>"}, ...].
An empty array returns all events.

eventid_from string Return only events with IDs greater or equal to the
given ID.

eventid_till string Return only events with IDs less or equal to the given
ID.

time_from timestamp Return only events that have been created after or at
the given time.

time_till timestamp Return only events that have been created before or
at the given time.

value integer/array Return only events with the given values.
selectHosts query Return hosts containing the object that created the

event in the hosts property. Supported only for
events generated by triggers, items or LLD rules.

selectRelatedObject query Return the object that created the event in the
relatedObject property. The type of object
returned depends on the event type.

select_alerts query Return alerts generated by the event in the alerts
property. Alerts are sorted in reverse chronological
order.

591

Parameter Type Description

select_acknowledges query Return event’s acknowledges in the acknowledges
property. Acknowledges are sorted in reverse
chronological order.

The event acknowledgement object has the following
properties:
acknowledgeid - (string) acknowledgement’s ID;
userid - (string) ID of the user that acknowledged
the event;
eventid - (string) ID of the acknowledged event;
clock - (timestamp) time when the event was
acknowledged;
message - (string) text of the acknowledgement
message;
alias - (string) alias of the user that
acknowledged the event;
name - (string) name of the user that
acknowledged the event;
surname - (string) surname of the user that
acknowledged the event.

Supports count.
selectTags query Return event tags in tags property.
sortfield string/array Sort the result by the given properties.

Possible values are: eventid, objectid and clock.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving trigger events

Retrieve the latest events from trigger ”13926.”

Request:

{
"jsonrpc": "2.0",
"method": "event.get",
"params": {

"output": "extend",
"select_acknowledges": "extend",
"selectTags": "extend",
"objectids": "13926",

592

"sortfield": ["clock", "eventid"],
"sortorder": "DESC"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"acknowledges": [

{
"acknowledgeid": "1",
"userid": "1",
"eventid": "9695",
"clock": "1350640590",
"message": "Problem resolved.\n\r----[BULK ACKNOWLEDGE]----",
"alias": "Admin"

}
],
"eventid": "9695",
"source": "0",
"object": "0",
"objectid": "13926",
"clock": "1347970410",
"value": "1",
"acknowledged": "1",
"ns": "413316245",
"r_eventid": "0",
"c_eventid": "0",
"correlationid": "0",
"userid": "0",
"tags": [

{
"tag": "service",
"value": "mysqld"

},
{

"tag": "error",
"value": ""

}
]

},
{

"acknowledges": [],
"eventid": "9671",
"source": "0",
"object": "0",
"objectid": "13926",
"clock": "1347970347",
"value": "0",
"acknowledged": "0",
"ns": "0",
"r_eventid": "0",
"c_eventid": "0",
"correlationid": "0",
"userid": "0",
"tags": []

}
],

593

"id": 1
}

Retrieving events by time period

Retrieve all events that have been created between October 9 and 10, 2012, in reverse chronological order.

Request:

{
"jsonrpc": "2.0",
"method": "event.get",
"params": {

"output": "extend",
"time_from": "1349797228",
"time_till": "1350661228",
"sortfield": ["clock", "eventid"],
"sortorder": "desc"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"eventid": "20616",
"source": "0",
"object": "0",
"objectid": "14282",
"clock": "1350477814",
"value": "1",
"acknowledged": "0",
"ns": "0",
"r_eventid": "0",
"c_eventid": "0",
"correlationid": "0",
"userid": "0"

},
{

"eventid": "20617",
"source": "0",
"object": "0",
"objectid": "14283",
"clock": "1350477814",
"value": "0",
"acknowledged": "0",
"ns": "0",
"r_eventid": "0",
"c_eventid": "0",
"correlationid": "0",
"userid": "0"

},
{

"eventid": "20618",
"source": "0",
"object": "0",
"objectid": "14284",
"clock": "1350477815",
"value": "1",
"acknowledged": "0",
"ns": "0",

594

"r_eventid": "0",
"c_eventid": "0",
"correlationid": "0",
"userid": "0"

}
],
"id": 1

}

See also

• Alert
• Item
• Host
• LLD rule
• Trigger

Source

CEvent::get() in frontends/php/include/classes/api/services/CEvent.php.

Graph

This class is designed to work with items.

Object references:

• Graph

Available methods:

• graph.create - creating new graphs
• graph.delete - deleting graphs
• graph.get - retrieving graphs
• graph.update - updating graphs

> Graph object

The following objects are directly related to the graph API.

Graph

The graph object has the following properties.

Property Type Description

graphid string (readonly) ID of the graph.
height
(required)

integer Height of the graph in pixels.

name
(required)

string Name of the graph

width
(required)

integer Width of the graph in pixels.

flags integer (readonly) Origin of the graph.

Possible values are:
0 - (default) a plain graph;
4 - a discovered graph.

graphtype integer Graph’s layout type.

Possible values:
0 - (default) normal;
1 - stacked;
2 - pie;
3 - exploded.

595

Property Type Description

percent_left float Left percentile.

Default: 0.
percent_right float Right percentile.

Default: 0.
show_3d integer Whether to show pie and exploded graphs in 3D.

Possible values:
0 - (default) show in 2D;
1 - show in 3D.

show_legend integer Whether to show the legend on the graph.

Possible values:
0 - hide;
1 - (default) show.

show_work_period integer Whether to show the working time on the graph.

Possible values:
0 - hide;
1 - (default) show.

templateid string (readonly) ID of the parent template graph.
yaxismax float The fixed maximum value for the Y axis.

Default: 100.
yaxismin float The fixed minimum value for the Y axis.

Default: 0.
ymax_itemid string ID of the item that is used as the maximum value for the

Y axis.
ymax_type integer Maximum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

ymin_itemid string ID of the item that is used as the minimum value for the
Y axis.

ymin_type integer Minimum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

graph.create

Description

object graph.create(object/array graphs)

This method allows to create new graphs.

Parameters

(object/array) Graphs to create.

Additionally to the standard graph properties, the method accepts the following parameters.

596

Parameter Type Description

gitems
(required)

array Graph items to be created for the graph.

Return values

(object) Returns an object containing the IDs of the created graphs under the graphids property. The order of the returned IDs
matches the order of the passed graphs.

Examples

Creating a graph

Create a graph with two items.

Request:

{
"jsonrpc": "2.0",
"method": "graph.create",
"params": {

"name": "MySQL bandwidth",
"width": 900,
"height": 200,
"gitems": [

{
"itemid": "22828",
"color": "00AA00"

},
{

"itemid": "22829",
"color": "3333FF"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652"

]
},
"id": 1

}

See also

• Graph item

Source

CGraph::create() in frontends/php/include/classes/api/services/CGraph.php.

graph.delete

Description

object graph.delete(array graphIds)

This method allows to delete graphs.

Parameters

597

(array) IDs of the graphs to delete.

Return values

(object) Returns an object containing the IDs of the deleted graphs under the graphids property.

Examples

Deleting multiple graphs

Delete two graphs.

Request:

{
"jsonrpc": "2.0",
"method": "graph.delete",
"params": [

"652",
"653"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652",
"653"

]
},
"id": 1

}

Source

CGraph::delete() in frontends/php/include/classes/api/services/CGraph.php.

graph.get

Description

integer/array graph.get(object parameters)

The method allows to retrieve graphs according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

graphids string/array Return only graphs with the given IDs.
groupids string/array Return only graphs that belong to hosts in the given

host groups.
templateids string/array Return only graph that belong to the given templates.
hostids string/array Return only graphs that belong to the given hosts.
itemids string/array Return only graphs that contain the given items.
templated boolean If set to true return only graphs that belong to

templates.
inherited boolean If set to true return only graphs inherited from a

template.
expandName flag Expand macros in the graph name.
selectGroups query Return the host groups that the graph belongs to in

the groups property.

598

Parameter Type Description

selectTemplates query Return the templates that the graph belongs to in the
templates property.

selectHosts query Return the hosts that the graph belongs to in the
hosts property.

selectItems query Return the items used in the graph in the items
property.

selectGraphDiscovery query Return the graph discovery object in the
graphDiscovery property. The graph discovery
objects links the graph to a graph prototype from
which it was created.

It has the following properties:
graphid - (string) ID of the graph;
parent_graphid - (string) ID of the graph
prototype from which the graph has been created.

selectGraphItems query Return the graph items used in the graph in the
gitems property.

selectDiscoveryRule query Return the low-level discovery rule that created the
graph in the discoveryRule property.

filter object Return only those results that exactly match the given
filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the graph
belongs to;
hostid - ID of the host that the graph belongs to.

sortfield string/array Sort the result by the given properties.

Possible values are: graphid, name and graphtype.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving graphs from hosts

Retrieve all graphs from host ”10107” and sort them by name.

Request:

{
"jsonrpc": "2.0",

599

"method": "graph.get",
"params": {

"output": "extend",
"hostids": 10107,
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "612",
"name": "CPU jumps",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "439",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "613",
"name": "CPU load",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "433",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "614",
"name": "CPU utilization",
"width": "900",
"height": "200",
"yaxismin": "0.0000",

600

"yaxismax": "100.0000",
"templateid": "387",
"show_work_period": "1",
"show_triggers": "0",
"graphtype": "1",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "1",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "645",
"name": "Disk space usage /",
"width": "600",
"height": "340",
"yaxismin": "0.0000",
"yaxismax": "0.0000",
"templateid": "0",
"show_work_period": "0",
"show_triggers": "0",
"graphtype": "2",
"show_legend": "1",
"show_3d": "1",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "4"

}
],
"id": 1

}

See also

• Discovery rule
• Graph item
• Item
• Host
• Host group
• Template

Source

CGraph::get() in frontends/php/include/classes/api/services/CGraph.php.

graph.update

Description

object graph.update(object/array graphs)

This method allows to update existing graphs.

Parameters

(object/array) Graph properties to be updated.

601

The graphid property must be defined for each graph, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard graph properties the method accepts the following parameters.

Parameter Type Description

gitems array Graph items to replace existing graph items. If a
graph item has the gitemid property defined it will
be updated, otherwise a new graph item will be
created.

Return values

(object) Returns an object containing the IDs of the updated graphs under the graphids property.

Examples

Setting the maximum for the Y scale

Set the the maximum of the Y scale to a fixed value of 100.

Request:

{
"jsonrpc": "2.0",
"method": "graph.update",
"params": {

"graphid": "439",
"ymax_type": 1,
"yaxismax": 100

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"439"

]
},
"id": 1

}

Source

CGraph::update() in frontends/php/include/classes/api/services/CGraph.php.

Graph item

This class is designed to work with hosts.

Object references:

• Graph item

Available methods:

• graphitem.get - retrieving graph items

602

> Graph item object

The following objects are directly related to the graphitem API.

Graph item

Note:
Graph items can only be modified via the graph API.

The graph item object has the following properties.

Property Type Description

gitemid string (readonly) ID of the graph item.
color
(required)

string Graph item’s draw color as a hexadecimal color code.

itemid
(required)

string ID of the item.

calc_fnc integer Value of the item that will be displayed.

Possible values:
1 - minimum value;
2 - (default) average value;
4 - maximum value;
7 - all values;
9 - last value, used only by pie and exploded graphs.

drawtype integer Draw style of the graph item.

Possible values:
0 - (default) line;
1 - filled region;
2 - bold line;
3 - dot;
4 - dashed line;
5 - gradient line.

graphid string ID of the graph that the graph item belongs to.
sortorder integer Position of the item in the graph.

Default: starts with 0 and increases by one with each
entry.

type integer Type of graph item.

Possible values:
0 - (default) simple;
2 - graph sum, used only by pie and exploded graphs.

yaxisside integer Side of the graph where the graph item’s Y scale will be
drawn.

Possible values:
0 - (default) left side;
1 - right side.

graphitem.get

Description

integer/array graphitem.get(object parameters)

The method allows to retrieve graph items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

603

The method supports the following parameters.

Parameter Type Description

gitemids string/array Return only graph items with the given IDs.
graphids string/array Return only graph items that belong to the given

graphs.
itemids string/array Return only graph items with the given item IDs.
type integer Return only graph items with the given type.

Refer to the graph item object page for a list of
supported graph item types.

selectGraphs query Return the graph that the item belongs to as an array
in the graphs property.

sortfield string/array Sort the result by the given properties.

Possible values are: gitemid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
limit integer
output query
preservekeys flag
sortorder string/array

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving graph items from a graph

Retrieve all graph items used in a graph with additional information about the item and the host.

Request:

{
"jsonrpc": "2.0",
"method": "graphitem.get",
"params": {

"output": "extend",
"graphids": "387"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"gitemid": "1242",
"graphid": "387",
"itemid": "22665",
"drawtype": "1",
"sortorder": "1",
"color": "FF5555",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",

604

"key_": "system.cpu.util[,steal]",
"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

},
{

"gitemid": "1243",
"graphid": "387",
"itemid": "22668",
"drawtype": "1",
"sortorder": "2",
"color": "55FF55",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",
"key_": "system.cpu.util[,softirq]",
"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

},
{

"gitemid": "1244",
"graphid": "387",
"itemid": "22671",
"drawtype": "1",
"sortorder": "3",
"color": "009999",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",
"key_": "system.cpu.util[,interrupt]",
"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

}
],
"id": 1

}

See also

• Graph

Source

CGraphItem::get() in frontends/php/include/classes/api/services/CGraphItem.php.

Graph prototype

This class is designed to work with graph prototypes.

Object references:

• Graph prototype

Available methods:

• graphprototype.create - creating new graph prototypes
• graphprototype.delete - deleting graph prototypes
• graphprototype.get - retrieving graph prototypes
• graphprototype.update - updating graph prototypes

> Graph prototype object

605

The following objects are directly related to the graphprototype API.

Graph prototype

The graph prototype object has the following properties.

Property Type Description

graphid string (readonly) ID of the graph prototype.
height
(required)

integer Height of the graph prototype in pixels.

name
(required)

string Name of the graph prototype.

width
(required)

integer Width of the graph prototype in pixels.

graphtype integer Graph prototypes’s layout type.

Possible values:
0 - (default) normal;
1 - stacked;
2 - pie;
3 - exploded.

percent_left float Left percentile.

Default: 0.
percent_right float Right percentile.

Default: 0.
show_3d integer Whether to show discovered pie and exploded graphs in

3D.

Possible values:
0 - (default) show in 2D;
1 - show in 3D.

show_legend integer Whether to show the legend on the discovered graph.

Possible values:
0 - hide;
1 - (default) show.

show_work_period integer Whether to show the working time on the discovered
graph.

Possible values:
0 - hide;
1 - (default) show.

templateid string (readonly) ID of the parent template graph prototype.
yaxismax float The fixed maximum value for the Y axis.
yaxismin float The fixed minimum value for the Y axis.
ymax_itemid string ID of the item that is used as the maximum value for the

Y axis.
ymax_type integer Maximum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

ymin_itemid string ID of the item that is used as the minimum value for the
Y axis.

ymin_type integer Minimum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

606

graphprototype.create

Description

object graphprototype.create(object/array graphPrototypes)

This method allows to create new graph prototypes.

Parameters

(object/array) Graph prototypes to create.

Additionally to the standard graph prototype properties, the method accepts the following parameters.

Parameter Type Description

gitems
(required)

array Graph items to be created for the graph prototypes.
Graph items can reference both items and item
prototypes, but at least one item prototype must be
present.

Return values

(object) Returns an object containing the IDs of the created graph prototypes under the graphids property. The order of the
returned IDs matches the order of the passed graph prototypes.

Examples

Creating a graph prototype

Create a graph prototype with two items.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.create",
"params": {

"name": "Disk space usage {#FSNAME}",
"width": 900,
"height": 200,
"gitems": [

{
"itemid": "22828",
"color": "00AA00"

},
{

"itemid": "22829",
"color": "3333FF"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652"

]
},
"id": 1

}

See also

607

• Graph item

Source

CGraphPrototype::create() in frontends/php/include/classes/api/services/CGraphPrototype.php.

graphprototype.delete

Description

object graphprototype.delete(array graphPrototypeIds)

This method allows to delete graph prototypes.

Parameters

(array) IDs of the graph prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted graph prototypes under the graphids property.

Examples

Deleting multiple graph prototypes

Delete two graph prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.delete",
"params": [

"652",
"653"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652",
"653"

]
},
"id": 1

}

Source

CGraphPrototype::delete() in frontends/php/include/classes/api/services/CGraphPrototype.php.

graphprototype.get

Description

integer/array graphprototype.get(object parameters)

The method allows to retrieve graph prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

608

Parameter Type Description

discoveryids string/array Return only graph prototypes that belong to the given
discovery rules.

graphids string/array Return only graph prototypes with the given IDs.
groupids string/array Return only graph prototypes that belong to hosts in

the given host groups.
hostids string/array Return only graph prototypes that belong to the given

hosts.
inherited boolean If set to true return only graph prototypes inherited

from a template.
itemids string/array Return only graph prototypes that contain the given

item prototypes.
templated boolean If set to true return only graph prototypes that

belong to templates.
templateids string/array Return only graph prototypes that belong to the given

templates.
selectDiscoveryRule query Return the LLD rule that the graph prototype belongs

to in the discoveryRule property.
selectGraphItems query Return the graph items used in the graph prototype in

the gitems property.
selectGroups query Return the host groups that the graph prototype

belongs to in the groups property.
selectHosts query Return the hosts that the graph prototype belongs to

in the hosts property.
selectItems query Return the items and item prototypes used in the

graph prototype in the items property.
selectTemplates query Return the templates that the graph prototype

belongs to in the templates property.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the graph
prototype belongs to;
hostid - ID of the host that the graph prototype
belongs to.

sortfield string/array Sort the result by the given properties.

Possible values are: graphid, name and graphtype.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

609

Examples

Retrieving graph prototypes from a LLD rule

Retrieve all graph prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.get",
"params": {

"output": "extend",
"discoveryids": "27426"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "1017",
"parent_itemid": "27426",
"name": "Disk space usage {#FSNAME}",
"width": "600",
"height": "340",
"yaxismin": "0.0000",
"yaxismax": "0.0000",
"templateid": "442",
"show_work_period": "0",
"show_triggers": "0",
"graphtype": "2",
"show_legend": "1",
"show_3d": "1",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0"

}
],
"id": 1

}

See also

• Discovery rule
• Graph item
• Item
• Host
• Host group
• Template

Source

CGraphPrototype::get() in frontends/php/include/classes/api/services/CGraphPrototype.php.

graphprototype.update

Description

object graphprototype.update(object/array graphPrototypes)

610

This method allows to update existing graph prototypes.

Parameters

(object/array) Graph prototype properties to be updated.

The graphid property must be defined for each graph prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard graph prototype properties, the method accepts the following parameters.

Parameter Type Description

gitems array Graph items to replace existing graph items. If a
graph item has the gitemid property defined it will
be updated, otherwise a new graph item will be
created.

Return values

(object) Returns an object containing the IDs of the updated graph prototypes under the graphids property.

Examples

Changing the size of a graph prototype

Change the size of a graph prototype to 1100 to 400 pixels.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.update",
"params": {

"graphid": "439",
"width": 1100,
"height": 400

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"439"

]
},
"id": 1

}

Source

CGraphPrototype::update() in frontends/php/include/classes/api/services/CGraphPrototype.php.

History

This class is designed to work with history data.

Object references:

• History

Available methods:

• history.get - retrieving history data.

611

> History object

The following objects are directly related to the history API.

Note:
History objects differ depending on the item’s type of information. They are created by the Zabbix server and cannot be
modified via the API.

Float history

The float history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value float Received value.

Integer history

The integer history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value integer Received value.

String history

The string history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value string Received value.

Text history

The text history object has the following properties.

Property Type Description

id string ID of the history entry.
clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value text Received value.

Log history

The log history object has the following properties.

Property Type Description

id string ID of the history entry.
clock timestamp Time when that value was received.
itemid string ID of the related item.
logeventid integer Windows event log entry ID.

612

Property Type Description

ns integer Nanoseconds when the value was received.
severity integer Windows event log entry level.
source string Windows event log entry source.
timestamp timestamp Windows event log entry time.
value text Received value.

history.get

Description

integer/array history.get(object parameters)

The method allows to retrieve history data according to the given parameters.

See also: known issues

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

history integer History object types to return.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

Default: 3.
hostids string/array Return only history from the given hosts.
itemids string/array Return only history from the given items.
time_from timestamp Return only values that have been received after or at

the given time.
time_till timestamp Return only values that have been received before or

at the given time.
sortfield string/array Sort the result by the given properties.

Possible values are: itemid and clock.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

613

Examples

Retrieving item history data

Return 10 latest values received from a numeric(float) item.

Request:

{
"jsonrpc": "2.0",
"method": "history.get",
"params": {

"output": "extend",
"history": 0,
"itemids": "23296",
"sortfield": "clock",
"sortorder": "DESC",
"limit": 10

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23296",
"clock": "1351090996",
"value": "0.0850",
"ns": "563157632"

},
{

"itemid": "23296",
"clock": "1351090936",
"value": "0.1600",
"ns": "549216402"

},
{

"itemid": "23296",
"clock": "1351090876",
"value": "0.1800",
"ns": "537418114"

},
{

"itemid": "23296",
"clock": "1351090816",
"value": "0.2100",
"ns": "522659528"

},
{

"itemid": "23296",
"clock": "1351090756",
"value": "0.2150",
"ns": "507809457"

},
{

"itemid": "23296",
"clock": "1351090696",
"value": "0.2550",
"ns": "495509699"

},
{

"itemid": "23296",

614

"clock": "1351090636",
"value": "0.3600",
"ns": "477708209"

},
{

"itemid": "23296",
"clock": "1351090576",
"value": "0.3750",
"ns": "463251343"

},
{

"itemid": "23296",
"clock": "1351090516",
"value": "0.3150",
"ns": "447947017"

},
{

"itemid": "23296",
"clock": "1351090456",
"value": "0.2750",
"ns": "435307141"

}
],
"id": 1

}

Source

CHistory::get() in frontends/php/include/classes/api/services/CHistory.php.

Host

This class is designed to work with hosts.

Object references:

• Host
• Host inventory

Available methods:

• host.create - creating new hosts
• host.delete - deleting hosts
• host.get - retrieving hosts
• host.isreadable - checking if hosts are readable
• host.iswritable - checking if hosts are writable
• host.massadd - adding related objects to hosts
• host.massremove - removing related objects from hosts
• host.massupdate - replacing or removing related objects from hosts
• host.update - updating hosts

> Host object

The following objects are directly related to the host API.

Host

The host object has the following properties.

Property Type Description

hostid string (readonly) ID of the host.
host
(required)

string Technical name of the host.

615

Property Type Description

available integer (readonly) Availability of Zabbix agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

description text Description of the host.
disable_until timestamp (readonly) The next polling time of an unavailable

Zabbix agent.
error string (readonly) Error text if Zabbix agent is unavailable.
errors_from timestamp (readonly) Time when Zabbix agent became unavailable.
flags integer (readonly) Origin of the host.

Possible values:
0 - a plain host;
4 - a discovered host.

inventory_mode integer Host inventory population mode.

Possible values are:
-1 - disabled;
0 - (default) manual;
1 - automatic.

ipmi_authtype integer IPMI authentication algorithm.

Possible values are:
-1 - (default) default;
0 - none;
1 - MD2;
2 - MD5
4 - straight;
5 - OEM;
6 - RMCP+.

ipmi_available integer (readonly) Availability of IPMI agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

ipmi_disable_until timestamp (readonly) The next polling time of an unavailable IPMI
agent.

ipmi_error string (readonly) Error text if IPMI agent is unavailable.
ipmi_errors_from timestamp (readonly) Time when IPMI agent became unavailable.
ipmi_password string IPMI password.
ipmi_privilege integer IPMI privilege level.

Possible values are:
1 - callback;
2 - (default) user;
3 - operator;
4 - admin;
5 - OEM.

ipmi_username string IPMI username.
jmx_available integer (readonly) Availability of JMX agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

jmx_disable_until timestamp (readonly) The next polling time of an unavailable JMX
agent.

jmx_error string (readonly) Error text if JMX agent is unavailable.

616

Property Type Description

jmx_errors_from timestamp (readonly) Time when JMX agent became unavailable.
maintenance_from timestamp (readonly) Starting time of the effective maintenance.
maintenance_status integer (readonly) Effective maintenance status.

Possible values are:
0 - (default) no maintenance;
1 - maintenance in effect.

maintenance_type integer (readonly) Effective maintenance type.

Possible values are:
0 - (default) maintenance with data collection;
1 - maintenance without data collection.

maintenanceid string (readonly) ID of the maintenance that is currently in
effect on the host.

name string Visible name of the host.

Default: host property value.
proxy_hostid string ID of the proxy that is used to monitor the host.
snmp_available integer (readonly) Availability of SNMP agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

snmp_disable_until timestamp (readonly) The next polling time of an unavailable SNMP
agent.

snmp_error string (readonly) Error text if SNMP agent is unavailable.
snmp_errors_from timestamp (readonly) Time when SNMP agent became unavailable.
status integer Status and function of the host.

Possible values are:
0 - (default) monitored host;
1 - unmonitored host.

tls_connect integer Connections to host.

Possible values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_accept integer Connections from host.

Possible bitmap values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_issuer string Certificate issuer.
tls_subject string Certificate subject.
tls_psk_identity string PSK identity. Required if either tls_connect or

tls_accept has PSK enabled.
tls_psk string The preshared key, at least 32 hex digits. Required if

either tls_connect or tls_accept has PSK enabled.

Host inventory

The host inventory object has the following properties.

Note:
Each property has it’s own unique ID number, which is used to associate host inventory fields with items.

617

ID Property Type Description

4 alias string Alias.
11 asset_tag string Asset tag.
28 chassis string Chassis.
23 contact string Contact person.
32 contract_number string Contract number.
47 date_hw_decomm string HW decommissioning date.
46 date_hw_expiry string HW maintenance expiry date.
45 date_hw_install string HW installation date.
44 date_hw_purchase string HW purchase date.
34 deployment_status string Deployment status.
14 hardware string Hardware.
15 hardware_full string Detailed hardware.
39 host_netmask string Host subnet mask.
38 host_networks string Host networks.
40 host_router string Host router.
30 hw_arch string HW architecture.
33 installer_name string Installer name.
24 location string Location.
25 location_lat string Location latitude.
26 location_lon string Location longitude.
12 macaddress_a string MAC address A.
13 macaddress_b string MAC address B.
29 model string Model.
3 name string Name.
27 notes string Notes.
41 oob_ip string OOB IP address.
42 oob_netmask string OOB host subnet mask.
43 oob_router string OOB router.
5 os string OS name.
6 os_full string Detailed OS name.
7 os_short string Short OS name.
61 poc_1_cell string Primary POC mobile number.
58 poc_1_email string Primary email.
57 poc_1_name string Primary POC name.
63 poc_1_notes string Primary POC notes.
59 poc_1_phone_a string Primary POC phone A.
60 poc_1_phone_b string Primary POC phone B.
62 poc_1_screen string Primary POC screen name.
68 poc_2_cell string Secondary POC mobile number.
65 poc_2_email string Secondary POC email.
64 poc_2_name string Secondary POC name.
70 poc_2_notes string Secondary POC notes.
66 poc_2_phone_a string Secondary POC phone A.
67 poc_2_phone_b string Secondary POC phone B.
69 poc_2_screen string Secondary POC screen name.
8 serialno_a string Serial number A.
9 serialno_b string Serial number B.
48 site_address_a string Site address A.
49 site_address_b string Site address B.
50 site_address_c string Site address C.
51 site_city string Site city.
53 site_country string Site country.
56 site_notes string Site notes.
55 site_rack string Site rack location.
52 site_state string Site state.
54 site_zip string Site ZIP/postal code.
16 software string Software.
18 software_app_a string Software application A.
19 software_app_b string Software application B.
20 software_app_c string Software application C.
21 software_app_d string Software application D.

618

ID Property Type Description

22 software_app_e string Software application E.
17 software_full string Software details.
10 tag string Tag.
1 type string Type.
2 type_full string Type details.
35 url_a string URL A.
36 url_b string URL B.
37 url_c string URL C.
31 vendor string Vendor.

host.create

Description

object host.create(object/array hosts)

This method allows to create new hosts.

Parameters

(object/array) Hosts to create.

Additionally to the standard host properties, the method accepts the following parameters.

Parameter Type Description

groups
(required)

object/array Host groups to add the host to.

The host groups must have the groupid property
defined.

interfaces
(required)

object/array Interfaces to be created for the host.

templates object/array Templates to be linked to the host.

The templates must have the templateid property
defined.

macros object/array User macros to be created for the host.
inventory object Host inventory properties.

Return values

(object) Returns an object containing the IDs of the created hosts under the hostids property. The order of the returned IDs
matches the order of the passed hosts.

Examples

Creating a host

Create a host called ”Linux server” with an IP interface, add it to a group, link a template to it and set the MAC addresses in the
host inventory.

Request:

{
"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "Linux server",
"interfaces": [

{
"type": 1,
"main": 1,
"useip": 1,
"ip": "192.168.3.1",
"dns": "",

619

"port": "10050"
}

],
"groups": [

{
"groupid": "50"

}
],
"templates": [

{
"templateid": "20045"

}
],
"inventory_mode": 0,
"inventory": {

"macaddress_a": "01234",
"macaddress_b": "56768"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"107819"

]
},
"id": 1

}

See also

• Host group
• Template
• User macro
• Host interface
• Host inventory

Source

CHost::create() in frontends/php/include/classes/api/services/CHost.php.

host.delete

Description

object host.delete(array hosts)

This method allows to delete hosts.

Parameters

(array) IDs of hosts to delete.

Return values

(object) Returns an object containing the IDs of the deleted hosts under the hostids property.

Examples

Deleting multiple hosts

Delete two hosts.

Request:

620

{
"jsonrpc": "2.0",
"method": "host.delete",
"params": [

"13",
"32"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"13",
"32"

]
},
"id": 1

}

Source

CHost::delete() in frontends/php/include/classes/api/services/CHost.php.

host.get

Description

integer/array host.get(object parameters)

The method allows to retrieve hosts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only hosts that belong to the given groups.
applicationids string/array Return only hosts that have the given applications.
dserviceids string/array Return only hosts that are related to the given

discovered services.
graphids string/array Return only hosts that have the given graphs.
hostids string/array Return only hosts with the given host IDs.
httptestids string/array Return only hosts that have the given web checks.
interfaceids string/array Return only hosts that use the given interfaces.
itemids string/array Return only hosts that have the given items.
maintenanceids string/array Return only hosts that are affected by the given

maintenances.
monitored_hosts flag Return only monitored hosts.
proxy_hosts flag Return only proxies.
proxyids string/array Return only hosts that are monitored by the given

proxies.
templated_hosts flag Return both hosts and templates.
templateids string/array Return only hosts that are linked to the given

templates.
triggerids string/array Return only hosts that have the given triggers.
with_items flag Return only hosts that have items.

Overrides the with_monitored_items and
with_simple_graph_items parameters.

621

Parameter Type Description

with_applications flag Return only hosts that have applications.
with_graphs flag Return only hosts that have graphs.
with_httptests flag Return only hosts that have web checks.

Overrides the with_monitored_httptests
parameter.

with_monitored_httptests flag Return only hosts that have enabled web checks.
with_monitored_items flag Return only hosts that have enabled items.

Overrides the with_simple_graph_items
parameter.

with_monitored_triggers flag Return only hosts that have enabled triggers. All of
the items used in the trigger must also be enabled.

with_simple_graph_items flag Return only hosts that have items with numeric type
of information.

with_triggers flag Return only hosts that have triggers.

Overrides the with_monitored_triggers
parameter.

withInventory flag Return only hosts that have inventory data.
selectGroups query Return the host groups that the host belongs to in the

groups property.
selectApplications query Return the applications from the host in the

applications property.

Supports count.
selectDiscoveries query Return the low level discoveries from the host in the

discoveries property.

Supports count.
selectDiscoveryRule query Return the LLD rule that created the host in the

discoveryRule property.
selectGraphs query Return the graphs from the host in the graphs

property.

Supports count.
selectHostDiscovery query Return the host discovery object in the

hostDiscovery property.

The host discovery object links a discovered host to a
host prototype or a host prototypes to an LLD rule and
has the following properties:
host - (string) host of the host prototype;
hostid - (string) ID of the discovered host or host
prototype;
parent_hostid - (string) ID of the host prototype
from which the host has been created;
parent_itemid - (string) ID of the LLD rule that
created the discovered host;
lastcheck - (timestamp) time when the host was
last discovered;
ts_delete - (timestamp) time when a host that is no
longer discovered will be deleted.

selectHttpTests query Return the web scenarios from the host in the
httpTests property.

Supports count.
selectInterfaces query Return the host interfaces in the interfaces

property.

Supports count.

622

Parameter Type Description

selectInventory query Return the host inventory from the host in the
inventory property.

selectItems query Return the items from the host in the items property.

Supports count.
selectMacros query Return the macros from the host in the macros

property.
selectParentTemplates query Return the templates that the host is linked to in the

parentTemplates property.

Supports count.
selectScreens query Return the screens from the host in the screens

property.

Supports count.
selectTriggers query Return the triggers from the host in the triggers

property.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Allows filtering by interface properties.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectParentTemplates - results will be sorted by
host;
selectInterfaces;
selectItems - sorted by name;
selectDiscoveries - sorted by name;
selectTriggers - sorted by description;
selectGraphs - sorted by name;
selectApplications - sorted by name;
selectScreens - sorted by name.

search object Return results that match the given wildcard search.

Accepts an array, where the keys are property names,
and the values are strings to search for. If no
additional options are given, this will perform a LIKE
"%…%" search.

Allows searching by interface properties. Works only
with text fields.

searchInventory object Return only hosts that have inventory data matching
the given wildcard search.

This parameter is affected by the same additional
parameters as search.

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name, status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
limit integer

623

Parameter Type Description

output query
preservekeys flag
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by name

Retrieve all data about two hosts named ”Zabbix server” and ”Linux server”.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"filter": {
"host": [

"Zabbix server",
"Linux server"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenances": [],
"hostid": "10160",
"proxy_hostid": "0",
"host": "Zabbix server",
"status": "0",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "-1",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",

624

"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Zabbix server",
"description": "The Zabbix monitoring server.",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": ""

},
{

"maintenances": [],
"hostid": "10167",
"proxy_hostid": "0",
"host": "Linux server",
"status": "0",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "-1",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Linux server",
"description": "",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": ""

}
],
"id": 1

}

Retrieving host groups

625

Retrieve names of the groups host ”Zabbix server” is member of, but no host details themselves.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid"],
"selectGroups": "extend",
"filter": {

"host": [
"Zabbix server"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10085",
"groups": [

{
"groupid": "2",
"name": "Linux servers",
"internal": "0",
"flags": "0"

},
{

"groupid": "4",
"name": "Zabbix servers",
"internal": "0",
"flags": "0"

}
]

}
],
"id": 2

}

Retrieving linked templates

Retrieve the IDs and names of templates linked to host ”10084”.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid"],
"selectParentTemplates": [

"templateid",
"name"

],
"hostids": "10084"

},
"id": 1,
"auth": "70785d2b494a7302309b48afcdb3a401"

}

626

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10084",
"parentTemplates": [

{
"name": "Template OS Linux",
"templateid": "10001"

},
{

"name": "Template App Zabbix Server",
"templateid": "10047"

}
]

}
],
"id": 1

}

Searching by host inventory data

Retrieve hosts that contain ”Linux” in the host inventory ”OS” field.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": [
"host"

],
"selectInventory": [

"os"
],
"searchInventory": {

"os": "Linux"
}

},
"id": 2,
"auth": "7f9e00124c75e8f25facd5c093f3e9a0"

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10084",
"host": "Zabbix server",
"inventory": {

"os": "Linux Ubuntu"
}

},
{

"hostid": "10107",
"host": "Linux server",
"inventory": {

"os": "Linux Mint"
}

}
],

627

"id": 1
}

See also

• Host group
• Template
• User macro
• Host interface

Source

CHost::get() in frontends/php/include/classes/api/services/CHost.php.

host.isreadable

Description

boolean host.isreadable(array hostIds)

This method checks if the given hosts are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use host.get instead.

Parameters

(array) IDs of the hosts to check.

Return values

(boolean) Returns true if the given hosts are available for reading.

Examples

Check multiple hosts

Check if the two hosts are readable.

Request:

{
"jsonrpc": "2.0",
"method": "host.isreadable",
"params": [

"143",
"943"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• host.iswritable

Source

CHost::isReadable() in frontends/php/include/classes/api/services/CHost.php.

628

host.iswritable

Description

boolean host.iswritable(array hostIds)

This method checks if the given hosts are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use host.get instead.

Parameters

(array) IDs of the hosts to check.

Return values

(boolean) Returns true if the given hosts are available for writing.

Examples

Check multiple hosts

Check if the two hosts are writable.

Request:

{
"jsonrpc": "2.0",
"method": "host.iswritable",
"params": [

"143",
"943"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• host.isreadable

Source

CHost::isWritable() in frontends/php/include/classes/api/services/CHost.php.

host.massadd

Description

object host.massadd(object parameters)

This method allows to simultaneously add multiple related objects to all the given hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the objects to add to all the hosts.

The method accepts the following parameters.

629

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
groups object/array Host groups to add to the given hosts.

The host groups must have the groupid property
defined.

interfaces object/array Host interfaces to be created for the given hosts.
macros object/array User macros to be created for the given hosts.
templates object/array Templates to link to the given hosts.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Adding macros

Add two new macros to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "host.massadd",
"params": {

"hosts": [
{

"hostid": "10160"
},
{

"hostid": "10167"
}

],
"macros": [

{
"macro": "{$TEST1}",
"value": "MACROTEST1"

},
{

"macro": "{$TEST2}",
"value": "MACROTEST2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10160",
"10167"

]
},

630

"id": 1
}

See also

• host.update
• Host group
• Template
• User macro
• Host interface

Source

CHost::massAdd() in frontends/php/include/classes/api/services/CHost.php.

host.massremove

Description

object host.massremove(object parameters)

This method allows to remove related objects from multiple hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the objects that should be removed.

Parameter Type Description

hostids
(required)

string/array IDs of the hosts to be updated.

groupids string/array Host groups to remove the given hosts from.
interfaces object/array Host interfaces to remove from the given hosts.

The host interface object must have the ip, dns and
port properties defined.

macros string/array User macros to delete from the given hosts.
templateids string/array Templates to unlink from the given hosts.
templateids_clear string/array Templates to unlink and clear from the given hosts.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Unlinking templates

Unlink a template from two hosts and delete all of the templated entities.

Request:

{
"jsonrpc": "2.0",
"method": "host.massremove",
"params": {

"hostids": ["69665", "69666"],
"templateids_clear": "325"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [

631

"69665",
"69666"

]
},
"id": 1

}

See also

• host.update
• User macro
• Host interface

Source

CHost::massRemove() in frontends/php/include/classes/api/services/CHost.php.

host.massupdate

Description

object host.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects and update properties on multiple hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the properties that should be updated.

Additionally to the standard host properties, the method accepts the following parameters.

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
groups object/array Host groups to replace the current host groups the

hosts belong to.

The host groups must have the groupid property
defined.

interfaces object/array Host interfaces to replace the current host interfaces
on the given hosts.

inventory object Host inventory properties.

Host inventory mode cannot be updated using the
inventory parameter, use inventory_mode
instead.

inventory_mode integer Host inventory population mode.

Refer to the host inventory object page for a list of
supported inventory modes.

macros object/array User macros to replace the current user macros on
the given hosts.

templates object/array Templates to replace the currently linked templates on
the given hosts.

The templates must have the templateid property
defined.

templates_clear object/array Templates to unlink and clear from the given hosts.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

632

Examples

Enabling multiple hosts

Enable monitoring of two hosts, i.e., set their status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "host.massupdate",
"params": {

"hosts": [
{

"hostid": "69665"
},
{

"hostid": "69666"
}

],
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"69665",
"69666"

]
},
"id": 1

}

See also

• host.update
• host.massadd
• host.massremove
• Host group
• Template
• User macro
• Host interface

Source

CHost::massUpdate() in frontends/php/include/classes/api/services/CHost.php.

host.update

Description

object host.update(object/array hosts)

This method allows to update existing hosts.

Parameters

(object/array) Host properties to be updated.

The hostid property must be defined for each host, all other properties are optional. Only the given properties will be updated,
all others will remain unchanged.

Additionally to the standard host properties, the method accepts the following parameters.

633

Parameter Type Description

groups object/array Host groups to replace the current host groups the
host belongs to.

The host groups must have the groupid property
defined.

interfaces object/array Host interfaces to replace the current host interfaces.
inventory object Host inventory properties.
macros object/array User macros to replace the current user macros.
templates object/array Templates to replace the currently linked templates.

Templates that are not passed are only unlinked.

The templates must have the templateid property
defined.

templates_clear object/array Templates to unlink and clear from the host.

The templates must have the templateid property
defined.

Note:
As opposed to the Zabbix frontend, when name is the same as host, updating host will not automatically update name.
Both properties need to be updated explicitly.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Enabling a host

Enable host monitoring, i.e. set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

Unlinking templates

Unlink and clear two templates from host.

Request:

{
"jsonrpc": "2.0",

634

"method": "host.update",
"params": {

"hostid": "10126",
"templates_clear": [

{
"templateid": "10124"

},
{

"templateid": "10125"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

Updating host macros

Replace all host macros with two new ones.

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"macros": [

{
"macro": "{$PASS}",
"value": "password"

},
{

"macro": "{$DISC}",
"value": "sda"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

635

Updating host inventory

Change inventory mode and add location

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10387",
"inventory_mode": 0,
"inventory": {

"location": "Latvia, Riga"
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10387"

]
},
"id": 2

}

See also

• host.massadd
• host.massupdate
• host.massremove
• Host group
• Template
• User macro
• Host interface
• Host inventory

Source

CHost::update() in frontends/php/include/classes/api/services/CHost.php.

Host group

This class is designed to work with host groups.

Object references:

• Host group

Available methods:

• hostgroup.create - creating new host groups
• hostgroup.delete - deleting host groups
• hostgroup.get - retrieving host groups
• hostgroup.isreadable - checking if host groups are readable
• hostgroup.iswritable - checking if host groups are writable
• hostgroup.massadd - adding related objects to host groups
• hostgroup.massremove - removing related objects from host groups
• hostgroup.massupdate - replacing or removing related objects from host groups
• hostgroup.update - updating host groups

636

> Host group object

The following objects are directly related to the hostgroup API.

Host group

The host group object has the following properties.

Property Type Description

groupid string (readonly) ID of the host group.
name
(required)

string Name of the host group.

flags integer (readonly) Origin of the host group.

Possible values:
0 - a plain host group;
4 - a discovered host group.

internal integer (readonly) Whether the group is used internally by the
system. An internal group cannot be deleted.

Possible values:
0 - (default) not internal;
1 - internal.

hostgroup.create

Description

object hostgroup.create(object/array hostGroups)

This method allows to create new host groups.

Parameters

(object/array) Host groups to create. The method accepts host groups with the standard host group properties.

Return values

(object) Returns an object containing the IDs of the created host groups under the groupids property. The order of the returned
IDs matches the order of the passed host groups.

Examples

Creating a host group

Create a host group called ”Linux servers”.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.create",
"params": {

"name": "Linux servers"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"107819"

]
},

637

"id": 1
}

Source

CHostGroup::create() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.delete

Description

object hostgroup.delete(array hostGroupIds)

This method allows to delete host groups.

A host group can not be deleted if:

• it contains hosts that belong to this group only;
• it is marked as internal;
• it is used by a host prototype;
• it is used in a global script;
• it is used in a correlation condition.

Parameters

(array) IDs of the host groups to delete.

Return values

(object) Returns an object containing the IDs of the deleted host groups under the groupids property.

Examples

Deleting multiple host groups

Delete two host groups.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.delete",
"params": [

"107824",
"107825"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"107824",
"107825"

]
},
"id": 1

}

Source

CHostGroup::delete() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.get

Description

638

integer/array hostgroup.get(object parameters)

The method allows to retrieve host groups according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

graphids string/array Return only host groups that contain hosts or
templates with the given graphs.

groupids string/array Return only host groups with the given host group IDs.
hostids string/array Return only host groups that contain the given hosts.
maintenanceids string/array Return only host groups that are affected by the given

maintenances.
monitored_hosts flag Return only host groups that contain monitored hosts.
real_hosts flag Return only host groups that contain hosts.
templated_hosts flag Return only host groups that contain templates.
templateids string/array Return only host groups that contain the given

templates.
triggerids string/array Return only host groups that contain hosts or

templates with the given triggers.
with_applications flag Return only host groups that contain hosts with

applications.
with_graphs flag Return only host groups that contain hosts with

graphs.
with_hosts_and_templates flag Return only host groups that contain hosts or

templates.
with_httptests flag Return only host groups that contain hosts with web

checks.

Overrides the with_monitored_httptests
parameter.

with_items flag Return only host groups that contain hosts or
templates with items.

Overrides the with_monitored_items
andwith_simple_graph_items parameters.

with_monitored_httptests flag Return only host groups that contain hosts with
enabled web checks.

with_monitored_items flag Return only host groups that contain hosts or
templates with enabled items.

Overrides the with_simple_graph_items
parameter.

with_monitored_triggers flag Return only host groups that contain hosts with
enabled triggers. All of the items used in the trigger
must also be enabled.

with_simple_graph_items flag Return only host groups that contain hosts with
numeric items.

with_triggers flag Return only host groups that contain hosts with
triggers.

Overrides the with_monitored_triggers
parameter.

selectDiscoveryRule query Return the LLD rule that created the host group in the
discoveryRule property.

639

Parameter Type Description

selectGroupDiscovery query Return the host group discovery object in the
groupDiscovery property.

The host group discovery object links a discovered
host group to a host group prototype and has the
following properties:
groupid - (string) ID of the discovered host group;
lastcheck - (timestamp) time when the host
group was last discovered;
name - (string) name of the host goup prototype;
parent_group_prototypeid - (string) ID of the
host group prototype from which the host group has
been created;
ts_delete - (timestamp) time when a host group
that is no longer discovered will be deleted.

selectHosts query Return the hosts that belong to the host group in the
hosts property.

Supports count.
selectTemplates query Return the templates that belong to the host group in

the templates property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host;
selectTemplates - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: groupid, name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by name

Retrieve all data about two host groups named ”Zabbix servers” and ”Linux servers”.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.get",

640

"params": {
"output": "extend",
"filter": {

"name": [
"Zabbix servers",
"Linux servers"

]
}

},
"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"groupid": "2",
"name": "Linux servers",
"internal": "0"

},
{

"groupid": "4",
"name": "Zabbix servers",
"internal": "0"

}
],
"id": 1

}

See also

• Host
• Template

Source

CHostGroup::get() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.isreadable

Description

boolean hostgroup.isreadable(array hostGroupIds)

This method checks if the given host groups are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use hostgroup.get instead.

Parameters

(array) IDs of the host groups to check.

Return values

(boolean) Returns true if the given host groups are available for reading.

Examples

Check multiple host groups

Check if the two host groups are readable.

Request:

641

{
"jsonrpc": "2.0",
"method": "hostgroup.isreadable",
"params": [

"5",
"7"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostgroup.iswritable

Source

CHostGroup::isReadable() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.iswritable

Description

boolean hostgroup.iswritable(array hostGroupIds)

This method checks if the given host groups are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use hostgroup.get instead.

Parameters

(array) IDs of the host groups to check.

Return values

(boolean) Returns true if the given host groups are available for writing.

Examples

Check multiple host groups

Check if the two host groups are writable.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.iswritable",
"params": [

"5",
"7"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,

642

"id": 1
}

See also

• hostgroup.isreadable

Source

CHostGroup::isWritable() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.massadd

Description

object hostgroup.massadd(object parameters)

This method allows to simultaneously add multiple related objects to all the given host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects to add to all the host groups.

The method accepts the following parameters.

Parameter Type Description

groups
(required)

object/array Host groups to be updated.

The host groups must have the groupid property
defined.

hosts object/array Hosts to add to all host groups.

The hosts must have the hostid property defined.
templates object/array Templates to add to all host groups.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Adding hosts to host groups

Add two hosts to host groups with IDs 5 and 6.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massadd",
"params": {

"groups": [
{

"groupid": "5"
},
{

"groupid": "6"
}

],
"hosts": [

{
"hostid": "30050"

},
{

"hostid": "30001"

643

}
]

},
"auth": "f223adf833b2bf2ff38574a67bba6372",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"5",
"6"

]
},
"id": 1

}

See also

• Host
• Template

Source

CHostGroup::massAdd() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.massremove

Description

object hostgroup.massremove(object parameters)

This method allows to remove related objects from multiple host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects that should be removed.

Parameter Type Description

groupids
(required)

string/array IDs of the host groups to be updated.

hostids string/array Hosts to remove from all host groups.
templateids string/array Templates to remove from all host groups.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Removing hosts from host groups

Remove two hosts from the given host groups.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massremove",
"params": {

"groupids": [
"5",
"6"

],
"hostids": [

644

"30050",
"30001"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"5",
"6"

]
},
"id": 1

}

Source

CHostGroup::massRemove() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.massupdate

Description

object hostgroup.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects for multiple host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects that should be updated.

Parameter Type Description

groups
(required)

object/array Host groups to be updated.

The host groups must have the groupid property
defined.

hosts object/array Hosts to replace the current hosts on the given host
groups.

The hosts must have the hostid property defined.
templates object/array Templates to replace the current templates on the

given host groups.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Replacing hosts in a host group

Replace all hosts in the host group with ID.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massupdate",

645

"params": {
"groups": [

{
"groupid": "6"

}
],
"hosts": [

{
"hostid": "30050"

}
]

},
"auth": "f223adf833b2bf2ff38574a67bba6372",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"6",

]
},
"id": 1

}

See also

• hostgroup.update
• hostgroup.massadd
• Host
• Template

Source

CHostGroup::massUpdate() in frontends/php/include/classes/api/services/CHostGroup.php.

hostgroup.update

Description

object hostgroup.update(object/array hostGroups)

This method allows to update existing hosts groups.

Parameters

(object/array) Host group properties to be updated.

The groupid property must be defined for each host group, all other properties are optional. Only the given properties will be
updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Renaming a host group

Rename a host group to ”Linux hosts.”

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.update",
"params": {

646

"groupid": "7",
"name": "Linux hosts"

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"7"

]
},
"id": 1

}

Source

CHostGroup::update() in frontends/php/include/classes/api/services/CHostGroup.php.

Host interface

This class is designed to work with host interfaces.

Object references:

• Host interface

Available methods:

• hostinterface.create - creating new host interfaces
• hostinterface.delete - deleting host interfaces
• hostinterface.get - retrieving host interfaces
• hostinterface.massadd - adding host interfaces to hosts
• hostinterface.massremove - removing host interfaces from hosts
• hostinterface.replacehostinterfaces - replacing host interfaces on a host
• hostinterface.update - updating host interfaces

> Host interface object

The following objects are directly related to the hostinterface API.

Host interface

The host interface object has the following properties.

Attention:
Note that both IP and DNS are required. If you do not want to use DNS, set it to an empty string.

Property Type Description

interfaceid string (readonly) ID of the interface.
dns
(required)

string DNS name used by the interface.

Can be empty if the connection is made via IP.
hostid
(required)

string ID of the host the interface belongs to.

ip
(required)

string IP address used by the interface.

Can be empty if the connection is made via DNS.

647

Property Type Description

main
(required)

integer Whether the interface is used as default on the host.
Only one interface of some type can be set as default on
a host.

Possible values are:
0 - not default;
1 - default.

port
(required)

string Port number used by the interface. Can contain user
macros.

type
(required)

integer Interface type.

Possible values are:
1 - agent;
2 - SNMP;
3 - IPMI;
4 - JMX.

useip
(required)

integer Whether the connection should be made via IP.

Possible values are:
0 - connect using host DNS name;
1 - connect using host IP address for this host interface.

bulk integer Whether to use bulk SNMP requests.

Possible values are:
0 - don’t use bulk requests;
1 - (default) use bulk requests.

hostinterface.create

Description

object hostinterface.create(object/array hostInterfaces)

This method allows to create new host interfaces.

Parameters

(object/array) Host interfaces to create. The method accepts host interfaces with the standard host interface properties.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property. The order of
the returned IDs matches the order of the passed host interfaces.

Examples

Create a new interface

Create a secondary IP agent interface on host ”30052.”

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.create",
"params": {

"hostid": "30052",
"dns": "",
"ip": "127.0.0.1",
"main": 0,
"port": "10050",
"type": 1,
"useip": 1

},

648

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30062"

]
},
"id": 1

}

See also

• hostinterface.massadd
• host.massadd

Source

CHostInterface::create() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.delete

Description

object hostinterface.delete(array hostInterfaceIds)

This method allows to delete host interfaces.

Parameters

(array) IDs of the host interfaces to delete.

Return values

(object) Returns an object containing the IDs of the deleted host interfaces under the interfaceids property.

Examples

Delete a host interface

Delete the host interface with ID 30062.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.delete",
"params": [

"30062"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30062"

]
},
"id": 1

}

649

See also

• hostinterface.massremove
• host.massremove

Source

CHostInterface::delete() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.get

Description

integer/array hostinterface.get(object parameters)

The method allows to retrieve host interfaces according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

hostids string/array Return only host interfaces used by the given hosts.
interfaceids string/array Return only host interfaces with the given IDs.
itemids string/array Return only host interfaces used by the given items.
triggerids string/array Return only host interfaces used by items in the given

triggers.
selectItems query Return the items that use the interface in the items

property.

Supports count.
selectHosts query Return the host that uses the interface as an array in

the hosts property.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectItems.

sortfield string/array Sort the result by the given properties.

Possible values are: interfaceid, dns, ip.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

650

Examples

Retrieve host interfaces

Retrieve all data about the interfaces used by host ”30057.”

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.get",
"params": {

"output": "extend",
"hostids": "30057"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"interfaceid": "30050",
"hostid": "30057",
"main": "1",
"type": "1",
"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "10050",
"bulk": "1"

},
{

"interfaceid": "30067",
"hostid": "30057",
"main": "0",
"type": "1",
"useip": "0",
"ip": "",
"dns": "localhost",
"port": "10050",
"bulk": "1"

},
{

"interfaceid": "30068",
"hostid": "30057",
"main": "1",
"type": "2",
"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "161",
"bulk": "1"

}
],
"id": 1

}

See also

• Host
• Item

Source

651

CHostInterface::get() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.massadd

Description

object hostinterface.massadd(object parameters)

This method allows to simultaneously add host interfaces to multiple hosts.

Parameters

(object) Parameters containing the host interfaces to be created on the given hosts.

The method accepts the following parameters.

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
interfaces
(required)

object/array Host interfaces to create on the given hosts.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property.

Examples

Creating interfaces

Create an interface on two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.massadd",
"params": {

"hosts": [
{

"hostid": "30050"
},
{

"hostid": "30052"
}

],
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"main": 0,
"port": "10050",
"type": 1,
"useip": 1

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30069",

652

"30070"
]

},
"id": 1

}

See also

• hostinterface.create
• host.massadd
• Host

Source

CHostInterface::massAdd() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.massremove

Description

object hostinterface.massremove(object parameters)

This method allows to remove host interfaces from the given hosts.

Parameters

(object) Parameters containing the IDs of the hosts to be updated and the interfaces to be removed.

Parameter Type Description

hostids
(required)

string/array IDs of the hosts to be updated.

interfaces
(required)

object/array Host interfaces to remove from the given hosts.

The host interface object must have the ip, dns and
port properties defined

Return values

(object) Returns an object containing the IDs of the deleted host interfaces under the interfaceids property.

Examples

Removing interfaces

Remove the ”127.0.0.1” SNMP interface from two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.massremove",
"params": {

"hostids": [
"30050",
"30052"

],
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"port": "161"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

653

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30069",
"30070"

]
},
"id": 1

}

See also

• hostinterface.delete
• host.massremove

Source

CHostInterface::massRemove() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.replacehostinterfaces

Description

object hostinterface.replacehostinterfaces(object parameters)

This method allows to replace all host interfaces on a given host.

Parameters

(object) Parameters containing the ID of the host to be updated and the new host interfaces.

Parameter Type Description

hostid
(required)

string ID of the host to be updated.

interfaces
(required)

object/array Host interfaces to replace the current host interfaces
with.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property.

Examples

Replacing host interfaces

Replace all host interfaces with a single agent interface.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.replacehostinterfaces",
"params": {

"hostid": "30052",
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"main": 1,
"port": "10050",
"type": 1,
"useip": 1

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

654

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30081"

]
},
"id": 1

}

See also

• host.update
• host.massupdate

Source

CHostInterface::replaceHostInterfaces() in frontends/php/include/classes/api/services/CHostInterface.php.

hostinterface.update

Description

object hostinterface.update(object/array hostInterfaces)

This method allows to update existing host interfaces.

Parameters

(object/array) Host interface properties to be updated.

The interfaceid property must be defined for each host interface, all other properties are optional. Only the given properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated host interfaces under the interfaceids property.

Examples

Changing a host interface port

Change the port of a host interface.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.update",
"params": {

"interfaceid": "30048",
"port": "30050"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30048"

]
},
"id": 1

}

655

Source

CHostInterface::update() in frontends/php/include/classes/api/services/CHostInterface.php.

Host prototype

This class is designed to work with host prototypes.

Object references:

• Host prototype
• Host prototype inventory
• Group link
• Group prototype

Available methods:

• hostprototype.create - creating new host prototypes
• hostprototype.delete - deleting host prototypes
• hostprototype.get - retrieving host prototypes
• hostprototype.isreadable - checking if host prototypes are readable
• hostprototype.iswritable - checking if host prototypes are writable
• hostprototype.update - updating host prototypes

> Host prototype object

The following objects are directly related to the hostprototype API.

Host prototype

The host prototype object has the following properties.

Property Type Description

hostid string (readonly) ID of the host prototype.
host
(required)

string Technical name of the host prototype.

name string Visible name of the host prototype.

Default: host property value.
status integer Status of the host prototype.

Possible values are:
0 - (default) monitored host;
1 - unmonitored host.

templateid string (readonly) ID of the parent template host prototype.
tls_connect integer Connections to host.

Possible values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_accept integer Connections from host.

Possible bitmap values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_issuer string Certificate issuer.
tls_subject string Certificate subject.
tls_psk_identity string PSK identity. Required if either tls_connect or

tls_accept has PSK enabled.

656

Property Type Description

tls_psk string The preshared key, at least 32 hex digits. Required if
either tls_connect or tls_accept has PSK enabled.

Host prototype inventory

The host prototype inventory object has the following properties.

Property Type Description

inventory_mode integer Host prototype inventory population mode.

Possible values are:
-1 - disabled;
0 - (default) manual;
1 - automatic.

Group link

The group link object links a host prototype with a host group and has the following properties.

Property Type Description

group_prototypeid string (readonly) ID of the group link.
groupid
(required)

string ID of the host group.

hostid string (readonly) ID of the host prototype
templateid string (readonly) ID of the parent template group link.

Group prototype

The group prototype object defines a group that will be created for a discovered host and has the following properties.

Property Type Description

group_prototypeid string (readonly) ID of the group prototype.
name
(required)

string Name of the group prototype.

hostid string (readonly) ID of the host prototype
templateid string (readonly) ID of the parent template group prototype.

hostprototype.create

Description

object hostprototype.create(object/array hostPrototypes)

This method allows to create new host prototypes.

Parameters

(object/array) Host prototypes to create.

Additionally to the standard host prototype properties, the method accepts the following parameters.

Parameter Type Description

groupLinks
(required)

array Group links to be created for the host prototype.

ruleid
(required)

string ID of the LLD rule that the host prototype belongs to.

groupPrototypes array Group prototypes to be created for the host prototype.
inventory object Host prototype inventory properties.

657

Parameter Type Description

templates object/array Templates to be linked to the host prototype.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the created host prototypes under the hostids property. The order of the
returned IDs matches the order of the passed host prototypes.

Examples

Creating a host prototype

Create a host prototype ”{#VM.NAME}” on LLD rule ”23542” with a group prototype ”{#HV.NAME}”. Link it to host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.create",
"params": {

"host": "{#VM.NAME}",
"ruleid": "23542",
"groupLinks": [

{
"groupid": "2"

}
],
"groupPrototypes": [

{
"name": "{#HV.NAME}"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10103"

]
},
"id": 1

}

See also

• Group link
• Group prototype
• Host prototype inventory

Source

CHostPrototype::create() in frontends/php/include/classes/api/services/CHostPrototype.php.

hostprototype.delete

Description

object hostprototype.delete(array hostPrototypeIds)

658

This method allows to delete host prototypes.

Parameters

(array) IDs of the host prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted host prototypes under the hostids property.

Examples

Deleting multiple host prototypes

Delete two host prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.delete",
"params": [

"10103",
"10105"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10103",
"10105"

]
},
"id": 1

}

Source

CHostPrototype::delete() in frontends/php/include/classes/api/services/CHostPrototype.php.

hostprototype.get

Description

integer/array hostprototype.get(object parameters)

The method allows to retrieve host prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

hostids string/array Return only host prototypes with the given IDs.
discoveryids string/array Return only host prototype that belong to the given

LLD rules.
inherited boolean If set to true return only items inherited from a

template.
selectDiscoveryRule query Return the LLD rule that the host prototype belongs to

in the discoveryRule property.
selectGroupLinks query Return the group links of the host prototype in the

groupLinks property.

659

Parameter Type Description

selectGroupPrototypes query Return the group prototypes of the host prototype in
the groupPrototypes property.

selectInventory query Return the host prototype inventory in the
inventory property.

selectParentHost query Return the host that the host prototype belongs to in
the parentHost property.

selectTemplates query Return the templates linked to the host prototype in
the templates property.

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name and
status.

countOutput flag These parameters being common for all get methods
are described in detail on the Generic Zabbix API
information page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving host prototypes from an LLD rule

Retrieve all host prototypes and their group links and group prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.get",
"params": {

"output": "extend",
"selectGroupLinks": "extend",
"selectGroupPrototypes": "extend",
"discoveryids": "23554"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10092",
"host": "{#HV.UUID}",
"status": "0",
"name": "{#HV.NAME}",

660

"templateid": "0",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": "",
"groupLinks": [

{
"group_prototypeid": "4",
"hostid": "10092",
"groupid": "7",
"templateid": "0"

}
],
"groupPrototypes": [

{
"group_prototypeid": "7",
"hostid": "10092",
"name": "{#CLUSTER.NAME}",
"templateid": "0"

}
]

}
],
"id": 1

}

See also

• Group link
• Group prototype
• Host prototype inventory

Source

CHostPrototype::get() in frontends/php/include/classes/api/services/CHostPrototype.php.

hostprototype.isreadable

Description

boolean hostprototype.isreadable(array hostPrototypeIds)

This method checks if the given host prototypes are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use hostprototype.get instead.

Parameters

(array) IDs of the host prototypes to check.

Return values

(boolean) Returns true if the given host prototypes are available for reading.

Examples

Check multiple host prototypes

Check if the two host prototypes are readable.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.isreadable",

661

"params": [
"10092",
"10093"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostprototype.iswritable

Source

CHostPrototype::isReadable() in frontends/php/include/classes/api/services/CHostPrototype.php.

hostprototype.iswritable

Description

boolean hostprototype.iswritable(array hostPrototypeIds)

This method checks if the given host prototypes are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use hostprototype.get instead.

Parameters

(array) IDs of the host prototypes to check.

Return values

(boolean) Returns true if the given host prototypes are available for writing.

Examples

Check multiple host prototypes

Check if the two host prototypes are writable.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.iswritable",
"params": [

"10092",
"10093"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

662

See also

• hostprototype.isreadable

Source

CHostPrototype::isWritable() in frontends/php/include/classes/api/services/CHostPrototype.php.

hostprototype.update

Description

object hostprototype.update(object/array hostPrototypes)

This method allows to update existing host prototypes.

Parameters

(object/array) Host prototype properties to be updated.

The hostid property must be defined for each host prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard host prototype properties, the method accepts the following parameters.

Parameter Type Description

groupLinks array Group links to replace the current group links on the
host prototype.

groupPrototypes array Group prototypes to replace the existing group
prototypes on the host prototype.

inventory object Host prototype inventory properties.
templates object/array Templates to replace the currently linked templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host prototypes under the hostids property.

Examples

Disabling a host prototype

Disable a host prototype, that is, set its status to 1.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.update",
"params": {

"hostid": "10092",
"status": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10092"

]
},
"id": 1

}

663

See also

• Group link
• Group prototype
• Host prototype inventory

Source

CHostPrototype::update() in frontends/php/include/classes/api/services/CHostPrototype.php.

Icon map

This class is designed to work with icon maps.

Object references:

• Icon map
• Icon mapping

Available methods:

• iconmap.create - create new icon maps
• iconmap.delete - delete icon maps
• iconmap.get - retrieve icon maps
• iconmap.isreadable - check if an icon map is readable
• iconmap.iswritable - check if an icon map is writable
• iconmap.update - update icon maps

> Icon map object

The following objects are directly related to the iconmap API.

Icon map

The icon map object has the following properties.

Property Type Description

iconmapid string (readonly) ID of the icon map.
default_iconid
(reqiured)

string ID of the default icon.

name
(required)

string Name of the icon map.

Icon mapping

The icon mapping object defines a specific icon to be used for hosts with a certain inventory field value. It has the following
properties.

Property Type Description

iconmappingid string (readonly) ID of the icon map.
iconid
(required)

string ID of the icon used by the icon mapping.

expression
(required)

string Expression to match the inventory field against.

inventory_link
(required)

integer ID of the host inventory field.

Refer to the host inventory object for a list of supported
inventory fields.

iconmapid string (readonly) ID of the icon map that the icon mapping
belongs to.

664

Property Type Description

sortorder integer Position of the icon mapping in the icon map.

Default: starts with 0 and increases by one with each
entry.

iconmap.create

Description

object iconmap.create(object/array iconMaps)

This method allows to create new icon maps.

Parameters

(object/array) Icon maps to create.

Additionally to the standard icon map properties, the method accepts the following parameters.

Parameter Type Description

mappings
(required)

array Icon mappings to be created for the icon map.

Return values

(object) Returns an object containing the IDs of the created icon maps under the iconmapids property. The order of the
returned IDs matches the order of the passed icon maps.

Examples

Create an icon map

Create an icon map to display hosts of different types.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.create",
"params": {

"name": "Type icons",
"default_iconid": "2",
"mappings": [

{
"inventory_link": 1,
"expression": "server",
"iconid": "3"

},
{

"inventory_link": 1,
"expression": "switch",
"iconid": "4"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [

665

"2"
]

},
"id": 1

}

See also

• Icon mapping

Source

CIconMap::create() in frontends/php/include/classes/api/services/CIconMap.php.

iconmap.delete

Description

object iconmap.delete(array iconMapIds)

This method allows to delete icon maps.

Parameters

(array) IDs of the icon maps to delete.

Return values

(object) Returns an object containing the IDs of the deleted icon maps under the iconmapids property.

Examples

Delete multiple icon maps

Delete two icon maps.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.delete",
"params": [

"2",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [
"2",
"5"

]
},
"id": 1

}

Source

CIconMap::delete() in frontends/php/include/classes/api/services/CIconMap.php.

iconmap.get

Description

integer/array iconmap.get(object parameters)

666

The method allows to retrieve icon maps according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

iconmapids string/array Return only icon maps with the given IDs.
sysmapids string/array Return only icon maps that are used in the given

maps.
selectMappings query Return used icon mappings in the mappings property.
sortfield string/array Sort the result by the given properties.

Possible values are: iconmapid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve an icon map

Retrieve all data about icon map ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.get",
"params": {

"iconmapids": "3",
"output": "extend",
"selectMappings": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mappings": [

{
"iconmappingid": "3",
"iconmapid": "3",

667

"iconid": "6",
"inventory_link": "1",
"expression": "server",
"sortorder": "0"

},
{

"iconmappingid": "4",
"iconmapid": "3",
"iconid": "10",
"inventory_link": "1",
"expression": "switch",
"sortorder": "1"

}
],
"iconmapid": "3",
"name": "Host type icons",
"default_iconid": "2"

}
],
"id": 1

}

See also

• Icon mapping

Source

CIconMap::get() in frontends/php/include/classes/api/services/CIconMap.php.

iconmap.isreadable

Description

boolean iconmap.isreadable(array iconMapIds)

This method checks if the given icon maps are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use iconmap.get instead.

Parameters

(array) IDs of the icon maps to check.

Return values

(boolean) Returns true if the given icon maps are available for reading.

Examples

Check multiple icon maps

Check if the two icon maps are readable.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.isreadable",
"params": [

"4", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

668

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• iconmap.iswritable

Source

CIconMap::isReadable() in frontends/php/include/classes/api/services/CIconMap.php.

iconmap.iswritable

Description

boolean iconmap.iswritable(array iconMapIds)

This method checks if the given icon maps are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use iconmap.get instead.

Parameters

(array) IDs of the icon maps to check.

Return values

(boolean) Returns true if the given icon maps are available for writing.

Examples

Check multiple icon maps

Check if the two icon maps are writable.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.iswritable",
"params": [

"4", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• iconmap.isreadable

Source

CIconMap::isWritable() in frontends/php/include/classes/api/services/CIconMap.php.

669

iconmap.update

Description

object iconmap.update(object/array iconMaps)

This method allows to update existing icon maps.

Parameters

(object/array) Icon map properties to be updated.

The iconmapid property must be defined for each icon map, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard icon map properties, the method accepts the following parameters.

Parameter Type Description

mappings array Icon mappings to replace the existing icon mappings.

Return values

(object) Returns an object containing the IDs of the updated icon maps under the iconmapids property.

Examples

Rename icon map

Rename an icon map to ”OS icons”.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.update",
"params": {

"iconmapid": "1",
"name": "OS icons"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [
"1"

]
},
"id": 1

}

See also

• Icon mapping

Source

CIconMap::update() in frontends/php/include/classes/api/services/CIconMap.php.

Image

This class is designed to work with images.

Object references:

670

• Image

Available methods:

• image.create - create new images
• image.delete - delete images
• image.get - retrieve images
• image.update - update images

> Image object

The following objects are directly related to the image API.

Image

The image object has the following properties.

Property Type Description

imageid string (readonly) ID of the image.
name
(required)

string Name of the image.

imagetype integer Type of image.

Possible values:
1 - (default) icon;
2 - background image.

image.create

Description

object image.create(object/array images)

This method allows to create new images.

Parameters

(object/array) Images to create.

Additionally to the standard image properties, the method accepts the following parameters.

Parameter Type Description

image
(required)

string Base64 encoded image. The maximum size of the
encoded image is 1 MB.

Return values

(object) Returns an object containing the IDs of the created images under the imageids property. The order of the returned
IDs matches the order of the passed images.

Examples

Create an image

Create a cloud icon.

Request:

{
"jsonrpc": "2.0",
"method": "image.create",
"params": {

"imagetype": 1,
"name": "Cloud_(24)",
"image": "iVBORw0KGgoAAAANSUhEUgAAABgAAAANCAYAAACzbK7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAACmAAAApgBNtNH3wAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIcSURBVDjLrZLbSxRRHMdPKiEiRQ89CD0s+N5j9BIMEf4Hg/jWexD2ZEXQbC9tWUFZimtLhswuZiVujK1UJmYXW9PaCUdtb83enL3P7s6ss5f5dc7EUsmqkPuFH3M4/Ob7+V0OAgC0UyDENFEU03rh1uNOs/lFG75o2i2/rkd9Y3Tgyj3HiaezbukdH9A/rP4E9vWi0u+Y4fuGnMf3DRgYc3Z/84YrQSkD3mgKhFAC+KAEK74Y2Lj3MjPoOokQ3Xyx/1GHeXCifbfO6lRPH/wi+AvZQhGSsgKxdB5CCRkCGPbDgMXBMbukTc4vK5/WRHizsq7fZl2LFuvE4T0BZDTXHtgv4TNUqlUolsqQL2qQwbDEXzBBTIJ7I4y/cfAENmHZF4XrY9Mc+X9HAFmoyXS2ddy1IOg6/KNyBcM0DFP/wFZFCcOy4N9Mw0YkCTOfhdL5AfZQXQBFn2t/ODXHC8FYVcoWjNEQ03qqwTJ5FdI44jg/msoB2Zd5ZKq3q6evA1FUS60bYyyj3AJf3V72HiLZJQxTtRLk1C2IYEg4mTNg63hPd1mOJd7Ict911OMNlWEf0nFxpCt16zcshTuLpGSwDDuPIfv0xzNyQYVGicC0cgUUDLM6Xp02lvvW/V2EBssnxlSGmWsxljw0znV9XfPLjTCW84r+cn7Jc8c2eWrbM6Wbe6/aTJbhJ/TNkWc9/xXW592Xb9iPkKnUfH8BKdLgFy0lDyQAAAAASUVORK5CYII="

671

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"imageids": [
"188"

]
},
"id": 1

}

Source

CImage::create() in frontends/php/include/classes/api/services/CImage.php.

image.delete

Description

object image.delete(array imageIds)

This method allows to delete images.

Parameters

(array) IDs of the images to delete.

Return values

(object) Returns an object containing the IDs of the deleted images under the imageids property.

Examples

Delete multiple images

Delete two images.

Request:

{
"jsonrpc": "2.0",
"method": "image.delete",
"params": [

"188",
"192"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"imageids": [
"188",
"192"

]
},
"id": 1

}

Source

672

CImage::delete() in frontends/php/include/classes/api/services/CImage.php.

image.get

Description

integer/array image.get(object parameters)

The method allows to retrieve images according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

imageids string/array Return only images with the given IDs.
sysmapids string/array Return images that are used on the given maps.
select_image flag Return the Base64 encoded image in the image

property.
sortfield string/array Sort the result by the given properties.

Possible values are: imageid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve an image

Retrieve all data for image with ID ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "image.get",
"params": {

"output": "extend",
"select_image": true,
"imageids": "2"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

673

{
"jsonrpc": "2.0",
"result": [

{
"imageid": "2",
"imagetype": "1",
"name": "Cloud_(24)",
"image": "iVBORw0KGgoAAAANSUhEUgAAABgAAAANCAYAAACzbK7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAACmAAAApgBNtNH3wAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIcSURBVDjLrZLbSxRRHMdPKiEiRQ89CD0s+N5j9BIMEf4Hg/jWexD2ZEXQbC9tWUFZimtLhswuZiVujK1UJmYXW9PaCUdtb83enL3P7s6ss5f5dc7EUsmqkPuFH3M4/Ob7+V0OAgC0UyDENFEU03rh1uNOs/lFG75o2i2/rkd9Y3Tgyj3HiaezbukdH9A/rP4E9vWi0u+Y4fuGnMf3DRgYc3Z/84YrQSkD3mgKhFAC+KAEK74Y2Lj3MjPoOokQ3Xyx/1GHeXCifbfO6lRPH/wi+AvZQhGSsgKxdB5CCRkCGPbDgMXBMbukTc4vK5/WRHizsq7fZl2LFuvE4T0BZDTXHtgv4TNUqlUolsqQL2qQwbDEXzBBTIJ7I4y/cfAENmHZF4XrY9Mc+X9HAFmoyXS2ddy1IOg6/KNyBcM0DFP/wFZFCcOy4N9Mw0YkCTOfhdL5AfZQXQBFn2t/ODXHC8FYVcoWjNEQ03qqwTJ5FdI44jg/msoB2Zd5ZKq3q6evA1FUS60bYyyj3AJf3V72HiLZJQxTtRLk1C2IYEg4mTNg63hPd1mOJd7Ict911OMNlWEf0nFxpCt16zcshTuLpGSwDDuPIfv0xzNyQYVGicC0cgUUDLM6Xp02lvvW/V2EBssnxlSGmWsxljw0znV9XfPLjTCW84r+cn7Jc8c2eWrbM6Wbe6/aTJbhJ/TNkWc9/xXW592Xb9iPkKnUfH8BKdLgFy0lDyQAAAAASUVORK5CYII="

}
],
"id": 1

}

Source

CImage::get() in frontends/php/include/classes/api/services/CImage.php.

image.update

Description

object image.update(object/array images)

This method allows to update existing images.

Parameters

(object/array) Image properties to be updated.

The imageid property must be defined for each image, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard image properties, the method accepts the following parameters.

Parameter Type Description

image string Base64 encoded image. The maximum size of the
encoded image is 1 MB.

Return values

(object) Returns an object containing the IDs of the updated images under the imageids property.

Examples

Rename image

Rename image to ”Cloud icon”.

Request:

{
"jsonrpc": "2.0",
"method": "image.update",
"params": {

"imageid": "2",
"name": "Cloud icon"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"imageids": [
"2"

674

]
},
"id": 1

}

Source

CImage::update() in frontends/php/include/classes/api/services/CImage.php.

Item

This class is designed to work with items.

Object references:

• Item

Available methods:

• item.create - creating new items
• item.delete - deleting items
• item.get - retrieving items
• item.isreadable - checking if items are readable
• item.iswritable - checking if items are writable
• item.update - updating items

> Item object

The following objects are directly related to the item API.

Item

Note:
Web items cannot be directly created, updated or deleted via the Zabbix API.

The item object has the following properties.

Property Type Description

itemid string (readonly) ID of the item.
delay
(required)

integer Update interval of the item in seconds.

hostid
(required)

string ID of the host or template that the item belongs to.

interfaceid
(required)

string ID of the item’s host interface.

Not required for template items. Optional for Zabbix
agent (active), Zabbix internal, Zabbix trapper, Zabbix
aggregate, database monitor and calculated items.

key_
(required)

string Item key.

name
(required)

string Name of the item.

675

Property Type Description

type
(required)

integer Type of the item.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
8 - Zabbix aggregate;
9 - web item;
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
15 - calculated;
16 - JMX agent;
17 - SNMP trap.

value_type
(required)

integer Type of information of the item.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

authtype integer SSH authentication method. Used only by SSH agent
items.

Possible values:
0 - (default) password;
1 - public key.

data_type integer Data type of the item.

Possible values:
0 - (default) decimal;
1 - octal;
2 - hexadecimal;
3 - boolean.

delay_flex string Custom intervals that contain flexible intervals and
scheduling intervals as serialized strings.

Multiple intervals are separated by a semicolon.
delta integer Value that will be stored.

Possible values:
0 - (default) as is;
1 - Delta, speed per second;
2 - Delta, simple change.

description string Description of the item.
error string (readonly) Error text if there are problems updating the

item.
flags integer (readonly) Origin of the item.

Possible values:
0 - a plain item;
4 - a discovered item.

676

Property Type Description

formula integer/float Custom multiplier.

Default: 1.
history integer Number of days to keep item’s history data.

Default: 90.
inventory_link integer ID of the host inventory field that is populated by the

item.

Refer to the host inventory page for a list of supported
host inventory fields and their IDs.

Default: 0.
ipmi_sensor string IPMI sensor. Used only by IPMI items.
lastclock timestamp (readonly) Time when the item was last updated.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

lastns integer (readonly) Nanoseconds when the item was last
updated.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

lastvalue string (readonly) Last value of the item.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

logtimefmt string Format of the time in log entries. Used only by log items.
mtime timestamp Time when the monitored log file was last updated. Used

only by log items.
multiplier integer Whether to use a custom multiplier.
params string Additional parameters depending on the type of the

item:
- executed script for SSH and Telnet items;
- SQL query for database monitor items;
- formula for calculated items.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX items.

port string Port monitored by the item. Used only by SNMP items.
prevvalue string (readonly) Previous value of the item.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community. Used only by SNMPv1 and SNMPv2

items.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 items.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

items.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 items.
snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 items.
snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 items.

Possible values:
0 - (default) DES;
1 - AES.

677

Property Type Description

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 items.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 items.
state integer (readonly) State of the item.

Possible values:
0 - (default) normal;
1 - not supported.

status integer Status of the item.

Possible values:
0 - (default) enabled item;
1 - disabled item.

templateid string (readonly) ID of the parent template item.

Hint: Use the hostid property to specify the template
that the item belongs to.

trapper_hosts string Allowed hosts. Used only by trapper items.
trends integer Number of days to keep item’s trends data.

Default: 365.
units string Value units.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX items.

Required by SSH and Telnet items.
valuemapid string ID of the associated value map.

item.create

Description

object item.create(object/array items)

This method allows to create new items.

Note:
Web items cannot be created via the Zabbix API.

Parameters

(object/array) Items to create.

Additionally to the standard item properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to add the item to.

Return values

(object) Returns an object containing the IDs of the created items under the itemids property. The order of the returned IDs
matches the order of the passed items.

Examples

Creating an item

Create a numeric Zabbix agent item to monitor free disk space on host with ID ”30074” and add it to two applications.

Request:

678

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[/home/joe/,free]",
"hostid": "30074",
"type": 0,
"value_type": 3,
"interfaceid": "30084",
"applications": [

"609",
"610"

],
"delay": 30

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24758"

]
},
"id": 1

}

Creating a host inventory item

Create a Zabbix agent item to populate the host’s ”OS” inventory field.

Request:

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "uname",
"key_": "system.uname",
"hostid": "30021",
"type": 0,
"interfaceid": "30007",
"value_type": 1,
"delay": 10,
"inventory_link": 5

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24759"

]
},
"id": 1

}

679

Source

CItem::create() in frontends/php/include/classes/api/services/CItem.php.

item.delete

Description

object item.delete(array itemIds)

This method allows to delete items.

Note:
Web items cannot be deleted via the Zabbix API.

Parameters

(array) IDs of the items to delete.

Return values

(object) Returns an object containing the IDs of the deleted items under the itemids property.

Examples

Deleting multiple items

Delete two items.

Request:

{
"jsonrpc": "2.0",
"method": "item.delete",
"params": [

"22982",
"22986"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"22982",
"22986"

]
},
"id": 1

}

Source

CItem::delete() in frontends/php/include/classes/api/services/CItem.php.

item.get

Description

integer/array item.get(object parameters)

The method allows to retrieve items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

680

The method supports the following parameters.

Parameter Type Description

itemids string/array Return only items with the given IDs.
groupids string/array Return only items that belong to the hosts from the

given groups.
templateids string/array Return only items that belong to the given templates.
hostids string/array Return only items that belong to the given hosts.
proxyids string/array Return only items that are monitored by the given

proxies.
interfaceids string/array Return only items that use the given host interfaces.
graphids string/array Return only items that are used in the given graphs.
triggerids string/array Return only items that are used in the given triggers.
applicationids string/array Return only items that belong to the given

applications.
webitems flag Include web items in the result.
inherited boolean If set to true return only items inherited from a

template.
templated boolean If set to true return only items that belong to

templates.
monitored boolean If set to true return only enabled items that belong to

monitored hosts.
group string Return only items that belong to a group with the

given name.
host string Return only items that belong to a host with the given

name.
application string Return only items that belong to an application with

the given name.
with_triggers boolean If set to true return only items that are used in

triggers.
selectHosts query Returns the host that the item belongs to as an array

in the hosts property.
selectInterfaces query Returns the host interface used by the item as an

array in the interfaces property.
selectTriggers query Return triggers that the item is used in in the

triggers property.

Supports count.
selectGraphs query Return graphs that contain the item in the graphs

property.

Supports count.
selectApplications query Return the applications that the item belongs to in the

applications property.
selectDiscoveryRule query Return the LLD rule that created the item in the

discoveryRule property.
selectItemDiscovery query Return the item discovery object in the

itemDiscovery property. The item discovery object
links the item to an item prototype from which it was
created.

It has the following properties:
itemdiscoveryid - (string) ID of the item
discovery;
itemid - (string) ID of the discovered item;
parent_itemid - (string) ID of the item prototype
from which the item has been created;
key_ - (string) key of the item prototype;
lastcheck - (timestamp) time when the item was
last discovered;
ts_delete - (timestamp) time when an item that
is no longer discovered will be deleted.

681

Parameter Type Description

filter object Return only those results that exactly match the given
filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the item
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectGraphs - results will be sorted by name;
selectTriggers - results will be sorted by
description.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
history, trends, type and status.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Finding items by key

Retrieve all items from host with ID ”10084” that have the word ”system” in the key and sort them by name.

Request:

{
"jsonrpc": "2.0",
"method": "item.get",
"params": {

"output": "extend",
"hostids": "10084",
"search": {

"key_": "system"
},
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

682

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23298",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "Context switches per second",
"key_": "system.cpu.switches",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "2552",
"lastclock": "1351090998",
"prevvalue": "2641",
"state": "0",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "sps",
"multiplier": "0",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0",
"snmpv3_contextname": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "22680",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "564054253",
"flags": "0",
"interfaceid": "1",
"port": "",
"description": "",
"inventory_link": "0",
"lifetime": "0",
"evaltype": "0"

},
{

"itemid": "23299",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",

683

"name": "CPU $2 time",
"key_": "system.cpu.util[,idle]",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "86.031879",
"lastclock": "1351090999",
"prevvalue": "85.306944",
"state": "0",
"status": "0",
"value_type": "0",
"trapper_hosts": "",
"units": "%",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0",
"snmpv3_contextname": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "17354",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "564256864",
"flags": "0",
"interfaceid": "1",
"port": "",
"description": "The time the CPU has spent doing nothing.",
"inventory_link": "0",
"lifetime": "0",
"evaltype": "0"

},
{

"itemid": "23300",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "CPU $2 time",
"key_": "system.cpu.util[,interrupt]",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "0.008389",
"lastclock": "1351091000",
"prevvalue": "0.000000",
"state": "0",

684

"status": "0",
"value_type": "0",
"trapper_hosts": "",
"units": "%",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0",
"snmpv3_contextname": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "22671",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "564661387",
"flags": "0",
"interfaceid": "1",
"port": "",
"description": "The amount of time the CPU has been servicing hardware interrupts.",
"inventory_link": "0",
"lifetime": "0",
"evaltype": "0"

}
],
"id": 1

}

See also

• Application
• Discovery rule
• Graph
• Host
• Host interface
• Trigger

Source

CItem::get() in frontends/php/include/classes/api/services/CItem.php.

item.isreadable

Description

boolean item.isreadable(array itemIds)

This method checks if the given items are available for reading.

685

Warning:
This method is deprecated and will be removed in the future. Please use item.get instead.

Parameters

(array) IDs of the items to check.

Return values

(boolean) Returns true if the given items are available for reading.

Examples

Check multiple items

Check if the two items are readable.

Request:

{
"jsonrpc": "2.0",
"method": "item.isreadable",
"params": [

"23298",
"23323"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• item.iswritable

Source

CItem::isReadable() in frontends/php/include/classes/api/services/CItem.php.

item.iswritable

Description

boolean item.iswritable(array itemIds)

This method checks if the given items are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use item.get instead.

Parameters

(array) IDs of the items to check.

Return values

(boolean) Returns true if the given items are available for writing.

Examples

Check multiple items

Check if the two items are writable.

Request:

686

{
"jsonrpc": "2.0",
"method": "item.iswritable",
"params": [

"23298",
"23323"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• item.isreadable

Source

CItem::isWritable() in frontends/php/include/classes/api/services/CItem.php.

item.update

Description

object item.update(object/array items)

This method allows to update existing items.

Note:
Web items cannot be updated via the Zabbix API.

Parameters

(object/array) Item properties to be updated.

The itemid property must be defined for each item, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard item properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to replace the current
applications.

Return values

(object) Returns an object containing the IDs of the updated items under the itemids property.

Examples

Enabling an item

Enable an item, that is, set its status to ”0”.

Request:

{
"jsonrpc": "2.0",
"method": "item.update",
"params": {

"itemid": "10092",

687

"status": 0
},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"10092"

]
},
"id": 1

}

Source

CItem::update() in frontends/php/include/classes/api/services/CItem.php.

Item prototype

This class is designed to work with item prototypes.

Object references:

• Item prototype

Available methods:

• itemprototype.create - creating new item prototypes
• itemprototype.delete - deleting item prototypes
• itemprototype.get - retrieving item prototypes
• itemprototype.isreadable - checking if item prototypes are readable
• itemprototype.iswritable - checking if item prototypes are writable
• itemprototype.update - updating item prototypes

> Item prototype object

The following objects are directly related to the itemprototype API.

Item prototype

The item prototype object has the following properties.

Property Type Description

itemid string (readonly) ID of the item prototype.
delay
(required)

integer Update interval of the item prototype in seconds.

hostid
(required)

string ID of the host that the item prototype belongs to.

interfaceid
(required)

string ID of the item prototype’s host interface. Used only for
host item prototypes.

Optional for Zabbix agent (active), Zabbix internal,
Zabbix trapper, Zabbix aggregate, database monitor
and calculated item prototypes.

key_
(required)

string Item prototype key.

name
(required)

string Name of the item prototype.

688

Property Type Description

type
(required)

integer Type of the item prototype.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
8 - Zabbix aggregate;
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
15 - calculated;
16 - JMX agent;
17 - SNMP trap.

value_type
(required)

integer Type of information of the item prototype.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

authtype integer SSH authentication method. Used only by SSH agent
item prototypes.

Possible values:
0 - (default) password;
1 - public key.

data_type integer Data type of the item prototype.

Possible values:
0 - (default) decimal;
1 - octal;
2 - hexadecimal;
3 - boolean.

delay_flex string Custom intervals that contain flexible intervals and
scheduling intervals as serialized strings.

Multiple intervals are separated by a semicolon.
delta integer Value that will be stored.

Possible values:
0 - (default) as is;
1 - Delta, speed per second;
2 - Delta, simple change.

description string Description of the item prototype.
formula integer/float Custom multiplier.

Default: 1.
history integer Number of days to keep item prototype’s history data.

Default: 90.
ipmi_sensor string IPMI sensor. Used only by IPMI item prototypes.
logtimefmt string Format of the time in log entries. Used only by log item

prototypes.

689

Property Type Description

multiplier integer Whether to use a custom multiplier.
params string Additional parameters depending on the type of the item

prototype:
- executed script for SSH and Telnet item prototypes;
- SQL query for database monitor item prototypes;
- formula for calculated item prototypes.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX item prototypes.

port string Port monitored by the item prototype. Used only by
SNMP items prototype.

privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community.

Used only by SNMPv1 and SNMPv2 item prototypes.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 item

prototypes.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

items.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 item
prototypes.

snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 item
prototypes.

snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 items.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 item
prototypes.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 item
prototypes.

status integer Status of the item prototype.

Possible values:
0 - (default) enabled item prototype;
1 - disabled item prototype;
3 - unsupported item prototype.

templateid string (readonly) ID of the parent template item prototype.
trapper_hosts string Allowed hosts. Used only by trapper item prototypes.
trends integer Number of days to keep item prototype’s trends data.

Default: 365.
units string Value units.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX item prototypes.

Required by SSH and Telnet item prototypes.
valuemapid string ID of the associated value map.

690

itemprototype.create

Description

object itemprototype.create(object/array itemPrototypes)

This method allows to create new item prototypes.

Parameters

(object/array) Item prototype to create.

Additionally to the standard item prototype properties, the method accepts the following parameters.

Parameter Type Description

ruleid
(required)

string ID of the LLD rule that the item belongs to.

applications array IDs of applications to be assigned to the discovered
items.

applicationPrototypes array Names of application prototypes to be assigned to the
item prototype.

Return values

(object) Returns an object containing the IDs of the created item prototypes under the itemids property. The order of the
returned IDs matches the order of the passed item prototypes.

Examples

Creating an item prototype

Create an item prototype to monitor free disc space on a discovered file system. Discovered items should be numeric Zabbix agent
items updated every 30 seconds.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[{#FSNAME},free]",
"hostid": "10197",
"ruleid": "27665",
"type": 0,
"value_type": 3,
"interfaceid": "112",
"delay": 30

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27666"

]
},
"id": 1

}

Source

CItemPrototype::create() in frontends/php/include/classes/api/services/CItemPrototype.php.

691

itemprototype.delete

Description

object itemprototype.delete(array itemPrototypeIds)

This method allows to delete item prototypes.

Parameters

(array) IDs of the item prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted item prototypes under the prototypeids property.

Examples

Deleting multiple item prototypes

Delete two item prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.delete",
"params": [

"27352",
"27356"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"prototypeids": [
"27352",
"27356"

]
},
"id": 1

}

Source

CItemPrototype::delete() in frontends/php/include/classes/api/services/CItemPrototype.php.

itemprototype.get

Description

integer/array itemprototype.get(object parameters)

The method allows to retrieve item prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

discoveryids string/array Return only item prototypes that belong to the given
LLD rules.

graphids string/array Return only item prototypes that are used in the given
graph prototypes.

692

Parameter Type Description

hostids string/array Return only item prototypes that belong to the given
hosts.

inherited boolean If set to true return only item prototypes inherited
from a template.

itemids string/array Return only item prototypes with the given IDs.
monitored boolean If set to true return only enabled item prototypes

that belong to monitored hosts.
templated boolean If set to true return only item prototypes that belong

to templates.
templateids string/array Return only item prototypes that belong to the given

templates.
triggerids string/array Return only item prototypes that are used in the given

trigger prototypes.
selectApplications query Return applications that the item prototype belongs to

in the applications property.
selectApplicationPrototypes query Return application prototypes linked to item prototype

in applicationPrototypes property.
selectDiscoveryRule query Return the low-level discovery rule that the graph

prototype belongs to in the discoveryRule property.
selectGraphs query Return graph prototypes that the item prototype is

used in in the graphs property.

Supports count.
selectHosts query Returns the host that the item prototype belongs to as

an array in the hosts property.
selectTriggers query Return trigger prototypes that the item prototype is

used in in the triggers property.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the item
prototype belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectGraphs - results will be sorted by name;
selectTriggers - results will be sorted by
description.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
type and status.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

693

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving item prototypes from an LLD rule

Retrieve all item prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.get",
"params": {

"output": "extend",
"discoveryids": "27426"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "27427",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Incoming network traffic on $1 23",
"key_": "2net.if.in[{#IFNAME}]",
"delay": "60",
"history": "7",
"trends": "365",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "bps",
"multiplier": "1",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "8",
"logtimefmt": "",
"templateid": "23881",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"filter": "",

694

"interfaceid": "119",
"port": "",
"description": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"itemid": "27428",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Incoming network traffic on $1",
"key_": "net.if.in[{#IFNAME}]",
"delay": "60",
"history": "7",
"trends": "365",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "bps",
"multiplier": "1",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "8",
"logtimefmt": "",
"templateid": "22446",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"filter": "",
"interfaceid": "119",
"port": "",
"description": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],
"id": 1

}

See also

• Application
• Host
• Graph prototype
• Trigger prototype

Source

CItemPrototype::get() in frontends/php/include/classes/api/services/CItemPrototype.php.

695

itemprototype.isreadable

Description

boolean itemprototype.isreadable(array itemPrototypeIds)

This method checks if the given item prototypes are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use itemprototype.get instead.

Parameters

(array) IDs of the item prototypes to check.

Return values

(boolean) Returns true if the given item prototypes are available for reading.

Examples

Check multiple item prototypes

Check if the two item prototypes are readable.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.isreadable",
"params": [

"27352",
"27356"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• itemprototype.iswritable

Source

CItemPrototype::isReadable() in frontends/php/include/classes/api/services/CItemPrototype.php.

itemprototype.iswritable

Description

boolean itemprototype.iswritable(array itemPrototypeIds)

This method checks if the given item prototypes are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use itemprototype.get instead.

Parameters

(array) IDs of the item prototypes to check.

Return values

696

(boolean) Returns true if the given item prototypes are available for writing.

Examples

Check multiple item prototypes

Check if the two item prototypes are writable.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.iswritable",
"params": [

"27352",
"27356"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• itemprototype.isreadable

Source

CItemPrototype::isWritable() in frontends/php/include/classes/api/services/CItemPrototype.php.

itemprototype.update

Description

object itemprototype.update(object/array itemPrototypes)

This method allows to update existing item prototypes.

Parameters

(object/array) Item prototype properties to be updated.

The itemid property must be defined for each item prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard item prototype properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to replace the current
applications.

applicationPrototypes array Names of the application prototypes to replace the
current application prototypes.

Return values

(object) Returns an object containing the IDs of the updated item prototypes under the itemids property.

Examples

Changing the interface of an item prototype

Change the host interface that will be used by discovered items.

Request:

697

{
"jsonrpc": "2.0",
"method": "itemprototype.update",
"params": {

"itemid": "27428",
"interfaceid": "132"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27428"

]
},
"id": 1

}

Source

CItemPrototype::update() in frontends/php/include/classes/api/services/CItemPrototype.php.

IT service

This class is designed to work with IT services.

Object references:

• IT service
• Service time
• Service dependency
• Service alarm

Available methods:

• service.adddependencies - adding dependencies between IT services
• service.addtimes - adding service times
• service.create - creating new IT services
• service.delete - deleting IT services
• service.deletedependencies - deleting dependencies between IT services
• service.deletetimes - deleting service times
• service.get - retrieving IT services
• service.getsla - retrieving availability information about IT services
• service.isreadable - checking if IT services are readable
• service.iswritable - checking if IT services are writable
• service.update - updating IT services

> IT Service object

The following objects are directly related to the service API.

IT Service

The IT service object has the following properties.

Property Type Description

serviceid string (readonly) ID of the IT service.

698

Property Type Description

algorithm
(required)

integer Algorithm used to calculate the state of the IT service.

Possible values:
0 - do not calculate;
1 - problem, if at least one child has a problem;
2 - problem, if all children have problems.

name
(required)

string Name of the IT service.

showsla
(required)

integer Whether SLA should be calculated.

Possible values:
0 - do not calculate;
1 - calculate.

sortorder
(required)

integer Position of the IT service used for sorting.

goodsla float Minimum acceptable SLA value. If the SLA drops lower,
the IT service is considered to be in problem state.

Default: 99.9.
status integer (readonly) Whether the IT service is in OK or problem

state.

If the IT service is in problem state, status is equal
either to:
- the priority of the linked trigger if it is set to 2,
”Warning” or higher (priorities 0, ”Not classified” and 1,
”Information” are ignored);
- the highest status of a child IT service in problem state.

If the IT service is in OK state, status is equal to 0.
triggerid string Trigger associated with the IT service. Can only be set

for IT services that don’t have children.

Default: 0

Service time

The service time object defines periods, when an IT service is scheduled to be up or down. It has the following properties.

Property Type Description

timeid string (readonly) ID of the service time.
serviceid
(required)

string ID of the IT service.

Cannot be updated.
ts_from
(required)

integer Time when the service time comes into effect.

For onetime downtimes ts_from must be set as a Unix
timestamp, for other types - as a specific time in a week,
in seconds, for example, 90000 for Tue, 2:00 AM.

ts_to
(required)

integer Time when the service time ends.

For onetime uptimes ts_to must be set as a Unix
timestamp, for other types - as a specific time in a week,
in seconds, for example, 90000 for Tue, 2:00 AM.

type
(required)

integer Service time type.

Possible values:
0 - planned uptime, repeated every week;
1 - planned downtime, repeated every week;
2 - one-time downtime.

699

Property Type Description

note string Additional information about the service time.

Service dependency

The service dependency object represents a dependency between IT services. It has the following properties.

Property Type Description

linkid string (readonly) ID of the service dependency.
servicedownid
(required)

string ID of the IT service, that a service depends on, that is,
the child service. An IT service can have multiple
children.

serviceupid
(required)

string ID of the IT service, that is dependent on a service, that
is, the parent service. An IT service can have multiple
parents forming a directed graph.

soft
(required)

integer Type of dependency between IT services.

Possible values:
0 - hard dependency;
1 - soft dependency.

An IT service can have only one hard-dependent parent.
This attribute has no effect on status or SLA calculation
and is only used to create a core IT service tree.
Additional parents can be added as soft dependencies
forming a graph.

An IT service can not be deleted if it has hard-dependent
children.

Service alarm

Note:
Service alarms cannot be directly created, updated or deleted via the Zabbix API.

The service alarm objects represents an IT service’s state change. It has the following properties.

Property Type Description

servicealarmid string ID of the service alarm.
serviceid string ID of the IT service.
clock timestamp Time when the IT service state change has happened.
value integer Status of the IT service.

Refer the the IT service status property for a list of
possible values.

service.adddependencies

Description

object service.adddependencies(object/array serviceDependencies)

This method allows to create dependencies between IT services.

Parameters

(object/array) Service dependencies to create.

Each service dependency has the following parameters.

700

Parameter Type Description

serviceid string ID of the IT service that depends on a service, that is,
the parent service.

dependsOnServiceid string ID of the IT service that a service depends on, that is,
the child service.

soft string Type of dependency.

Refer to the service dependency object page for more
information on dependency types.

Return values

(object) Returns an object containing the IDs of the affected parent IT services under the serviceids property.

Examples

Creating a hard dependency

Make IT service ”2” a hard-dependent child of service ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "service.adddependencies",
"params": {

"serviceid": "3",
"dependsOnServiceid": "2",
"soft": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"3"

]
},
"id": 1

}

See also

• service.update

Source

CService::addDependencies() in frontends/php/include/classes/api/services/CService.php.

service.addtimes

Description

object service.addtimes(object/array serviceTimes)

This method allows to create new service times.

Parameters

(object/array) Service times to create.

The method accepts service times with the standard service time properties.

Return values

701

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Adding a scheduled downtime

Add a downtime for IT service ”2” scheduled weekly from Monday 22:00 till Tuesday 10:00.

Request:

{
"jsonrpc": "2.0",
"method": "service.addtimes",
"params": {

"serviceid": "4",
"type": 1,
"ts_from": 165600,
"ts_to": 201600

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"4"

]
},
"id": 1

}

See also

• service.update

Source

CService::addTimes() in frontends/php/include/classes/api/services/CService.php.

service.create

Description

object service.create(object/array itServices)

This method allows to create new IT services.

Parameters

(object/array) IT services to create.

Additionally to the standard IT service properties, the method accepts the following parameters.

Parameter Type Description

dependencies array Service dependencies.

Each service dependency has the following
parameters:
- dependsOnServiceid - (string) ID of an IT service
the service depends on, that is, the child IT service.
- soft - (integer) type of service dependency; refer to
the service dependency object page for more
information on dependency types.

parentid string ID of a hard-linked parent IT service.
times array Service times to be created for the IT service.

702

Return values

(object) Returns an object containing the IDs of the created IT services under the serviceids property. The order of the
returned IDs matches the order of the passed IT services.

Examples

Creating an IT service

Create an IT service that will be switched to problem state, if at least one child has a problem. SLA calculation will be on and the
minimum acceptable SLA is 99.99%.

Request:

{
"jsonrpc": "2.0",
"method": "service.create",
"params": {

"name": "Server 1",
"algorithm": 1,
"showsla": 1,
"goodsla": 99.99,
"sortorder": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"5"

]
},
"id": 1

}

Source

CService::create() in frontends/php/include/classes/api/services/CService.php.

service.delete

Description

object service.delete(array itServiceIds)

This method allows to delete IT services.

IT services with hard-dependent child services cannot be deleted.

Parameters

(array) IDs of the IT services to delete.

Return values

(object) Returns an object containing the IDs of the deleted IT services under the serviceids property.

Examples

Deleting multiple IT services

Delete two IT services.

Request:

{
"jsonrpc": "2.0",
"method": "service.delete",

703

"params": [
"4",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"4",
"5"

]
},
"id": 1

}

Source

CService::delete() in frontends/php/include/classes/api/services/CService.php.

service.deletedependencies

Description

object service.deletedependencies(string/array serviceIds)

This method allows to delete all dependencies from IT services.

Parameters

(string/array) IDs of the IT services to delete all dependencies from.

Return values

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Deleting dependencies from an IT service

Delete all dependencies from IT service ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "service.deletedependencies",
"params": [

"2"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"2"

]
},
"id": 1

}

704

See also

• service.update

Source

CService::delete() in frontends/php/include/classes/api/services/CService.php.

service.deletetimes

Description

object service.deletetimes(string/array serviceIds)

This method allows to delete all service times from IT services.

Parameters

(string/array) IDs of the IT services to delete all service times from.

Return values

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Deleting service times from an IT service

Delete all service times from IT service ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "service.deletetimes",
"params": [

"2"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"2"

]
},
"id": 1

}

See also

• service.update

Source

CService::delete() in frontends/php/include/classes/api/services/CService.php.

service.get

Description

integer/array service.get(object parameters)

The method allows to retrieve IT services according to the given parameters.

Parameters

(object) Parameters defining the desired output.

705

The method supports the following parameters.

Parameter Type Description

serviceids string/array Return only IT services with the given IDs.
parentids string/array Return only IT services with the given hard-dependent

parent IT services.
childids string/array Return only IT services that are hard-dependent on

the given child IT services.
selectParent query Return the hard-dependent parent IT service in the

parent property.
selectDependencies query Return child service dependencies in the

dependencies property.
selectParentDependencies query Return parent service dependencies in the

parentDependencies property.
selectTimes query Return service times in the times property.
selectAlarms query Return service alarms in the alarms property.
selectTrigger query Return the associated trigger in the trigger

property.
sortfield string/array Sort the result by the given properties.

Possible values are: name and sortorder.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving all IT services

Retrieve all data about all IT services and their dependencies.

Request:

{
"jsonrpc": "2.0",
"method": "service.get",
"params": {

"output": "extend",
"selectDependencies": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

706

{
"serviceid": "2",
"name": "Server 1",
"status": "0",
"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9000",
"sortorder": "0",
"dependencies": []

},
{

"serviceid": "3",
"name": "Data center 1",
"status": "0",
"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9000",
"sortorder": "0",
"dependencies": [

{
"linkid": "11",
"serviceupid": "3",
"servicedownid": "2",
"soft": "0",
"sortorder": "0",
"serviceid": "2"

},
{

"linkid": "10",
"serviceupid": "3",
"servicedownid": "5",
"soft": "0",
"sortorder": "1",
"serviceid": "5"

}
]

},
{

"serviceid": "5",
"name": "Server 2",
"status": "0",
"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9900",
"sortorder": "1",
"dependencies": []

}
],
"id": 1

}

Source

CService::get() in frontends/php/include/classes/api/services/CService.php.

service.getsla

Description

object service.getsla(object parameters)

707

This method allows to calculate availability information about IT services.

Parameters

(object) Parameters containing the IDs of the IT services and time intervals to calculate SLA.

Parameter Type Description

serviceids string/array IDs of IT services to return availability information for.
intervals array Time intervals to return service layer availability

information about.

Each time interval must have the following
parameters:
- from - (timestamp) interval start time;
- to - (timestamp) interval end time.

Return values

(object) Returns the following availability information about each IT service under the corresponding service ID.

Property Type Description

status integer Current status of the IT service.

Refer to the IT service object page for more information
on service statuses.

problems array Triggers that are currently in problem state and are
linked either to the IT service or one of its descendants.

sla array SLA data about each time period.

Each SLA object has the following properties:
- from - (timestamp) interval start time;
- to - (timestamp) interval end time;
- sla - (float) SLA for the given time interval;
- okTime - (integer) time the service was in OK state, in
seconds;
- problemTime - (integer) time the service was in
problem state, in seconds;
- downtimeTime - (integer) time the service was in
scheduled downtime, in seconds.

Examples

Retrieving availability information for an IT service

Retrieve availability information about a service during a week.

Request:

{
"jsonrpc": "2.0",
"method": "service.getsla",
"params": {

"serviceids": "2",
"intervals": [

{
"from": 1352452201,
"to": 1353057001

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

708

Response:

{
"jsonrpc": "2.0",
"result": {

"2": {
"status": "3",
"problems": {

"13904": {
"triggerid": "13904",
"expression": "{13359}=0",
"description": "Service unavailable",
"url": "",
"status": "0",
"value": "1",
"priority": "3",
"lastchange": "1352967420",
"comments": "",
"error": "",
"templateid": "0",
"type": "0",
"value_flags": "0",
"flags": "0"

}
},
"sla": [

{
"from": 1352452201,
"to": 1353057001,
"sla": 97.046296296296,
"okTime": 586936,
"problemTime": 17864,
"downtimeTime": 0

}
]

}
},
"id": 1

}

See also

• Trigger

Source

CService::getSla() in frontends/php/include/classes/api/services/CService.php.

service.isreadable

Description

boolean service.isreadable(array serviceIds)

This method checks if the given IT services are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use service.get instead.

Parameters

(array) IDs of the IT services to check.

Return values

(boolean) Returns true if the given IT services are available for reading.

709

Examples

Check multiple IT services

Check if the two IT services are readable.

Request:

{
"jsonrpc": "2.0",
"method": "service.isreadable",
"params": [

"3", "4"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• service.iswritable

Source

CService::isReadable() in frontends/php/include/classes/api/services/CService.php.

service.iswritable

Description

boolean service.iswritable(array serviceIds)

This method checks if the given IT services are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use service.get instead.

Parameters

(array) IDs of the IT services to check.

Return values

(boolean) Returns true if the given IT services are available for writing.

Examples

Check multiple IT services

Check if the two IT services are writable.

Request:

{
"jsonrpc": "2.0",
"method": "service.iswritable",
"params": [

"3", "4"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

710

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• service.isreadable

Source

CService::isWritable() in frontends/php/include/classes/api/services/CService.php.

service.update

Description

object service.update(object/array itServices)

This method allows to update existing IT services.

Parameters

(object/array) IT service properties to be updated.

The serviceid property must be defined for each IT service, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard IT service properties, the method accepts the following parameters.

Parameter Type Description

dependencies array Service dependencies to replace the current service
dependencies.

Each service dependency has the following
parameters:
- dependsOnServiceid - (string) ID of an IT service
the service depends on, that is, the child IT service.
- soft - (integer) type of service dependency; refer to
the service dependency object page for more
information on dependency types.

parentid string ID of a hard-linked parent IT service.
times array Service times to replace the current service times.

Return values

(object) Returns an object containing the IDs of the updated IT services under the serviceids property.

Examples

Setting the parent of an IT service

Make IT service ”3” the hard-linked parent of service ”5”.

Request:

{
"jsonrpc": "2.0",
"method": "service.update",
"params": {

"serviceid": "5",
"parentid": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

711

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"5"

]
},
"id": 1

}

See also

• service.adddependencies
• service.addtimes
• service.deletedependencies
• service.deletetimes

Source

CService::update() in frontends/php/include/classes/api/services/CService.php.

LLD rule

This class is designed to work with low level discovery rules.

Object references:

• LLD rule

Available methods:

• discoveryrule.copy - copying LLD rules
• discoveryrule.create - creating new LLD rules
• discoveryrule.delete - deleting LLD rules
• discoveryrule.get - retrieving LLD rules
• discoveryrule.isreadable - checking if LLD rules are readable
• discoveryrule.iswritable - checking if LLD rules are writable
• discoveryrule.update - updating LLD rules

> LLD rule object

The following objects are directly related to the discoveryrule API.

LLD rule

The low-level discovery rule object has the following properties.

Property Type Description

itemid string (readonly) ID of the LLD rule.
delay
(required)

integer Update interval of the LLD rule in seconds.

hostid
(required)

string ID of the host that the LLD rule belongs to.

interfaceid
(required)

string ID of the LLD rule’s host interface. Used only for host
LLD rules.

Optional for Zabbix agent (active), Zabbix internal,
Zabbix trapper and database monitor LLD rules.

key_
(required)

string LLD rule key.

name
(required)

string Name of the LLD rule.

712

Property Type Description

type
(required)

integer Type of the LLD rule.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
16 - JMX agent.

authtype integer SSH authentication method. Used only by SSH agent
LLD rules.

Possible values:
0 - (default) password;
1 - public key.

delay_flex string Custom intervals that contain flexible intervals and
scheduling intervals as serialized strings.

Multiple intervals are separated by a semicolon.
description string Description of the LLD rule.
error string (readonly) Error text if there are problems updating the

LLD rule.
ipmi_sensor string IPMI sensor. Used only by IPMI LLD rules.
lifetime integer Time period after which items that are no longer

discovered will be deleted, in days.

Default: 30.
params string Additional parameters depending on the type of the LLD

rule:
- executed script for SSH and Telnet LLD rules;
- SQL query for database monitor LLD rules;
- formula for calculated LLD rules.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX LLD rules.

port string Port used by the LLD rule. Used only by SNMP LLD rules.
privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community.

Required for SNMPv1 and SNMPv2 LLD rules.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 LLD

rules.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

LLD rules.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 checks.
snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 LLD

rules.

713

Property Type Description

snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 LLD
rules.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 LLD rules.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 LLD rules.
state integer (readonly) State of the LLD rule.

Possible values:
0 - (default) normal;
1 - not supported.

status integer Status of the LLD rule.

Possible values:
0 - (default) enabled LLD rule;
1 - disabled LLD rule.

templateid string (readonly) ID of the parent template LLD rule.
trapper_hosts string Allowed hosts. Used only by trapper LLD rules.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX LLD rules.

Required by SSH and Telnet LLD rules.

LLD rule filter

The LLD rule filter object defines a set of conditions that can be used to filter discovered objects. It has the following properties:

Property Type Description

conditions
(required)

array Set of filter conditions to use for filtering results.

evaltype
(required)

integer Filter condition evaluation method.

Possible values:
0 - and/or;
1 - and;
2 - or;
3 - custom expression.

eval_formula string (readonly) Generated expression that will be used for
evaluating filter conditions. The expression contains IDs
that reference specific filter conditions by its
formulaid. The value of eval_formula is equal to the
value of formula for filters with a custom expression.

formula string User-defined expression to be used for evaluating
conditions of filters with a custom expression. The
expression must contain IDs that reference specific filter
conditions by its formulaid. The IDs used in the
expression must exactly match the ones defined in the
filter conditions: no condition can remain unused or
omitted.

Required for custom expression filters.

LLD rule filter condition

714

The LLD rule filter condition object defines a separate check to perform on the value of an LLDmacro. It has the following properties:

Property Type Description

macro
(required)

string LLD macro to perform the check on.

value
(required)

string Value to compare with.

formulaid string Arbitrary unique ID that is used to reference the
condition from a custom expression. Can only contain
capital-case letters. The ID must be defined by the user
when modifying filter conditions, but will be generated
anew when requesting them afterward.

operator integer Condition operator.

Possible values:
8 - (default) matches regular expression.

Note:
To better understand how to use filters with various types of expressions, see examples on the discoveryrule.get and
discoveryrule.create method pages.

discoveryrule.copy

Description

object discoveryrule.copy(object parameters)

This method allows to copy LLD rules with all of the prototypes to the given hosts.

Parameters

(object) Parameters defining the LLD rules to copy and the target hosts.

Parameter Type Description

discoveryids array IDs of the LLD rules to be copied.
hostids array IDs of the hosts to copy the LLD rules to.

Return values

(boolean) Returns true if the copying was successful.

Examples

Copy an LLD rule to multiple hosts

Copy an LLD rule to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.copy",
"params": {

"discoveryids": [
"27426"

],
"hostids": [

"10196",
"10197"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

715

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CDiscoveryrule::copy() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.create

Description

object discoveryrule.create(object/array lldRules)

This method allows to create new LLD rules.

Parameters

(object/array) LLD rules to create.

Additionally to the standard LLD rule properties, the method accepts the following parameters.

Parameter Type Description

filter object LLD rule filter object for the LLD rule.

Return values

(object) Returns an object containing the IDs of the created LLD rules under the itemids property. The order of the returned
IDs matches the order of the passed LLD rules.

Examples

Creating an LLD rule

Create a Zabbix agent LLD rule to discover mounted file systems. Discovered items will be updated every 30 seconds.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.create",
"params": {

"name": "Mounted filesystem discovery",
"key_": "vfs.fs.discovery",
"hostid": "10197",
"type": "0",
"interfaceid": "112",
"delay": 30

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27665"

]
},
"id": 1

}

716

Using a filter

Create an LLD rule with a set of conditions to filter the results by. The conditions will be grouped together using the logical ”and”
operator.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.create",
"params": {

"name": "Filtered LLD rule",
"key_": "lld",
"hostid": "10116",
"type": "0",
"interfaceid": "13",
"delay": 30,
"filter": {

"evaltype": 1,
"conditions": [

{
"macro": "{#MACRO1}",
"value": "@regex1"

},
{

"macro": "{#MACRO2}",
"value": "@regex2"

},
{

"macro": "{#MACRO3}",
"value": "@regex3"

}
]

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27665"

]
},
"id": 1

}

Using a custom expression filter

Create an LLD rule with a filter that will use a custom expression to evaluate the conditions. The LLD rule must only discover objects
the ”{#MACRO1}” macro value of which matches both regular expression ”regex1” and ”regex2”, and the value of ”{#MACRO2}”
matches either ”regex3” or ”regex4”. The formula IDs ”A”, ”B”, ”C” and ”D” have been chosen arbitrarily.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.create",
"params": {

"name": "Filtered LLD rule",
"key_": "lld",
"hostid": "10116",
"type": "0",

717

"interfaceid": "13",
"delay": 30,
"filter": {

"evaltype": 3,
"formula": "(A and B) and (C or D)",
"conditions": [

{
"macro": "{#MACRO1}",
"value": "@regex1",
"formulaid": "A"

},
{

"macro": "{#MACRO1}",
"value": "@regex2",
"formulaid": "B"

},
{

"macro": "{#MACRO2}",
"value": "@regex3",
"formulaid": "C"

},
{

"macro": "{#MACRO2}",
"value": "@regex4",
"formulaid": "D"

}
]

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27665"

]
},
"id": 1

}

See also

• LLD rule filter

Source

CDiscoveryRule::create() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.delete

Description

object discoveryrule.delete(array lldRuleIds)

This method allows to delete LLD rules.

Parameters

(array) IDs of the LLD rules to delete.

Return values

(object) Returns an object containing the IDs of the deleted LLD rules under the itemids property.

718

Examples

Deleting multiple LLD rules

Delete two LLD rules.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.delete",
"params": [

"27665",
"27668"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"ruleids": [
"27665",
"27668"

]
},
"id": 1

}

Source

CDiscoveryRule::delete() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.get

Description

integer/array discoveryrule.get(object parameters)

The method allows to retrieve LLD rules according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

itemids string/array Return only LLD rules with the given IDs.
hostids string/array Return only LLD rules that belong to the given hosts.
inherited boolean If set to true return only LLD rules inherited from a

template.
interfaceids string/array Return only LLD rules use the given host interfaces.
monitored boolean If set to true return only enabled LLD rules that

belong to monitored hosts.
templated boolean If set to true return only LLD rules that belong to

templates.
templateids string/array Return only LLD rules that belong to the given

templates.
selectFilter query Returns the filter used by the LLD rule in the filter

property.
selectGraphs query Returns graph prototypes that belong to the LLD rule

in the graphs property.

Supports count.

719

Parameter Type Description

selectHostPrototypes query Returns host prototypes that belong to the LLD rule in
the hostPrototypes property.

Supports count.
selectHosts query Returns the host that the LLD rule belongs to as an

array in the hosts property.
selectItems query Returns item prototypes that belong to the LLD rule in

the items property.

Supports count.
selectTriggers query Returns trigger prototypes that belong to the LLD rule

in the triggers property.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the LLD rule
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selctItems;
selectGraphs;
selectTriggers.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
type and status.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving discovery rules from a host

Retrieve all discovery rules from host ”10202”.

Request:

{
"jsonrpc": "2.0",

720

"method": "discoveryrule.get",
"params": {

"output": "extend",
"hostids": "10202"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "27425",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Network interface discovery",
"key_": "net.if.discovery",
"delay": "3600",
"state": "0",
"status": "0",
"trapper_hosts": "",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"error": "",
"templateid": "22444",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"interfaceid": "119",
"port": "",
"description": "Discovery of network interfaces as defined in global regular expression \"Network interfaces for discovery\".",
"lifetime": "30",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"itemid": "27426",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Mounted filesystem discovery",
"key_": "vfs.fs.discovery",
"delay": "3600",
"state": "0",
"status": "0",
"trapper_hosts": "",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",

721

"error": "",
"templateid": "22450",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"interfaceid": "119",
"port": "",
"description": "Discovery of file systems of different types as defined in global regular expression \"File systems for discovery\".",
"lifetime": "30",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],
"id": 2

}

Retrieving filter conditions

Retrieve the name of the LLD rule ”24681” and its filter conditions. The filter uses the ”and” evaluation type, so the formula
property is empty and eval_formula is generated automatically.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.get",
"params": {

"output": [
"name"

],
"selectFilter": "extend",
"itemids": ["24681"]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "24681",
"name": "Filtered LLD rule",
"filter": {

"evaltype": "1",
"formula": "",
"conditions": [

{
"macro": "{#MACRO1}",
"value": "@regex1",
"operator": "8",
"formulaid": "A"

},
{

"macro": "{#MACRO2}",
"value": "@regex2",
"operator": "8",
"formulaid": "B"

722

},
{

"macro": "{#MACRO3}",
"value": "@regex3",
"operator": "8",
"formulaid": "C"

}
],
"eval_formula": "A and B and C"

}
}

],
"id": 1

}

See also

• Graph prototype
• Host
• Item prototype
• LLD rule filter
• Trigger prototype

Source

CDiscoveryRule::get() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.isreadable

Description

boolean discoveryrule.isreadable(array lldRuleIds)

This method checks if the given LLD rules are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use discoveryrule.get instead.

Parameters

(array) IDs of the LLD rules to check.

Return values

(boolean) Returns true if the given LLD rules are available for reading.

Examples

Check multiple LLD rules

Check if the two LLD rules are readable.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.isreadable",
"params": [

"27425",
"27429"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",

723

"result": true,
"id": 1

}

See also

• discoveryrule.iswritable

Source

CDiscoveryRule::isReadable() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.iswritable

Description

boolean discoveryrule.iswritable(array lldRuleIds)

This method checks if the given LLD rules are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use discoveryrule.get instead.

Parameters

(array) IDs of the LLD rules to check.

Return values

(boolean) Returns true if the given LLD rules are available for writing.

Examples

Check multiple LLD rules

Check if the two LLD rules are writable.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.iswritable",
"params": [

"27425",
"27429"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• discoveryrule.isreadable

Source

CDiscoveryRule::isWritable() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

discoveryrule.update

Description

object discoveryrule.update(object/array lldRules)

724

This method allows to update existing LLD rules.

Parameters

(object/array) LLD rule properties to be updated.

The itemid property must be defined for each LLD rule, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard LLD rule properties, the method accepts the following parameters.

Parameter Type Description

filter object LLD rule filter object to replace the current filter.

Return values

(object) Returns an object containing the IDs of the updated LLD rules under the itemids property.

Examples

Adding a filter to an LLD rule

Add a filter so that the contents of the {#FSTYPE} macro would match the @File systems for discovery regexp.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.update",
"params": {

"itemid": "24682",
"filter": {

"evaltype": 1,
"conditions": [

{
"macro": "{#FSTYPE}",
"value": "@File systems for discovery"

}
]

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"22450"

]
},
"id": 1

}

Source

CDiscoveryRule::update() in frontends/php/include/classes/api/services/CDiscoveryRule.php.

Maintenance

This class is designed to work with maintenances.

Object references:

• Maintenance

725

• Time period

Available methods:

• maintenance.create - creating new maintenances
• maintenance.delete - deleting maintenances
• maintenance.get - retrieving maintenances
• maintenance.update - updating maintenances

> Maintenance object

The following objects are directly related to the maintenance API.

Maintenance

The maintenance object has the following properties.

Property Type Description

maintenanceid string (readonly) ID of the maintenance.
name
(required)

string Name of the maintenance.

active_since
(required)

timestamp Time when the maintenance becomes active.

active_till
(required)

timestamp Time when the maintenance stops being active.

description string Description of the maintenance.
maintenance_type integer Type of maintenance.

Possible values:
0 - (default) with data collection;
1 - without data collection.

Time period

The time period object is used to define periods when the maintenance must come into effect. It has the following properties.

Property Type Description

timeperiodid string (readonly) ID of the maintenance.
day integer Day of the month when the maintenance must come

into effect.

Required only for monthly time periods.
dayofweek integer Days of the week when the maintenance must come into

effect.

Days are stored in binary form with each bit representing
the corresponding day. For example, 4 equals 100 in
binary and means, that maintenance will be enabled on
Wednesday.

Used for weekly and monthly time periods. Required
only for weekly time periods.

726

Property Type Description

every integer For daily and weekly periods every defines day or week
intervals at which the maintenance must come into
effect.

For monthly periods every defines the week of the
month when the maintenance must come into effect.
Possible values:
1 - first week;
2 - second week;
3 - third week;
4 - fourth week;
5 - last week.

month integer Months when the maintenance must come into effect.

Months are stored in binary form with each bit
representing the corresponding month. For example, 5
equals 101 in binary and means, that maintenance will
be enabled in January and March.

Required only for monthly time periods.
period integer Duration of the maintenance period in seconds.

Default: 3600.
start_date timestamp Date when the maintenance period must come into

effect.

Required only for one time periods.

Default: current date.
start_time integer Time of day when the maintenance starts in seconds.

Required for daily, weekly and monthly periods.
timeperiod_type integer Type of time period.

Possible values:
0 - (default) one time only;
2 - daily;
3 - weekly;
4 - monthly.

maintenance.create

Description

object maintenance.create(object/array maintenances)

This method allows to create new maintenances.

Parameters

(object/array) Maintenances to create.

Additionally to the standard maintenance properties, the method accepts the following parameters.

Parameter Type Description

groupids
(required)

array IDs of the host groups that will undergo maintenance.

hostids
(required)

array IDs of the hosts that will undergo maintenance.

timeperiods
(required)

array Maintenance time periods.

727

Attention:
At least one host or host group must be defined for each maintenance.

Return values

(object) Returns an object containing the IDs of the created maintenances under the maintenanceids property. The order of
the returned IDs matches the order of the passed maintenances.

Examples

Creating a maintenance

Create a maintenance with data collection for host group ”2”. It must be active from 22.01.2013 till 22.01.2014, come in effect
each Sunday at 18:00 and last for one hour.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.create",
"params": {

"name": "Sunday maintenance",
"active_since": 1358844540,
"active_till": 1390466940,
"groupids": [

"2"
],
"timeperiods": [

{
"timeperiod_type": 3,
"every": 1,
"dayofweek": 64,
"start_time": 64800,
"period": 3600

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3"

]
},
"id": 1

}

See also

• Time period

Source

CMaintenance::create() in frontends/php/include/classes/api/services/CMaintenance.php.

maintenance.delete

Description

object maintenance.delete(array maintenanceIds)

This method allows to delete maintenances.

728

Parameters

(array) IDs of the maintenances to delete.

Return values

(object) Returns an object containing the IDs of the deleted maintenances under the maintenanceids property.

Examples

Deleting multiple maintenances

Delete two maintenanaces.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.delete",
"params": [

"3",
"1"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3",
"1"

]
},
"id": 1

}

Source

CMaintenance::delete() in frontends/php/include/classes/api/services/CMaintenance.php.

maintenance.get

Description

integer/array maintenance.get(object parameters)

The method allows to retrieve maintenances according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only maintenances that are assigned to the
given host groups.

hostids string/array Return only maintenances that are assigned to the
given hosts.

maintenanceids string/array Return only maintenances with the given IDs.
selectGroups query Return host groups assigned to the maintenance in

the groups property.
selectHosts query Return hosts assigned to the maintenance in the

hosts property.
selectTimeperiods query Return the maintenance’s time periods in the

timeperiods property.

729

Parameter Type Description

sortfield string/array Sort the result by the given properties.

Possible values are: maintenanceid, name and
maintenance_type.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving maintenances

Retrieve all configured maintenances, and the data about the assigned host groups, hosts and defined time periods.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.get",
"params": {

"output": "extend",
"selectGroups": "extend",
"selectTimeperiods": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenanceid": "3",
"name": "Sunday maintenance",
"maintenance_type": "0",
"description": "",
"active_since": "1358844540",
"active_till": "1390466940",
"groups": [

{
"groupid": "4",
"name": "Zabbix servers",
"internal": "0"

}
],
"timeperiods": [

730

{
"timeperiodid": "4",
"timeperiod_type": "3",
"every": "1",
"month": "0",
"dayofweek": "1",
"day": "0",
"start_time": "64800",
"period": "3600",
"start_date": "2147483647"

}
]

}
],
"id": 1

}

See also

• Host
• Host group
• Time period

Source

CMaintenance::get() in frontends/php/include/classes/api/services/CMaintenance.php.

maintenance.update

Description

object maintenance.update(object/array maintenances)

This method allows to update existing maintenances.

Parameters

(object/array) Maintenance properties to be updated.

The maintenanceid property must be defined for each maintenance, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Attention:
At this time, partial maintenance update is not supported, all parameters are mandatory. See ZBX-6167 for current status.

Additionally to the standard maintenance properties, the method accepts the following parameters.

Parameter Type Description

groupids array IDs of the host groups to replace the current groups.
hostids array IDs of the hosts to replace the current hosts.
timeperiods array Maintenance time periods to replace the current periods.

Attention:
At least one host or host group must be defined for each maintenance.

Return values

(object) Returns an object containing the IDs of the updated maintenances under the maintenanceids property.

Examples

Assigning different hosts

Replace the hosts currently assigned to maintenance ”3” with two different ones.

Request:

731

https://support.zabbix.com/browse/ZBX-6167

{
"jsonrpc": "2.0",
"method": "maintenance.update",
"params": {

"maintenanceid": "3",
"hostids": [

"10085",
"10084"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3"

]
},
"id": 1

}

See also

• Time period

Source

CMaintenance::update() in frontends/php/include/classes/api/services/CMaintenance.php.

Map

This class is designed to work with maps.

Object references:

• Map
• Map element
• Map link
• Map URL
• Map user
• Map user group

Available methods:

• map.create - create new maps
• map.delete - delete maps
• map.get - retrieve maps
• map.isreadable - check if maps are readable
• map.iswritable - check if maps are writable
• map.update - update maps

> Map object

The following objects are directly related to the map API.

Map

The map object has the following properties.

732

Property Type Description

sysmapid string (readonly) ID of the map.
height
(required)

integer Height of the map in pixels.

name
(required)

string Name of the map.

width
(required)

integer Width of the map in pixels.

backgroundid string ID of the image used as the background for the map.
expand_macros integer Whether to expand macros in labels when configuring

the map.

Possible values:
0 - (default) do not expand macros;
1 - expand macros.

expandproblem integer Whether the the problem trigger will be displayed for
elements with a single problem.

Possible values:
0 - always display the number of problems;
1 - (default) display the problem trigger if there’s only
one problem.

grid_align integer Whether to enable grid aligning.

Possible values:
0 - disable grid aligning;
1 - (default) enable grid aligning.

grid_show integer Whether to show the grid on the map.

Possible values:
0 - do not show the grid;
1 - (default) show the grid.

grid_size integer Size of the map grid in pixels.

Supported values: 20, 40, 50, 75 and 100.

Default: 50.
highlight integer Whether icon highlighting is enabled.

Possible values:
0 - highlighting disabled;
1 - (default) highlighting enabled.

iconmapid string ID of the icon map used on the map.
label_format integer Whether to enable advanced labels.

Possible values:
0 - (default) disable advanced labels;
1 - enable advanced labels.

label_location integer Location of the map element label.

Possible values:
0 - (default) bottom;
1 - left;
2 - right;
3 - top.

label_string_host string Custom label for host elements.

Required for maps with custom host label type.
label_string_hostgroup string Custom label for host group elements.

Required for maps with custom host group label type.

733

Property Type Description

label_string_image string Custom label for image elements.

Required for maps with custom image label type.
label_string_map string Custom label for map elements.

Required for maps with custom map label type.
label_string_trigger string Custom label for trigger elements.

Required for maps with custom trigger label type.
label_type integer Map element label type.

Possible values:
0 - label;
1 - IP address;
2 - (default) element name;
3 - status only;
4 - nothing.

label_type_host integer Label type for host elements.

Possible values:
0 - label;
1 - IP address;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_hostgroup integer Label type for host group elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_image integer Label type for host group elements.

Possible values:
0 - label;
2 - (default) element name;
4 - nothing;
5 - custom.

label_type_map integer Label type for map elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_trigger integer Label type for trigger elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

734

Property Type Description

markelements integer Whether to highlight map elements that have recently
changed their status.

Possible values:
0 - (default) do not highlight elements;
1 - highlight elements.

severity_min integer Minimum severity of the triggers that will be displayed
on the map.

Refer to the trigger ”severity” property for a list of
supported trigger severities.

show_unack integer How problems should be displayed.

Possible values:
0 - (default) display the count of all problems;
1 - display only the count of unacknowledged problems;
2 - display the count of acknowledged and
unacknowledged problems separately.

userid string Map owner user ID.
private integer Type of map sharing.

Possible values:
0 - public map;
1 - (default) private map.

Map element

The map element object defines an object displayed on a map. It has the following properties.

Property Type Description

selementid string (readonly) ID of the map element.
elementid
(required)

string ID of the object that the map element represents.

Required for host, host group, trigger and map type
elements.

elementtype
(required)

integer Type of map element.

Possible values:
0 - host;
1 - map;
2 - trigger;
3 - host group;
4 - image.

iconid_off
(required)

string ID of the image used to display the element in default
state.

areatype integer How separate host group hosts should be displayed.

Possible values:
0 - (default) the host group element will take up the
whole map;
1 - the host group element will have a fixed size.

application string Name of the application to display problems from. Used
only for host and host group map elements.

elementsubtype integer How a host group element should be displayed on a map.

Possible values:
0 - (default) display the host group as a single element;
1 - display each host in the group separately.

735

Property Type Description

height integer Height of the fixed size host group element in pixels.

Default: 200.
iconid_disabled string ID of the image used to display disabled map elements.

Unused for image elements.
iconid_maintenance string ID of the image used to display map elements in

maintenance. Unused for image elements.
iconid_on string ID of the image used to display map elements with

problems. Unused for image elements.
label string Label of the element.
label_location integer Location of the map element label.

Possible values:
-1 - (default) default location;
0 - bottom;
1 - left;
2 - right;
3 - top.

sysmapid string (readonly) ID of the map that the element belongs to.
urls array Map element URLs.

The map element URL object is described in detail below.
use_iconmap integer Whether icon mapping must be used for host elements.

Possible values:
0 - do not use icon mapping;
1 - (default) use icon mapping.

viewtype integer Host group element placing algorithm.

Possible values:
0 - (default) grid.

width integer Width of the fixed size host group element in pixels.

Default: 200.
x integer X-coordinates of the element in pixels.

Default: 0.
y integer Y-coordinates of the element in pixels.

Default: 0.

Map element URL

The map element URL object defines a clickable link that will be available for a specific map element. It has the following properties:

Property Type Description

sysmapelementurlid string (readonly) ID of the map element URL.
name
(required)

string Link caption.

url
(required)

string Link URL.

selementid string ID of the map element that the URL belongs to.

Map link

The map link object defines a link between two map elements. It has the following properties.

Property Type Description

linkid string (readonly) ID of the map link.

736

Property Type Description

selementid1
(required)

string ID of the first map element linked on one end.

selementid2
(required)

string ID of the first map element linked on the other end.

color string Line color as a hexadecimal color code.

Default: 000000.
drawtype integer Link line draw style.

Possible values:
0 - (default) line;
2 - bold line;
3 - dotted line;
4 - dashed line.

label string Link label.
linktriggers array Map link triggers to use as link status indicators.

The map link trigger object is described in detail below.
sysmapid string ID of the map the link belongs to.

Map link trigger

The map link trigger object defines a map link status indicator based on the state of a trigger. It has the following properties:

Property Type Description

linktriggerid string (readonly) ID of the map link trigger.
triggerid
(reqiuired)

string ID of the trigger used as a link indicator.

color string Indicator color as a hexadecimal color code.

Default: DD0000.
drawtype integer Indicator draw style.

Possible values:
0 - (default) line;
2 - bold line;
3 - dotted line;
4 - dashed line.

linkid string ID of the map link that the link trigger belongs to.

Map URL

The map URL object defines a clickable link that will be available for all elements of a specific type on the map. It has the following
properties:

Property Type Description

sysmapurlid string (readonly) ID of the map URL.
name
(required)

string Link caption.

url
(required)

string Link URL.

elementtype integer Type of map element for which the URL will be available.

Refer to the map element ”type” property for a list of
supported types.

Default: 0.
sysmapid string ID of the map that the URL belongs to.

737

Map user

List of map permissions based on users. It has the following properties:

Property Type Description

sysmapuserid string (readonly) ID of the map user.
userid
(required)

string User ID.

permission
(required)

integer Type of permission level.

Possible values:
2 - read only;
3 - read-write;

Map user group

List of map permissions based on user groups. It has the following properties:

Property Type Description

sysmapusrgrpid string (readonly) ID of the map user group.
usrgrpid
(required)

string User group ID.

permission
(required)

integer Type of permission level.

Possible values:
2 - read only;
3 - read-write;

map.create

Description

object map.create(object/array maps)

This method allows to create new maps.

Parameters

(object/array) Maps to create.

Additionally to the standard map properties, the method accepts the following parameters.

Parameter Type Description

links array Map links to be created on the map.
selements array Map elements to be created on the map.
urls array Map URLs to be created on the map.
users array Map user shares to be created on the map.
userGroups array Map user group shares to be created on the map.

Note:
To create map links you’ll need to set a map elements selementid to an arbitrary value and then use this value to
reference this element in the links selementid1 or selementid2 properties. When the element is created, this value
will be replaced with the correct ID generated by Zabbix. See example.

Return values

(object) Returns an object containing the IDs of the created maps under the sysmapids property. The order of the returned IDs
matches the order of the passed maps.

Examples

Create an empty map

738

Create a map with no elements.

Request:

{
"jsonrpc": "2.0",
"method": "map.create",
"params": {

"name": "Map",
"width": 600,
"height": 600

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"8"

]
},
"id": 1

}

Create a host map

Create a map with two host elements and a link between them. Note the use of temporary ”selementid1” and ”selementid2”
values in the map link object to refer to map elements.

Request:

{
"jsonrpc": "2.0",
"method": "map.create",
"params": {

"name": "Host map",
"width": 600,
"height": 600,
"selements": [

{
"elementid": "1033",
"selementid": "1",
"elementtype": 0,
"iconid_off": "2"

},
{

"elementid": "1037",
"selementid": "2",
"elementtype": 0,
"iconid_off": "2"

}
],
"links": [

{
"selementid1": "1",
"selementid2": "2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

739

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"9"

]
},
"id": 1

}

Map sharing

Create a map with two types of sharing (user and user group).

Request:

{
"jsonrpc": "2.0",
"method": "map.create",
"params": {

"name": "Map sharing",
"width": 600,
"height": 600,
"users": [

{
"userid": "4",
"permission": "3"

}
],
"userGroups": [

{
"usrgrpid": "7",
"permission": "2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"9"

]
},
"id": 1

}

See also

• Map element
• Map link
• Map URL
• Map user
• Map user group

Source

CMap::create() in frontends/php/include/classes/api/services/CMap.php.

map.delete

740

Description

object map.delete(array mapIds)

This method allows to delete maps.

Parameters

(array) IDs of the maps to delete.

Return values

(object) Returns an object containing the IDs of the deleted maps under the sysmapids property.

Examples

Delete multiple maps

Delete two maps.

Request:

{
"jsonrpc": "2.0",
"method": "map.delete",
"params": [

"12",
"34"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"12",
"34"

]
},
"id": 1

}

Source

CMap::delete() in frontends/php/include/classes/api/services/CMap.php.

map.get

Description

integer/array map.get(object parameters)

The method allows to retrieve maps according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

sysmapids string/array Return only maps with the given IDs.
userids string/array Return only maps that belong to the given user IDs.
expandUrls flag Adds global map URLs to the corresponding map

elements and expands macros in all map element
URLs.

selectIconMap query Returns the icon map used on the map in the
iconmap property.

741

Parameter Type Description

selectLinks query Returns map links between elements in the links
property.

selectSelements query Returns the map elements from the map in the
selements property.

selectUrls query Returns the map URLs in the urls property.
selectUsers query Returns users that the map is shared with in users

property.
selectUserGroups query Returns user groups that the map is shared with in

userGroups property.
sortfield string/array Sort the result by the given properties.

Possible values are: name, width and height.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve a map

Retrieve all data about map ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "map.get",
"params": {

"output": "extend",
"selectSelements": "extend",
"selectLinks": "extend",
"selectUsers": "extend",
"selectUserGroups": "extend",
"sysmapids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"selements": [

{
"selementid": "10",

742

"sysmapid": "3",
"elementid": "0",
"elementtype": "4",
"iconid_off": "1",
"iconid_on": "0",
"label": "Zabbix server",
"label_location": "3",
"x": "11",
"y": "141",
"iconid_disabled": "0",
"iconid_maintenance": "0",
"elementsubtype": "0",
"areatype": "0",
"width": "200",
"height": "200",
"viewtype": "0",
"use_iconmap": "1",
"application": "",
"urls": []

},
{

"selementid": "11",
"sysmapid": "3",
"elementid": "0",
"elementtype": "4",
"iconid_off": "1",
"iconid_on": "0",
"label": "Web server",
"label_location": "3",
"x": "211",
"y": "191",
"iconid_disabled": "0",
"iconid_maintenance": "0",
"elementsubtype": "0",
"areatype": "0",
"width": "200",
"height": "200",
"viewtype": "0",
"use_iconmap": "1",
"application": "",
"urls": []

}
],
"links": [

{
"linkid": "23",
"sysmapid": "3",
"selementid1": "10",
"selementid2": "11",
"drawtype": "0",
"color": "00CC00",
"label": "",
"linktriggers": []

}
],
"users": [

{
"sysmapuserid": "1",
"userid": "2",
"permission": "2"

}
],

743

"userGroups": [
{

"sysmapusrgrpid": "1",
"usrgrpid": "7",
"permission": "2"

}
],
"sysmapid": "3",
"name": "Local nerwork",
"width": "400",
"height": "400",
"backgroundid": "0",
"label_type": "2",
"label_location": "3",
"highlight": "1",
"expandproblem": "1",
"markelements": "0",
"show_unack": "0",
"grid_size": "50",
"grid_show": "1",
"grid_align": "1",
"label_format": "0",
"label_type_host": "2",
"label_type_hostgroup": "2",
"label_type_trigger": "2",
"label_type_map": "2",
"label_type_image": "2",
"label_string_host": "",
"label_string_hostgroup": "",
"label_string_trigger": "",
"label_string_map": "",
"label_string_image": "",
"iconmapid": "0",
"expand_macros": "0",
"severity_min": "0",
"userid": "1",
"private": "1"

}
],
"id": 1

}

See also

• Icon map
• Map element
• Map link
• Map URL
• Map user
• Map user group

Source

CMap::get() in frontends/php/include/classes/api/services/CMap.php.

map.isreadable

Description

boolean map.isreadable(array sysmapIds)

This method checks if the given maps are available for reading.

744

Warning:
This method is deprecated and will be removed in the future. Please use map.get instead.

Parameters

(array) IDs of the maps to check.

Return values

(boolean) Returns true if the given maps are available for reading.

Examples

Check multiple maps

Check if the two maps are readable.

Request:

{
"jsonrpc": "2.0",
"method": "map.isreadable",
"params": [

"32", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• map.iswritable

Source

CMap::isReadable() in frontends/php/include/classes/api/services/CMap.php.

map.iswritable

Description

boolean map.iswritable(array sysmapIds)

This method checks if the given maps are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use map.get instead.

Parameters

(array) IDs of the maps to check.

Return values

(boolean) Returns true if the given maps are available for writing.

Examples

Check multiple maps

Check if the two maps are writable.

Request:

745

{
"jsonrpc": "2.0",
"method": "map.iswritable",
"params": [

"32", "7"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• map.isreadable

Source

CMap::isWritable() in frontends/php/include/classes/api/services/CMap.php.

map.update

Description

object map.update(object/array maps)

This method allows to update existing maps.

Parameters

(object/array) Map properties to be updated.

The mapid property must be defined for each map, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard map properties, the method accepts the following parameters.

Parameter Type Description

links array Map liks to replace the existing links.
selements array Map elements to replace the existing elements.
urls array Map URLs to replace the existing URLs.
users array Map user shares to replace the existing elements.
userGroups array Map user group shares to replace the existing elements.

Note:
To create map links between new map elements you’ll need to set an elements selementid to an arbitrary value and
then use this value to reference this element in the links selementid1 or selementid2 properties. When the element
is created, this value will be replaced with the correct ID generated by Zabbix. See example for map.create.

Return values

(object) Returns an object containing the IDs of the updated maps under the sysmapids property.

Examples

Resize a map

Change the size of the map to 1200x1200 pixels.

Request:

746

{
"jsonrpc": "2.0",
"method": "map.update",
"params": {

"sysmapid": "8",
"width": 1200,
"height": 1200

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"8"

]
},
"id": 1

}

Change map owner

Available only for admins and super admins.

Request:

{
"jsonrpc": "2.0",
"method": "map.update",
"params": {

"sysmapid": "9",
"userid": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"9"

]
},
"id": 2

}

See also

• Map element
• Map link
• Map URL
• Map user
• Map user group

Source

CMap::update() in frontends/php/include/classes/api/services/CMap.php.

Media

747

This class is designed to work with media.

Object references:

• Media

Available methods:

• usermedia.get - retrieving media

Methods to configure media via the user API:

• user.addmedia - creating media
• user.updatemedia - updating media
• user.deletemedia - deleting media

> Media object

The following objects are directly related to the usermedia API.

Media

Note:
Media are created, updated and deleted via the the user API.

The media object defines how a media type should be used for a user. It has the following properties.

Property Type Description

mediaid string (readonly) ID of the media.
active
(required)

integer Whether the media is enabled.

Possible values:
0 - enabled;
1 - disabled.

mediatypeid
(required)

string ID of the media type used by the media.

period
(required)

string Time when the notifications can be sent as a time period.

sendto
(required)

string Address, user name or other identifier of the recipient.

severity
(required)

integer Trigger severities to send notifications about.

Severities are stored in binary form with each bit
representing the corresponding severity. For example,
12 equals 1100 in binary and means, that notifications
will be sent from triggers with severities warning and
average.

Refer to the trigger object page for a list of supported
trigger severities.

userid
(required)

string ID of the user that uses the media.

usermedia.get

Description

integer/array usermedia.get(object parameters)

The method allows to retrieve media according to the given parameters.

Parameters

748

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediaids string/array Return only media with the given IDs.
usrgrpids string/array Return only media that are used by users in the given

user groups.
userids string/array Return only media that are used by the given users.
mediatypeids string/array Return only media that use the given media types.
sortfield string/array Sort the result by the given properties.

Possible values are: mediaid, userid and
mediatypeid.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving media by user

Retrieve all media for the given user.

Request:

{
"jsonrpc": "2.0",
"method": "usermedia.get",
"params": {

"output": "extend",
"userids": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mediaid": "8",
"userid": "1",
"mediatypeid": "3",
"sendto": "+3711231233",
"active": "0",
"severity": "48",

749

"period": "1-5,09:00-18:00"
},
{

"mediaid": "9",
"userid": "1",
"mediatypeid": "1",
"sendto": "john@company.com",
"active": "0",
"severity": "63",
"period": "1-7,00:00-24:00"

}
],
"id": 1

}

Source

CUserMedia::get() in frontends/php/include/classes/api/services/CUserMedia.php.

Media type

This class is designed to work with media types.

Object references:

• Media type

Available methods:

• mediatype.create - creating new media types
• mediatype.delete - deleting media types
• mediatype.get - retrieving media types
• mediatype.update - updating media types

> Media type object

The following objects are directly related to the mediatype API.

Media type

The media type object has the following properties.

Property Type Description

mediatypeid string (readonly) ID of the media type.
description
(required)

string Name of the media type.

type
(required)

integer Transport used by the media type.

Possible values:
0 - email;
1 - script;
2 - SMS;
3 - Jabber;
100 - Ez Texting.

750

Property Type Description

exec_path string For script media types exec_path contains the name of
the executed script.

For Ez Texting exec_path contains the message text
limit.
Possible text limit values:
0 - USA (160 characters);
1 - Canada (136 characters).

Required for script and Ez Texting media types.
gsm_modem string Serial device name of the GSM modem.

Required for SMS media types.
passwd string Authentication password.

Required for Jabber and Ez Texting media types.
smtp_email string Email address from which notifications will be sent.

Required for email media types.
smtp_helo string SMTP HELO.

Required for email media types.
smtp_server string SMTP server.

Required for email media types.
smtp_port integer SMTP server port to connect to.
smtp_security integer SMTP connection security level to use.

Possible values:
0 - None;
1 - STARTTLS;
2 - SSL/TLS.

smtp_verify_host integer SSL verify host for SMTP.

Possible values:
0 - No;
1 - Yes.

smtp_verify_peer integer SSL verify peer for SMTP.

Possible values:
0 - No;
1 - Yes.

smtp_authentication integer SMTP authentication method to use.

Possible values:
0 - None;
1 - Normal password.

status integer Whether the media type is enabled.

Possible values:
0 - (default) enabled;
1 - disabled.

username string Username or Jabber identifier.

Required for Jabber and Ez Texting media types.
exec_params string Script parameters.

Each parameter ends with a new line feed.

mediatype.create

751

Description

object mediatype.create(object/array mediaTypes)

This method allows to create new media types.

Parameters

(object/array) Media types to create.

The method accepts media types with the standard media type properties.

Return values

(object) Returns an object containing the IDs of the created media types under the mediatypeids property. The order of the
returned IDs matches the order of the passed media types.

Examples

Creating a media type

Create a new e-mail media type.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.create",
"params": {

"description": "E-mail",
"type": 0,
"smtp_server": "rootmail@company.com",
"smtp_helo": "company.com",
"smtp_email": "zabbix@company.com"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": [
"7"

]
},
"id": 1

}

Source

CMediaType::create() in frontends/php/include/classes/api/services/CMediaType.php.

mediatype.delete

Description

object mediatype.delete(array mediaTypeIds)

This method allows to delete media types.

Parameters

(array) IDs of the media types to delete.

Return values

(object) Returns an object containing the IDs of the deleted media types under the mediatypeids property.

Examples

Deleting multiple media types

752

Delete two media types.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.delete",
"params": [

"3",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": [
"3",
"5"

]
},
"id": 1

}

Source

CMediaType::delete() in frontends/php/include/classes/api/services/CMediaType.php.

mediatype.get

Description

integer/array mediatype.get(object parameters)

The method allows to retrieve media types according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediatypeids string/array Return only media types with the given IDs.
mediaids string/array Return only media types used by the given media.
userids string/array Return only media types used by the given users.
selectUsers query Return the users that use the media type in the

users property.
sortfield string/array Sort the result by the given properties.

Possible values are: mediatypeid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array

753

Parameter Type Description

startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving media types

Retrieve all configured media types.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.get",
"params": {

"output": "extend"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mediatypeid": "1",
"type": "0",
"description": "Email",
"smtp_server": "mail.company.com",
"smtp_helo": "company.com",
"smtp_email": "zabbix@company.com",
"exec_path": "",
"gsm_modem": "",
"username": "",
"passwd": "",
"status": "0",
"smtp_port": "25",
"smtp_security": "0",
"smtp_verify_peer": "0",
"smtp_verify_host": "0",
"smtp_authentication": "0",
"exec_params": ""

},
{

"mediatypeid": "2",
"type": "3",
"description": "Jabber",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "",
"username": "jabber@company.com",
"passwd": "zabbix",
"status": "0",
"smtp_port": "25",
"smtp_security": "0",

754

"smtp_verify_peer": "0",
"smtp_verify_host": "0",
"smtp_authentication": "0",
"exec_params": ""

},
{

"mediatypeid": "3",
"type": "2",
"description": "SMS",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "/dev/ttyS0",
"username": "",
"passwd": "",
"status": "0",
"smtp_port": "25",
"smtp_security": "0",
"smtp_verify_peer": "0",
"smtp_verify_host": "0",
"smtp_authentication": "0",
"exec_params": ""

}
],
"id": 1

}

See also

• User

Source

CMediaType::get() in frontends/php/include/classes/api/services/CMediaType.php.

mediatype.update

Description

object mediatype.update(object/array mediaTypes)

This method allows to update existing media types.

Parameters

(object/array) Media type properties to be updated.

The mediatypeid property must be defined for each media type, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated media types under the mediatypeids property.

Examples

Enabling a media type

Enable a media type, that is, set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.update",
"params": {

"mediatypeid": "6",
"status": 0

},

755

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": [
"6"

]
},
"id": 1

}

Source

CMediaType::update() in frontends/php/include/classes/api/services/CMediaType.php.

Problem

This class is designed to work with problems.

Object references:

• Problem

Available methods:

• problem.get - retrieving problems

> Problem object

Note:
problems are created by the Zabbix server and cannot be modified via the API.

The problem object has the following properties.

Property Type Description

eventid string ID of the problem event.
source integer Type of the problem event.

Possible values:
0 - event created by a trigger;
3 - internal event.

object integer Type of object that is related to the problem event.

Possible values for trigger events:
0 - trigger.

Possible values for internal events:
0 - trigger;
4 - item;
5 - LLD rule.

objectid string ID of the related object.
clock timestamp Time when the problem event was created.
ns integer Nanoseconds when the problem event was created.
r_eventid string Recovery event ID.
r_clock timestamp Time when the recovery event was created.
r_ns integer Nanoseconds when the recovery event was created.

756

Property Type Description

correlationid string Correlation rule ID if this event was recovered by global
correlation rule.

userid string User ID if the problem was manually closed.

problem.get

Description

integer/array problem.get(object parameters)

The method allows to retrieve problems according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

eventids string/array Return only problems with the given IDs.
groupids string/array Return only problems created by objects that belong

to the given host groups.
hostids string/array Return only problems created by objects that belong

to the given hosts.
objectids string/array Return only problems created by the given objects.
applicationids string/array Return only problems created by objects that belong

to the given applications. Applies only if object is
trigger or item.

source integer Return only problems with the given type.

Refer to the problem event object page for a list of
supported event types.

Default: 0 - problem created by a trigger.
object integer Return only problems created by objects of the given

type.

Refer to the problem event object page for a list of
supported object types.

Default: 0 - trigger.
acknowledged boolean true - return acknowledged problems only;

false - unacknowledged only.
severities integer/array Return only problems with given trigger severities.

Applies only if object is trigger.
tags array of objects Return only problems with given tags. Exact match by

tag and case-insensitive search by value.
Format: [{"tag": "<tag>", "value":
"<value>"}, ...].
An empty array returns all problems.

recent string true - return PROBLEM and recently RESOLVED
problems (depends on Display OK triggers for N
seconds)
Default: false - UNRESOLVED problems only

eventid_from string Return only problems with IDs greater or equal to the
given ID.

eventid_till string Return only problems with IDs less or equal to the
given ID.

time_from timestamp Return only problems that have been created after or
at the given time.

time_till timestamp Return only problems that have been created before
or at the given time.

757

Parameter Type Description

selectAcknowledges query Return problem’s acknowledges in the
acknowledges property. Acknowledges are sorted in
reverse chronological order.

The problem acknowledgement object has the
following properties:
acknowledgeid - (string) acknowledgement’s ID;
userid - (string) ID of the user that acknowledged
the event;
eventid - (string) ID of the acknowledged event;
clock - (timestamp) time when the event was
acknowledged;
message - (string) text of the acknowledgement
message;

Supports count.
selectTags query Return problem’s tags. Output format: [{"tag":

"<tag>", "value": "<value>"}, ...].
sortfield string/array Sort the result by the given properties.

Possible values are: eventid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving trigger problem events

Retrieve recent events from trigger ”15112.”

Request:

{
"jsonrpc": "2.0",
"method": "problem.get",
"params": {

"output": "extend",
"selectAcknowledges": "extend",
"selectTags": "extend",
"objectids": "15112",
"recent": "true",
"sortfield": ["eventid"],
"sortorder": "DESC"

},
"auth": "67f45d3eb1173338e1b1647c4bdc1916",

758

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"eventid": "1245463",
"source": "0",
"object": "0",
"objectid": "15112",
"clock": "1472457242",
"ns": "209442442",
"r_eventid": "1245468",
"r_clock": "1472457285",
"r_ns": "125644870",
"correlationid": "0",
"userid": "1",
"acknowledges": [

{
"acknowledgeid": "14443",
"userid": "1",
"eventid": "1245463",
"clock": "1472457281",
"message": "problem solved",
"action": "1"

}
],
"tags": [

{
"tag": "test tag",
"value": "test value"

}
]

}
],
"id": 1

}

See also

• Alert
• Item
• Host
• LLD rule
• Trigger

Source

CEvent::get() in frontends/php/include/classes/api/services/CProblem.php.

Proxy

This class is designed to work with proxies.

Object references:

• Proxy
• Proxy interface

Available methods:

• proxy.create - create new proxies

759

• proxy.delete - delete proxies
• proxy.get - retrieve proxies
• proxy.isreadable - check if a proxy is readable
• proxy.iswritable - check if a proxy is writable
• proxy.update - update proxies

> Proxy object

The following objects are directly related to the proxy API.

Proxy

The proxy object has the following properties.

Property Type Description

proxyid string (readonly) ID of the proxy.
host
(required)

string Name of the proxy.

status
(required)

integer Type of proxy.

Possible values:
5 - active proxy;
6 - passive proxy.

description text Description of the proxy.
lastaccess timestamp (readonly) Time when the proxy last connected to the

server.
tls_connect integer Connections to host.

Possible values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_accept integer Connections from host.

Possible bitmap values are:
1 - (default) No encryption;
2 - PSK;
4 - certificate.

tls_issuer string Certificate issuer.
tls_subject string Certificate subject.
tls_psk_identity string PSK identity. Required if either tls_connect or

tls_accept has PSK enabled.
tls_psk string The preshared key, at least 32 hex digits. Required if

either tls_connect or tls_accept has PSK enabled.

Proxy interface

The proxy interface object defines the interface used to connect to a passive proxy. It has the following properties.

Property Type Description

interfaceid string (readonly) ID of the interface.
dns
(required)

string DNS name to connect to.

Can be empty if connections are made via IP address.
ip
(required)

string IP address to connect to.

Can be empty if connections are made via DNS names.
port
(required)

string Port number to connect to.

760

Property Type Description

useip
(required)

integer Whether the connection should be made via IP address.

Possible values are:
0 - connect using DNS name;
1 - connect using IP address.

hostid string (readonly) ID of the proxy the interface belongs to.

proxy.create

Description

object proxy.create(object/array proxies)

This method allows to create new proxies.

Parameters

(object/array) Proxies to create.

Additionally to the standard proxy properties, the method accepts the following parameters.

Parameter Type Description

hosts array Hosts to be monitored by the proxy. If a host is
already monitored by a different proxy, it will be
reassigned to the current proxy.

The hosts must have the hostid property defined.
interface object Host interface to be created for the passive proxy.

Required for passive proxies.
interfaces
(deprecated)

array Host interface to be created for the passive proxy
passed as an array.

Return values

(object) Returns an object containing the IDs of the created proxies under the proxyids property. The order of the returned
IDs matches the order of the passed proxies.

Examples

Create an active proxy

Create an action proxy ”Active proxy” and assign a host to be monitored by it.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.create",
"params": {

"host": "Active proxy",
"status": "5",
"hosts": [

{
"hostid": "10279"

}
]

},
"auth": "ab9638041ec6922cb14b07982b268f47",
"id": 1

}

Response:

761

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10280"

]
},
"id": 1

}

Create a passive proxy

Create a passive proxy ”Passive proxy” and assign two hosts to be monitored by it.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.create",
"params": {

"host": "Passive proxy",
"status": "6",
"interface": {

"ip": "127.0.0.1",
"dns": "",
"useip": "1",
"port": "10051"

},
"hosts": [

{
"hostid": "10192"

},
{

"hostid": "10139"
}

]
},
"auth": "ab9638041ec6922cb14b07982b268f47",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10284"

]
},
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::create() in frontends/php/include/classes/api/services/CProxy.php.

proxy.delete

Description

object proxy.delete(array proxies)

762

This method allows to delete proxies.

Parameters

(array) IDs of proxies to delete.

Return values

(object) Returns an object containing the IDs of the deleted proxies under the proxyids property.

Examples

Delete multiple proxies

Delete two proxies.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.delete",
"params": [

"10286",
"10285"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10286",
"10285"

]
},
"id": 1

}

Source

CProxy::delete() in frontends/php/include/classes/api/services/CProxy.php.

proxy.get

Description

integer/array proxy.get(object parameters)

The method allows to retrieve proxies according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

proxyids string/array Return only proxies with the given IDs.
selectHosts query Return hosts monitored by the proxy in the hosts

property.
selectInterface query Return the proxy interface used by a passive proxy in

the interface property.
sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host and status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.

763

Parameter Type Description

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all proxies

Retrieve all configured proxies and their interfaces.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.get",
"params": {

"output": "extend",
"selectInterface": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"host": "Active proxy",
"status": "5",
"lastaccess": "0",
"description": "",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": "",
"proxyid": "30091",
"interface": []

},
{

"host": "Passive proxy",
"status": "6",
"lastaccess": "0",
"description": "",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",

764

"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": "",
"proxyid": "30092",
"interface": {

"interfaceid": "30109",
"hostid": "30092",
"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "10051"

]
}

],
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::get() in frontends/php/include/classes/api/services/CProxy.php.

proxy.isreadable

Description

boolean proxy.isreadable(array proxyIds)

This method checks if the given proxies are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use proxy.get instead.

Parameters

(array) IDs of the proxies to check.

Return values

(boolean) Returns true if the given proxies are available for reading.

Examples

Check multiple proxies

Check if the two proxies are readable.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.isreadable",
"params": [

"30091",
"30092"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,

765

"id": 1
}

See also

• proxy.iswritable

Source

CProxy::isReadable() in frontends/php/include/classes/api/services/CProxy.php.

proxy.iswritable

Description

boolean proxy.iswritable(array proxyIds)

This method checks if the given proxies are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use proxy.get instead.

Parameters

(array) IDs of the proxies to check.

Return values

(boolean) Returns true if the given proxies are available for writing.

Examples

Check multiple proxies

Check if the two proxies are writable.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.iswritable",
"params": [

"30091",
"30092"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• proxy.isreadable

Source

CProxy::isWritable() in frontends/php/include/classes/api/services/CProxy.php.

proxy.update

Description

object proxy.update(object/array proxies)

766

This method allows to update existing proxies.

Parameters

(object/array) Proxy properties to be updated.

The proxyid property must be defined for each proxy, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard proxy properties, the method accepts the following parameters.

Parameter Type Description

hosts array Hosts to be monitored by the proxy. If a host is
already monitored by a different proxy, it will be
reassigned to the current proxy.

The hosts must have the hostid property defined.
interface object Host interface to replace the existing interface for the

passive proxy.
interfaces
(deprecated)

array Host interface to be created for the passive proxy
passed as an array.

Return values

(object) Returns an object containing the IDs of the updated proxies under the proxyids property.

Examples

Change hosts monitored by a proxy

Update the proxy to monitor the two given hosts.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.update",
"params": {

"proxyid": "10293",
"hosts": [

"10294",
"10295"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10293"

]
},
"id": 1

}

Change proxy status

Change the proxy to an active proxy and rename it to ”Active proxy”.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.update",

767

"params": {
"proxyid": "10293",
"host": "Active proxy",
"status": "5"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10293"

]
},
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::update() in frontends/php/include/classes/api/services/CProxy.php.

Screen

This class is designed to work with screen.

Object references:

• Screen
• Screen user
• Screen user group

Available methods:

• screen.create - creating new screen
• screen.delete - deleting screens
• screen.get - retrieving screens
• screen.update - updating screens

> Screen object

The following objects are directly related to the screen API.

Screen

The screen object has the following properties.

Property Type Description

screenid string (readonly) ID of the screen.
name
(required)

string Name of the screen.

hsize integer Width of the screen.

Default: 1

768

Property Type Description

vsize integer Height of the screen.

Default: 1
userid string Screen owner user ID.
private integer Type of screen sharing.

Possible values:
0 - public screen;
1 - (default) private screen.

Screen user

List of screen permissions based on users. It has the following properties:

Property Type Description

screenuserid string (readonly) ID of the screen user.
userid
(required)

string User ID.

permission
(required)

integer Type of permission level.

Possible values:
2 - read only;
3 - read-write;

Screen user group

List of screen permissions based on user groups. It has the following properties:

Property Type Description

screenusrgrpid string (readonly) ID of the screen user group.
usrgrpid
(required)

string User group ID.

permission
(required)

integer Type of permission level.

Possible values:
2 - read only;
3 - read-write;

screen.create

Description

object screen.create(object/array screens)

This method allows to create new screens.

Parameters

(object/array) Screens to create.

Additionally to the standard screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Screen items to be created for the screen.
users array Screen user shares to be created on the screen.
userGroups array Screen user group shares to be created on the screen.

Return values

769

(object) Returns an object containing the IDs of the created screens under the screenids property. The order of the returned
IDs matches the order of the passed screens.

Examples

Creating a screen

Create a screen named ”Graphs” with 2 rows and 3 columns and add a graph to the upper-left cell.

Request:

{
"jsonrpc": "2.0",
"method": "screen.create",
"params": {

"name": "Graphs",
"hsize": 3,
"vsize": 2,
"screenitems": [

{
"resourcetype": 0,
"resourceid": "612",
"rowspan": 0,
"colspan": 0,
"x": 0,
"y": 0

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"26"

]
},
"id": 1

}

Screen sharing

Create a screen with two types of sharing (user and user group).

Request:

{
"jsonrpc": "2.0",
"method": "screen.create",
"params": {

"name": "Screen sharing",
"hsize": 3,
"vsize": 2,
"users": [

{
"userid": "4",
"permission": "3"

}
],
"userGroups": [

{
"usrgrpid": "7",
"permission": "2"

770

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"83"

]
},
"id": 1

}

See also

• Screen item
• Screen user
• Screen user group

Source

CScreen::create() in frontends/php/include/classes/api/services/CScreen.php.

screen.delete

Description

object screen.delete(array screenIds)

This method allows to delete screens.

Parameters

(array) IDs of the screens to delete.

Return values

(object) Returns an object containing the IDs of the deleted screens under the screenids property.

Examples

Deleting multiple screens

Delete two screens.

Request:

{
"jsonrpc": "2.0",
"method": "screen.delete",
"params": [

"25",
"26"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"25",

771

"26"
]

},
"id": 1

}

Source

CScreen::delete() in frontends/php/include/classes/api/services/CScreen.php.

screen.get

Description

integer/array screen.get(object parameters)

The method allows to retrieve screens according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenids string/array Return only screens with the given IDs.
userids string/array Return only screens that belong to the given user IDs.
screenitemids string/array Return only screen that contain the given screen

items.
selectUsers query Returns users that the screen is shared with in users

property.
selectUserGroups query Returns user groups that the screen is shared with in

userGroups property.
selectScreenItems query Return the screen items that are used in the screen.
sortfield string/array Sort the result by the given properties.

Possible values are: screenid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving a screen by ID

Retrieve all data about screen ”26” and its screen items.

Request:

772

{
"jsonrpc": "2.0",
"method": "screen.get",
"params": {

"output": "extend",
"selectScreenItems": "extend",
"selectUsers": "extend",
"selectUserGroups": "extend",
"screenids": "26"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenitems": [

{
"screenitemid": "67",
"screenid": "26",
"resourcetype": "0",
"resourceid": "612",
"width": "320",
"height": "200",
"x": "0",
"y": "0",
"colspan": "0",
"rowspan": "0",
"elements": "25",
"valign": "0",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0"

}
],
"users": [

{
"sysmapuserid": "1",
"userid": "2",
"permission": "2"

}
],
"userGroups": [

{
"screenusrgrpid": "1",
"usrgrpid": "7",
"permission": "3"

}
],
"screenid": "26",
"name": "CPU Graphs",
"hsize": "3",
"vsize": "2",
"templateid": "0",
"userid": "1",
"private": "1"

}

773

],
"id": 1

}

See also

• Screen item
• Screen user
• Screen user group

Source

CScreen::get() in frontends/php/include/classes/api/services/CScreen.php.

screen.update

Description

object screen.update(object/array screens)

This method allows to update existing screens.

Parameters

(object/array) Screen properties to be updated.

The screenid property must be defined for each screen, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Screen items to replace existing screen items.

Screen items are updated by coordinates, so each
screen item must have the x and y properties defined.

users array Screen user shares to replace the existing elements.
userGroups array Screen user group shares to replace the existing

elements.

Return values

(object) Returns an object containing the IDs of the updated screens under the screenids property.

Examples

Renaming a screen

Rename a screen to ”CPU Graphs”.

Request:

{
"jsonrpc": "2.0",
"method": "screen.update",
"params": {

"screenid": "26",
"name": "CPU Graphs"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [

774

"26"
]

},
"id": 1

}

Change screen owner

Available only for admins and super admins.

Request:

{
"jsonrpc": "2.0",
"method": "screen.update",
"params": {

"screenid": "83",
"userid": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"83"

]
},
"id": 2

}

See also

• Screen item
• screenitem.create
• screenitem.update
• screenitem.updatebyposition
• Screen user
• Screen user group

Source

CScreen::update() in frontends/php/include/classes/api/services/CScreen.php.

Screen item

This class is designed to work with screen items.

Object references:

• Screen item

Available methods:

• screenitem.create - creating new screen items
• screenitem.delete - deleting screen items
• screenitem.get - retrieving screen items
• screenitem.isreadable - checking if screen items are readable
• screenitem.iswritable - checking if screen items are writable
• screenitem.update - updating screen items
• screenitem.updatebyposition - updating screen items in a specific screen cell

775

> Screen item object

The following objects are directly related to the screenitem API.

Screen item

The screen item object defines an element displayed on a screen. It has the following properties.

Property Type Description

screenitemid string (readonly) ID of the screen item.
resourcetype
(required)

integer Type of screen item.

Possible values:
0 - graph;
1 - simple graph;
2 - map;
3 - plain text;
4 - hosts info;
5 - triggers info;
6 - status of Zabbix;
7 - clock;
8 - screen;
9 - triggers overview
10 - data overview;
11 - URL;
12 - history of actions;
13 - history of events;
14 - latest host group issues;
15 - system status;
16 - latest host issues;
19 - simple graph prototype;
20 - graph prototype.

screenid
(required)

string ID of the screen that the item belongs to.

application string Application or part of application name by which data in
screen item can be filtered. Applies to resource types:
”Data overview” and ”Triggers overview”.

colspan integer Number of columns the screen item will span across.

Default: 1.
dynamic integer Whether the screen item is dynamic.

Possible values:
0 - (default) not dynamic;
1 - dynamic.

elements integer Number of lines to display on the screen item.

Default: 25.
halign integer Specifies how the screen item must be aligned

horizontally in the cell.

Possible values:
0 - (default) center;
1 - left;
2 - right.

height integer Height of the screen item in pixels.

Default: 200.

776

Property Type Description

max_columns integer Specifies the maximum amount of columns a graph
prototype or simple graph prototype screen element can
have.

Default: 3.
resourceid string ID of the object displayed on the screen item.

Depending on the type of a screen item, the
resourceid property can reference different objects.

Required for data overview, graph, map, plain text,
screen, simple graph and trigger overview screen items.
Unused by local and server time clocks, history of
actions, history of events, hosts info, status of Zabbix,
system status and URL screen items.

rowspan integer Number or rows the screen item will span across.

Default: 1.
sort_triggers integer Order in which actions or triggers must be sorted.

Possible values for history of actions screen elements:
3 - time, ascending;
4 - time, descending;
5 - type, ascending;
6 - type, descending;
7 - status, ascending;
8 - status, descending;
9 - retries left, ascending;
10 - retries left, descending;
11 - recipient, ascending;
12 - recipient, descending.

Possible values for latest host group issues and latest
host issues screen items:
0 - (default) last change, descending;
1 - severity, descending;
2 - host, ascending.

style integer Screen item display option.

Possible values for data overview and triggers overview
screen items:
0 - (default) display hosts on the left side;
1 - display hosts on the top.

Possible values for hosts info and triggers info screen
elements:
0 - (default) horizontal layout;
1 - vertical layout.

Possible values for clock screen items:
0 - (default) local time;
1 - server time;
2 - host time.

Possible values for plain text screen items:
0 - (default) display values as plain text;
1 - display values as HTML.

url string URL of the webpage to be displayed in the screen item.
Used by URL screen items.

777

Property Type Description

valign integer Specifies how the screen item must be aligned vertically
in the cell.

Possible values:
0 - (default) middle;
1 - top;
2 - bottom.

width integer Width of the screen item in pixels.

Default: 320.
x integer X-coordinates of the screen item on the screen, from left

to right.

Default: 0.
y integer Y-coordinates of the screen item on the screen, from top

to bottom.

Default: 0.

screenitem.create

Description

object screenitem.create(object/array screenItems)

This method allows to create new screen items.

Parameters

(object/array) Screen items to create.

The method accepts screen items with the standard screen item properties.

Return values

(object) Returns an object containing the IDs of the created screen items under the screenitemids property. The order of the
returned IDs matches the order of the passed screen items.

Examples

Creating a screen item

Create a screen item displaying a graph in the left-upper cell of the screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.create",
"params": {

"screenid": 16,
"resourcetype": 0,
"resourceid": 612,
"x": 0,
"y": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"65"

778

]
},
"id": 1

}

See also

• screen.update

Source

CScreenItem::create() in frontends/php/include/classes/api/services/CScreenItem.php.

screenitem.delete

Description

object screenitem.delete(array screenItemIds)

This method allows to delete screen items.

Parameters

(array) IDs of the screen items to delete.

Return values

(object) Returns an object containing the IDs of the deleted screen items under the screenitemids property.

Examples

Deleting multiple screen items

Delete two screen items.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.delete",
"params": [

"65",
"63"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"65",
"63"

]
},
"id": 1

}

See also

• screen.update

Source

CScreenItem::delete() in frontends/php/include/classes/api/services/CScreenItem.php.

779

screenitem.get

Description

integer/array screenitem.get(object parameters)

The method allows to retrieve screen items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenitemids string/array Return only screen items with the given IDs.
screenids string/array Return only screen items that belong to the given

screen.
sortfield string/array Sort the result by the given properties.

Possible values are: screenitemid and screenid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving screen items from screen

Retrieve all screen items from the given screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.get",
"params": {

"output": "extend",
"screenids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{

780

"screenitemid": "20",
"screenid": "3",
"resourcetype": "0",
"resourceid": "433",
"width": "500",
"height": "120",
"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0",
"application": "",
"max_columns": "3"

},
{

"screenitemid": "21",
"screenid": "3",
"resourcetype": "0",
"resourceid": "387",
"width": "500",
"height": "100",
"x": "0",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0",
"application": "",
"max_columns": "3"

},
{

"screenitemid": "22",
"screenid": "3",
"resourcetype": "1",
"resourceid": "10013",
"width": "500",
"height": "148",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0",
"application": "",
"max_columns": "3"

},

781

{
"screenitemid": "23",
"screenid": "3",
"resourcetype": "1",
"resourceid": "22181",
"width": "500",
"height": "184",
"x": "1",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0",
"application": "",
"max_columns": "3"

}
],
"id": 1

}

Source

CScreenItem::get() in frontends/php/include/classes/api/services/CScreenItem.php.

screenitem.isreadable

Description

boolean screenitem.isreadable(array screenItemIds)

This method checks if the given screen items are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use screenitem.get instead.

Parameters

(array) IDs of the screen items to check.

Return values

(boolean) Returns true if the given screen items are available for reading.

Examples

Check multiple screen items

Check if the two screen items are readable.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.isreadable",
"params": [

"20",
"21"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

782

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• screenitem.iswritable

Source

CScreenItem::isReadable() in frontends/php/include/classes/api/services/CScreenItem.php.

screenitem.iswritable

Description

boolean screenitem.iswritable(array screenItemIds)

This method checks if the given screen items are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use screenitem.get instead.

Parameters

(array) IDs of the screen items to check.

Return values

(boolean) Returns true if the given screen items are available for writing.

Examples

Check multiple screen items

Check if the two screen items are writable.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.iswritable",
"params": [

"20",
"21"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• screenitem.isreadable

Source

CScreenItem::isWritable() in frontends/php/include/classes/api/services/CScreenItem.php.

783

screenitem.update

Description

object screenitem.update(object/array screenItems)

This method allows to update existing screen items.

Parameters

(object/array) Screen item properties to be updated.

The screenitemid property must be defined for each screen item, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated screen items under the screenitemids property.

Examples

Setting the size of the screen item

Set the width of the screen item to 500px and height to 300px.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.update",
"params": {

"screenitemid": "20",
"width": 500,
"height": 300

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"20"

]
},
"id": 1

}

See also

• screenitem.updatebyposition

Source

CScreenItem::update() in frontends/php/include/classes/api/services/CScreenItem.php.

screenitem.updatebyposition

Description

object screenitem.updatebyposition(array screenItems)

This method allows to update screen items in the given screen cells. If a cell is empty, a new screen item will be created.

Parameters

(array) Screen item properties to be updated.

The x, y and screenid properties must be defined for each screen item, all other properties are optional. Only the passed
properties will be updated, all others will remain unchanged.

784

Return values

(object) Returns an object containing the IDs of the updated and created screen items under the screenitemids property.

Examples

Changing a screen items resource ID

Change the resource ID for the screen element located in the upper-left cell of the screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.updatebyposition",
"params": [

{
"screenid": "16",
"x": 0,
"y": 0,
"resourceid": "644"

}
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"66"

]
},
"id": 1

}

See also

• screenitem.update

Source

CScreenItem::update() in frontends/php/include/classes/api/services/CScreenItem.php.

Script

This class is designed to work with scripts.

Object references:

• Script

Available methods:

• script.create - create new scripts
• script.delete - delete scripts
• script.execute - run scripts
• script.get - retrieve scripts
• script.getscriptsbyhosts - retrieve scripts for hosts
• script.update - update scripts

> Script object

The following objects are directly related to the script API.

785

Script

The script object has the following properties.

Property Type Description

scriptid string (readonly) ID of the script.
command
(required)

string Command to run.

name
(required)

string Name of the script.

confirmation string Confirmation pop up text. The pop up will appear when
trying to run the script from the Zabbix frontend.

description string Description of the script.
execute_on integer Where to run the script.

Possible values:
0 - run on Zabbix agent;
1 - (default) run on Zabbix server.

groupid string ID of the host group that the script can be run on. If set
to 0, the script will be available on all host groups.

Default: 0.
host_access integer Host permissions needed to run the script.

Possible values:
2 - (default) read;
3 - write.

type integer Script type.

Possible values:
0 - (default) script;
1 - IPMI.

usrgrpid string ID of the user group that will be allowed to run the script.
If set to 0, the script will be available for all user groups.

Default: 0.

script.create

Description

object script.create(object/array scripts)

This method allows to create new scripts.

Parameters

(object/array) Scripts to create.

The method accepts scripts with the standard script properties.

Return values

(object) Returns an object containing the IDs of the created scripts under the scriptids property. The order of the returned
IDs matches the order of the passed scripts.

Examples

Create a script

Create a script that will reboot a server. The script will require write access to the host and will display a configuration message
before running in the frontend.

Request:

{
"jsonrpc": "2.0",
"method": "script.create",

786

"params": {
"name": "Reboot server",
"command": "reboot server 1",
"host_access": 3,
"confirmation": "Are you sure you would like to reboot the server?"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"3"

]
},
"id": 1

}

Source

CScript::create() in frontends/php/include/classes/api/services/CScript.php.

script.delete

Description

object script.delete(array scriptIds)

This method allows to delete scripts.

Parameters

(array) IDs of the scripts to delete.

Return values

(object) Returns an object containing the IDs of the deleted scripts under the scriptids property.

Examples

Delete multiple scripts

Delete two scripts.

Request:

{
"jsonrpc": "2.0",
"method": "script.delete",
"params": [

"3",
"4"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"3",
"4"

]

787

},
"id": 1

}

Source

CScript::delete() in frontends/php/include/classes/api/services/CScript.php.

script.execute

Description

object script.execute(object parameters)

This method allows to run a script on a host.

Parameters

(object) Parameters containing the ID of the script to run and the ID of the host.

Parameter Type Description

hostid
(required)

string ID of the host to run the script on.

scriptid
(required)

string ID of the script to run.

Return values

(object) Returns the result of script execution.

Property Type Description

response string Whether the script was run successfully.

Possible values: success or failed.
value string Script output.

Examples

Run a script

Run a ”ping” script on a host.

Request:

{
"jsonrpc": "2.0",
"method": "script.execute",
"params": {

"scriptid": "1",
"hostid": "30079"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"response": "success",
"value": "PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.\n64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.074 ms\n64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.030 ms\n64 bytes from 127.0.0.1: icmp_req=3 ttl=64 time=0.030 ms\n\n--- 127.0.0.1 ping statistics ---\n3 packets transmitted, 3 received, 0% packet loss, time 1998ms\nrtt min/avg/max/mdev = 0.030/0.044/0.074/0.022 ms\n"

},
"id": 1

}

788

Source

CScript::execute() in frontends/php/include/classes/api/services/CScript.php.

script.get

Description

integer/array script.get(object parameters)

The method allows to retrieve scripts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only scripts that can be run on the given host
groups.

hostids string/array Return only scripts that can be run on the given hosts.
scriptids string/array Return only scripts with the given IDs.
usrgrpids string/array Return only scripts that can be run by users in the

given user groups.
selectGroups query Return host groups that the script can be run on in the

groups property.
selectHosts query Return hosts that the script can be run on in the

hosts property.
sortfield string/array Sort the result by the given properties.

Possible values are: scriptid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all scripts

Retrieve all configured scripts.

Request:

{
"jsonrpc": "2.0",
"method": "script.get",
"params": {

"output": "extend"
},

789

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

},
{

"scriptid": "3",
"name": "Detect operating system",
"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

}
],
"id": 1

}

See also

• Host
• Host group

Source

CScript::get() in frontends/php/include/classes/api/services/CScript.php.

script.getscriptsbyhosts

Description

object script.getscriptsbyhosts(array hostIds)

This method allows to retrieve scripts available on the given hosts.

790

Parameters

(string/array) IDs of hosts to return scripts for.

Return values

(object) Returns an object with host IDs as properties and arrays of available scripts as values.

Note:
The method will automatically expand macros in the confirmation text.

Examples

Retrieve scripts by host IDs

Retrieve all scripts available on hosts ”30079” and ”30073”.

Request:

{
"jsonrpc": "2.0",
"method": "script.getscriptsbyhosts",
"params": [

"30079",
"30073"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"30079": [
{

"scriptid": "3",
"name": "Detect operating system",
"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",

791

"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

}
],
"30073": [

{
"scriptid": "3",
"name": "Detect operating system",
"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

}
]

},
"id": 1

}

Source

CScript::getScriptsByHosts() in frontends/php/include/classes/api/services/CScript.php.

script.update

Description

object script.update(object/array scripts)

792

This method allows to update existing scripts.

Parameters

(object/array) Script properties to be updated.

The scriptid property must be defined for each script, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated scripts under the scriptids property.

Examples

Change script command

Change the command of the script to ”/bin/ping -c 10 {HOST.CONN} 2>&1”.

Request:

{
"jsonrpc": "2.0",
"method": "script.update",
"params": {

"scriptid": "1",
"command": "/bin/ping -c 10 {HOST.CONN} 2>&1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"1"

]
},
"id": 1

}

Source

CScript::update() in frontends/php/include/classes/api/services/CScript.php.

Template

This class is designed to work with templates.

Object references:

• Template

Available methods:

• template.create - creating new templates
• template.delete - deleting templates
• template.get - retrieving templates
• template.isreadable - checking if templates are readable
• template.iswritable - checking if templates are writable
• template.massadd - adding related objects to templates
• template.massremove - removing related objects from templates
• template.massupdate - replacing or removing related objects from templates
• template.update - updating templates

793

> Template object

The following objects are directly related to the template API.

Template

The template object has the following properties.

Property Type Description

templateid string (readonly) ID of the template.
host
(required)

string Technical name of the template.

description text Description of the template.
name string Visible name of the host.

Default: host property value.

template.create

Description

object template.create(object/array templates)

This method allows to create new templates.

Parameters

(object/array) Templates to create.

Additionally to the standard template properties, the method accepts the following parameters.

Parameter Type Description

groups
(required)

object/array Host groups to add the template to.

The host groups must have the groupid property
defined.

templates object/array Templates to be linked to the template.

The templates must have the templateid property
defined.

macros object/array User macros to be created for the template.
hosts object/array Hosts to link the template to.

The hosts must have the hostid property defined.

Return values

(object) Returns an object containing the IDs of the created templates under the templateids property. The order of the
returned IDs matches the order of the passed templates.

Examples

Creating a template

Create a template and link it to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.create",
"params": {

"host": "Linux template",
"groups": {

"groupid": 1
},
"hosts": [

794

{
"hostid": "10084"

},
{

"hostid": "10090"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10086"

]
},
"id": 1

}

Source

CTemplate::create() in frontends/php/include/classes/api/services/CTemplate.php.

template.delete

Description

object template.delete(array templateIds)

This method allows to delete templates.

Parameters

(array) IDs of the templates to delete.

Return values

(object) Returns an object containing the IDs of the deleted templates under the templateids property.

Examples

Deleting multiple templates

Delete two templates.

Request:

{
"jsonrpc": "2.0",
"method": "template.delete",
"params": [

"13",
"32"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"13",

795

"32"
]

},
"id": 1

}

Source

CTemplate::delete() in frontends/php/include/classes/api/services/CTemplate.php.

template.get

Description

integer/array template.get(object parameters)

The method allows to retrieve templates according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

templateids string/array Return only templates with the given template IDs.
groupids string/array Return only templates that belong to the given host

groups.
parentTemplateids string/array Return only templates that are children of the given

templates.
hostids string/array Return only templates that are linked to the given

hosts.
graphids string/array Return only templates that contain the given graphs.
itemids string/array Return only templates that contain the given items.
triggerids string/array Return only templates that contain the given triggers.
with_items flag Return only templates that have items.
with_triggers flag Return only templates that have triggers.
with_graphs flag Return only templates that have graphs.
with_httptests flag Return only templates that have web scenarios.
selectGroups query Return the host groups that the template belongs to in

the groups property.
selectHosts query Return the hosts that are linked to the template in the

hosts property.

Supports count.
selectTemplates query Return the child templates in the templates

property.

Supports count.
selectParentTemplates query Return the parent templates in the

parentTemplates property.

Supports count.
selectHttpTests query Return the web scenarios from the template in the

httpTests property.

Supports count.
selectItems query Return items from the template in the items property.

Supports count.
selectDiscoveries query Return low-level discoveries from the template in the

discoveries property.

Supports count.

796

Parameter Type Description

selectTriggers query Return triggers from the template in the triggers
property.

Supports count.
selectGraphs query Return graphs from the template in the graphs

property.

Supports count.
selectApplications query Return applications from the template in the

applications property.

Supports count.
selectMacros query Return the macros from the template in the macros

property..
selectScreens query Return screens from the template in the screens

property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectTemplates - results will be sorted by name;
selectHosts - sorted by host;
selectParentTemplates - sorted by host;
selectItems - sorted by name;
selectDiscoveries - sorted by name;
selectTriggers - sorted by description;
selectGraphs - sorted by name;
selectApplications - sorted by name;
selectScreens - sorted by name.

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name, status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving templates by name

Retrieve all data about two templates named ”Template OS Linux” and ”Template OS Windows”.

Request:

{
"jsonrpc": "2.0",

797

"method": "template.get",
"params": {

"output": "extend",
"filter": {

"host": [
"Template OS Linux",
"Template OS Windows"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"proxy_hostid": "0",
"host": "Template OS Linux",
"status": "3",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "0",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Template OS Linux",
"flags": "0",
"templateid": "10001",
"description": "",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": ""

},
{

"proxy_hostid": "0",
"host": "Template OS Windows",
"status": "3",

798

"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "0",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Template OS Windows",
"flags": "0",
"templateid": "10081",
"description": "",
"tls_connect": "1",
"tls_accept": "1",
"tls_issuer": "",
"tls_subject": "",
"tls_psk_identity": "",
"tls_psk": ""

}
],
"id": 1

}

See also

• Host group
• Template
• User macro
• Host interface

Source

CTemplate::get() in frontends/php/include/classes/api/services/CTemplate.php.

template.isreadable

Description

boolean template.isreadable(array templateIds)

This method checks if the given templates are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use template.get instead.

Parameters

(array) IDs of the templates to check.

799

Return values

(boolean) Returns true if the given templates are available for reading.

Examples

Check multiple templates

Check if the two templates are readable.

Request:

{
"jsonrpc": "2.0",
"method": "template.isreadable",
"params": [

"10001",
"10081"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• template.iswritable

Source

CTemplate::isReadable() in frontends/php/include/classes/api/services/CTemplate.php.

template.iswritable

Description

boolean template.iswritable(array templateIds)

This method checks if the given templates are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use template.get instead.

Parameters

(array) IDs of the templates to check.

Return values

(boolean) Returns true if the given templates are available for writing.

Examples

Check multiple templates

Check if the two templates are writable.

Request:

{
"jsonrpc": "2.0",
"method": "template.iswritable",
"params": [

"10001",
"10081"

],

800

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• template.isreadable

Source

CTemplate::isWritable() in frontends/php/include/classes/api/services/CTemplate.php.

template.massadd

Description

object template.massadd(object parameters)

This method allows to simultaneously add multiple related objects to the given templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the objects to add to the templates.

The method accepts the following parameters.

Parameter Type Description

templates
(required)

object/array Templates to be updated.

The templates must have the templateid property
defined.

groups object/array Host groups to add the given templates to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to link the given templates to.

The hosts must have the hostid property defined.
macros object/array User macros to be created for the given templates.
templates_link object/array Templates to link to the given templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Adding templates to a group

Add two templates to the host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "template.massadd",
"params": {

"templates": [

801

{
"templateid": "10085"

},
{

"templateid": "10086"
}

],
"groups": [

{
"groupid": "2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085",
"10086"

]
},
"id": 1

}

Linking a template to hosts

Link template ”10073” to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.massadd",
"params": {

"templates": [
{

"templateid": "10073"
}

],
"hosts": [

{
"hostid": "10106"

},
{

"hostid": "10104"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10073"

]

802

},
"id": 1

}

See also

• template.update
• Host
• Host group
• User macro

Source

CTemplate::massAdd() in frontends/php/include/classes/api/services/CTemplate.php.

template.massremove

Description

object template.massremove(object parameters)

This method allows to remove related objects from multiple templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the objects that should be removed.

Parameter Type Description

templateids
(required)

string/array IDs of the templates to be updated.

groupids string/array Host groups to remove the given templates from.
hostids string/array Hosts or templates to unlink the given templates from

(downstream).
macros string/array User macros to delete from the given templates.
templateids_clear string/array Templates to unlink and clear from the given

templates (upstream).
templateids_link string/array Templates to unlink from the given templates

(upstream).

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Removing templates from a group

Remove two templates from group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "template.massremove",
"params": {

"templateids": [
"10085",
"10086"

],
"groupids": "2"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

803

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085",
"10086"

]
},
"id": 1

}

Unlinking templates from a host

Unlink template ”10085” from two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.massremove",
"params": {

"templateids": "10085",
"hostids": [

"10106",
"10104"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085"

]
},
"id": 1

}

See also

• template.update
• User macro

Source

CTemplate::massRemove() in frontends/php/include/classes/api/services/CTemplate.php.

template.massupdate

Description

object template.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects and update properties on multiple templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the properties that should be updated.

Additionally to the standard template properties, the method accepts the following parameters.

804

Parameter Type Description

templates
(required)

object/array Templates to be updated.

The templates must have the templateid property
defined.

groups object/array Host groups to replace the current host groups the
templates belong to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to replace the ones the
templates are currently linked to.

Both hosts and templates must use the hostid
property to pass an ID.

macros object/array User macros to replace the current user macros on
the given templates.

templates_clear object/array Templates to unlink and clear from the given
templates.

The templates must have the templateid property
defined.

templates_link object/array Templates to replace the currently linked templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Replacing host groups

Unlink and clear template ”10091” from the given templates.

Request:

{
"jsonrpc": "2.0",
"method": "template.massupdate",
"params": {

"templates": [
{

"templateid": "10085"
},
{

"templateid": "10086"
}

],
"templates_clear": [

{
"templateid": "10091"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",

805

"result": {
"templateids": [

"10085",
"10086"

]
},
"id": 1

}

See also

• template.update
• template.massadd
• Host group
• User macro

Source

CTemplate::massUpdate() in frontends/php/include/classes/api/services/CTemplate.php.

template.update

Description

object template.update(object/array templates)

This method allows to update existing templates.

Parameters

(object/array) Template properties to be updated.

The templateid property must be defined for each template, all other properties are optional. Only the given properties will be
updated, all others will remain unchanged.

Additionally to the standard template properties, the method accepts the following parameters.

Parameter Type Description

groups object/array Host groups to replace the current host groups the
templates belong to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to replace the ones the
templates are currently linked to.

Both hosts and templates must use the hostid
property to pass an ID.

macros object/array User macros to replace the current user macros on
the given templates.

templates object/array Templates to replace the currently linked templates.
Templates that are not passed are only unlinked.

The templates must have the templateid property
defined.

templates_clear object/array Templates to unlink and clear from the given
templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

806

Renaming a template

Rename the template to ”Template OS Linux”.

Request:

{
"jsonrpc": "2.0",
"method": "template.update",
"params": {

"templateid": "10086",
"name": "Template OS Linux"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10086"

]
},
"id": 1

}

Source

CTemplate::update() in frontends/php/include/classes/api/services/CTemplate.php.

Template screen

This class is designed to work with template screens.

Object references:

• Template screen

Available methods:

• templatescreen.copy - copy template screens
• templatescreen.create - create new template screens
• templatescreen.delete - delete template screens
• templatescreen.get - retrieve template screens
• templatescreen.isreadable - check if template screens are readable
• templatescreen.iswritable - check if template screens are writable
• templatescreen.update - update template screens

> Template screen object

The following objects are directly related to the templatescreen API.

Template screen

The template screen object has the following properties.

Property Type Description

screenid string (readonly) ID of the template screen.
name
(required)

string Name of the template screen.

templateid
(required)

string ID of the template that the screen belongs to.

807

Property Type Description

hsize integer Width of the template screen.

Default: 1
vsize integer Height of the template screen.

Default: 1

templatescreen.copy

Description

object templatescreen.copy(object parameters)

This method allows to copy template screens to the given templates.

Parameters

(object) Parameters defining the template screens to copy and the target templates.

Parameter Type Description

screenIds
(required)

string/array IDs of template screens to copy.

templateIds
(required)

string/array IDs of templates to copy the screens to.

Return values

(boolean) Returns true if the copying was successful.

Examples

Copy a template screen

Copy template screen ”25” to template ”30085”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.copy",
"params": {

"screenIds": "25",
"templateIds": "30085"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CTemplateScreen::copy() in frontends/php/include/classes/api/services/CTemplateScreen.php.

templatescreen.create

Description

object templatescreen.create(object/array templateScreens)

808

This method allows to create new template screens.

Parameters

(object/array) Template screens to create.

Additionally to the standard template screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Template screen items to create on the screen.

Return values

(object) Returns an object containing the IDs of the created template screens under the screenids property. The order of the
returned IDs matches the order of the passed template screens.

Examples

Create a template screen

Create a template screen named “Graphs” with 2 rows and 3 columns and add a graph to the upper-left cell.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.create",
"params": {

"name": "Graphs",
"templateid": "10047",
"hsize": 3,
"vsize": 2,
"screenitems": [

{
"resourcetype": 0,
"resourceid": "410",
"x": 0,
"y": 0

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"45"

]
},
"id": 1

}

See also

• Template screen item

Source

CTemplateScreen::create() in frontends/php/include/classes/api/services/CTemplateScreen.php.

templatescreen.delete

Description

809

object templatescreen.delete(array templateScreenIds)

This method allows to delete template screens.

Parameters

(array) IDs of the template screens to delete.

Return values

(object) Returns an object containing the IDs of the deleted template screens under the screenids property.

Examples

Delete multiple template screens

Delete two template screens.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.delete",
"params": [

"45",
"46"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"45",
"46"

]
},
"id": 1

}

Source

CTemplateScreen::delete() in frontends/php/include/classes/api/services/CTemplateScreen.php.

templatescreen.get

Description

integer/array templatescreen.get(object parameters)

The method allows to retrieve template screens according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

hostids string/array Return only template screens that belong to the given
hosts.

screenids string/array Return only template screens with the given IDs.
screenitemids string/array Return only template screens that contain the given

screen items.
templateids string/arary Return only template screens that belong to the given

templates.
noInheritance flag Do not return inherited template screens.

810

Parameter Type Description

selectScreenItems query Return the screen items that are used in the template
screen in the screenitems property.

sortfield string/array Sort the result by the given properties.

Possible values are: screenid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve screens from template

Retrieve all screens from template ”10001” and all of the screen items.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.get",
"params": {

"output": "extend",
"selectScreenItems": "extend",
"templateids": "10001"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenid": "3",
"name": "System performance",
"hsize": "2",
"vsize": "2",
"templateid": "10001",
"screenitems": [

{
"screenitemid": "20",
"screenid": "3",
"resourcetype": "0",
"resourceid": "433",
"width": "500",
"height": "120",

811

"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "21",
"screenid": "3",
"resourcetype": "0",
"resourceid": "387",
"width": "500",
"height": "100",
"x": "0",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "22",
"screenid": "3",
"resourcetype": "1",
"resourceid": "10013",
"width": "500",
"height": "148",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "23",
"screenid": "3",
"resourcetype": "1",
"resourceid": "22181",
"width": "500",
"height": "184",
"x": "1",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

}
]

812

}
],
"id": 1

}

See also

• Template screen item

Source

CTemplateScreen::get() in frontends/php/include/classes/api/services/CTemplateScreen.php.

templatescreen.isreadable

Description

boolean templatescreen.isreadable(array templateScreenIds)

This method checks if the given template screens are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use templatescreen.get instead.

Parameters

(array) IDs of the template screens to check.

Return values

(boolean) Returns true if the given template screens are available for reading.

Examples

Check multiple template screens

Check if the two template screens are readable.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.isreadable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• templatescreen.iswritable

Source

CTemplateScreen::isReadable() in frontends/php/include/classes/api/services/CTemplateScreen.php.

813

templatescreen.iswritable

Description

boolean templatescreen.iswritable(array templateScreenIds)

This method checks if the given template screens are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use templatescreen.get instead.

Parameters

(array) IDs of the template screens to check.

Return values

(boolean) Returns true if the given template screens are available for writing.

Examples

Check multiple template screens

Check if the two template screens are writable.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.iswritable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• templatescreen.isreadable

Source

CTemplateScreen::isWritable() in frontends/php/include/classes/api/services/CTemplateScreen.php.

templatescreen.update

Description

object templatescreen.update(object/array templateScreens)

This method allows to update existing template screens.

Parameters

(object/array) Template screen properties to be updated.

The screenid property must be defined for each template screen, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard template screen properties, the method accepts the following parameters.

814

Parameter Type Description

screenitems array Screen items to replace existing screen items.

Screen items are updated by coordinates, so each
screen item must have the x and y properties defined.

Return values

(object) Returns an object containing the IDs of the updated template screens under the screenids property.

Examples

Rename a template screen

Rename the template screen to ”Performance graphs”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.update",
"params": {

"screenid": "3",
"name": "Performance graphs"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"3"

]
},
"id": 1

}

Source

CTemplateScreen::update() in frontends/php/include/classes/api/services/CTemplateScreen.php.

Template screen item

This class is designed to work with template screen items.

Object references:

• Template screen item

Available methods:

• templatescreenitem.get - retrieve template screen items

> Template screen item object

The following objects are directly related to the templatescreenitem API.

Template screen item

The template screen item object defines an element displayed on a template screen. It has the following properties.

815

Property Type Description

screenitemid string (readonly) ID of the template screen item.
resourceid
(required)

string ID of the object from the parent template displayed on
the template screen item. Depending on the type of
screen item, the resourceid property can reference
different objects. Unused by clock and URL template
screen items.

Note: the resourceid property always references an
object used in the parent template object, even if the
screen item itself is inherited on a host or template.

resourcetype
(required)

integer Type of template screen item.

Possible values:
0 - graph;
1 - simple graph;
3 - plain text;
7 - clock;
11 - URL;
19 - simple graph prototype;
20 - graph prototype.

screenid
(required)

string ID of the template screen that the item belongs to.

colspan integer Number of columns the template screen item will span
across.

Default: 1.
elements integer Number of lines to display on the template screen item.

Default: 25.
halign integer Specifies how the template screen item must be aligned

horizontally in the cell.

Possible values:
0 - (default) center;
1 - left;
2 - right.

height integer Height of the template screen item in pixels.

Default: 200.
max_columns integer Specifies the maximum amount of columns a graph

prototype or simple graph prototype screen element can
have.

Default: 3.
rowspan integer Number or rows the template screen item will span

across.

Default: 1.
style integer Template screen item display option.

Possible values for clock screen items:
0 - (default) local time;
1 - server time;
2 - host time.

Possible values for plain text screen items:
0 - (default) display values as plain text;
1 - display values as HTML.

url string URL of the webpage to be displayed in the template
screen item. Used by URL template screen items.

816

Property Type Description

valign integer Specifies how the template screen item must be aligned
vertically in the cell.

Possible values:
0 - (default) middle;
1 - top;
2 - bottom.

width integer Width of the template screen item in pixels.

Default: 320.
x integer X-coordinates of the template screen item on the screen,

from left to right.

Default: 0.
y integer Y-coordinates of the template screen item on the screen,

from top to bottom.

Default: 0.

templatescreenitem.get

Description

integer/array templatescreenitem.get(object parameters)

The method allows to retrieve template screen items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenids string/array Return only template screen items that belong to the
given template screens.

screenitemids string/array Return only template screen items with the given IDs.
hostids string/array Returns an additional real_resourceid property for

each template screen item, that belongs to a screen
from the given hosts or templates. The
real_resourceid property contains the ID of object
displayed on the screen.

sortfield string/array Sort the result by the given properties.

Possible values are: screenitemid and screenid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

817

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve template screen items for screen

Return all template screen items from template screen ”15”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreenitem.get",
"params": {

"output": "extend",
"screenids": "15"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenitemid": "42",
"screenid": "15",
"resourcetype": "0",
"resourceid": "454",
"width": "500",
"height": "200",
"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"max_columns": "3"

},
{

"screenitemid": "43",
"screenid": "15",
"resourcetype": "0",
"resourceid": "455",
"width": "500",
"height": "270",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"max_columns": "3"

}
],
"id": 1

}

818

Source

CTemplateScreenItem::get() in frontends/php/include/classes/api/services/CTemplateScreenItem.php.

Trend

This class is designed to work with trend data.

Object references:

• Trend

Available methods:

• trend.get - retrieving trends

> Trend object

The following objects are directly related to the trend API.

Note:
Trend objects differ depending on the item’s type of information. They are created by the Zabbix server and cannot be
modified via the API.

Float trend

The float trend object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
num integer Number of values within this hour.
value_min float Hourly minimum value.
value_avg float Hourly average value.
value_max float Hourly maximum value.

Integer trend

The integer trend object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
num integer Number of values within this hour.
value_min integer Hourly minimum value.
value_avg integer Hourly average value.
value_max integer Hourly maximum value.

trend.get

Description

integer/array trend.get(object parameters)

The method allows to retrieve trend data according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

819

Parameter Type Description

itemids string/array Return only trends with the given item IDs.
time_from timestamp Return only values that have been collected after or at

the given time.
time_till timestamp Return only values that have been collected before or

at the given time.
countOutput flag Count the number of retrieved objects.
limit integer Limit the amount of retrieved objects.
output query Set fields to output.

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving item trend data

Request:

{
"jsonrpc": "2.0",
"method": "trend.get",
"params": {

"output": [
"itemid",
"clock",
"num",
"value_min",
"value_avg",
"value_max",

],
"itemids": [

"23715"
],
"limit": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23715",
"clock": "1446199200",
"num": "60",
"value_min": "0.1650",
"value_avg": "0.2168",
"value_max": "0.3500",

}
],
"id": 1

}

Source

CTrend::get() in frontends/php/include/classes/api/services/CTrend.php.

820

Trigger

This class is designed to work with triggers.

Object references:

• Trigger

Available methods:

• trigger.adddependencies - adding new trigger dependencies
• trigger.create - creating new triggers
• trigger.delete - deleting triggers
• trigger.deletedependencies - deleting trigger dependencies
• trigger.get - retrieving triggers
• trigger.isreadable - checking if triggers are readable
• trigger.iswritable - checking if triggers are writable
• trigger.update - updating triggers

> Trigger object

The following objects are directly related to the trigger API.

Trigger

The trigger object has the following properties.

Property Type Description

triggerid string (readonly) ID of the trigger.
description
(required)

string Name of the trigger.

expression
(required)

string Reduced trigger expression.

comments string Additional description of the trigger.
error string (readonly) Error text if there have been any problems

when updating the state of the trigger.
flags integer (readonly) Origin of the trigger.

Possible values are:
0 - (default) a plain trigger;
4 - a discovered trigger.

lastchange timestamp (readonly) Time when the trigger last changed its state.
priority integer Severity of the trigger.

Possible values are:
0 - (default) not classified;
1 - information;
2 - warning;
3 - average;
4 - high;
5 - disaster.

state integer (readonly) State of the trigger.

Possible values:
0 - (default) trigger state is up to date;
1 - current trigger state is unknown.

status integer Whether the trigger is enabled or disabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template trigger.

821

Property Type Description

type integer Whether the trigger can generate multiple problem
events.

Possible values are:
0 - (default) do not generate multiple events;
1 - generate multiple events.

url string URL associated with the trigger.
value integer (readonly) Whether the trigger is in OK or problem state.

Possible values are:
0 - (default) OK;
1 - problem.

recovery_mode integer OK event generation mode.

Possible values are:
0 - (default) Expression;
1 - Recovery expression;
2 - None.

recovery_expression string Reduced trigger recovery expression.
correlation_mode integer OK event closes.

Possible values are:
0 - (default) All problems;
1 - All problems if tag values match.

correlation_tag string Tag for matching.
manual_close integer Allow manual close.

Possible values are:
0 - (default) No;
1 - Yes.

trigger.adddependencies

Description

object trigger.adddependencies(object/array triggerDependencies)

This method allows to create new trigger dependencies.

Parameters

(object/array) Trigger dependencies to create.

Each trigger dependency has the following parameters:

Parameter Type Description

triggerid
(required)

string ID of the dependent trigger.

dependsOnTriggerid
(required)

string ID of the trigger that the trigger depends on.

Return values

(object) Returns an object containing the IDs of the dependent triggers under the triggerids property.

Examples

Add a trigger dependency

Make trigger ”14092” dependent on trigger ”13565.”

Request:

822

{
"jsonrpc": "2.0",
"method": "trigger.adddependencies",
"params": {

"triggerid": "14092",
"dependsOnTriggerid": "13565"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"14092"

]
},
"id": 1

}

See also

• trigger.update

Source

CTrigger::addDependencies() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.create

Description

object trigger.create(object/array triggers)

This method allows to create new triggers.

Parameters

(object/array) Triggers to create.

Additionally to the standard trigger properties the method accepts the following parameters.

Parameter Type Description

dependencies array Triggers that the trigger is dependent on.

The triggers must have the triggerid property
defined.

tags array Trigger tags.

Attention:
The trigger expression has to be given in its expanded form.

Return values

(object) Returns an object containing the IDs of the created triggers under the triggerids property. The order of the returned
IDs matches the order of the passed triggers.

Examples

Creating a trigger

Create a trigger with a single trigger dependency.

Request:

823

{
"jsonrpc": "2.0",
"method": "trigger.create",
"params": [

{
"description": "Processor load is too high on {HOST.NAME}",
"expression": "{Linux server:system.cpu.load[percpu,avg1].last()}>5",
"dependencies": [

{
"triggerid": "17367"

}
]

},
{

"description": "Service status",
"expression": "{Linux server:log[/var/log/system,Service .* has stopped].strlen()}<>0",
"dependencies": [

{
"triggerid": "17368"

}
],
"tags": [

{
"tag": "service",
"value": "{{ITEM.VALUE}.regsub(\"Service (.*) has stopped\", \"\\1\")}"

},
{

"tag": "error",
"value": ""

}
]

}
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"17369",
"17370"

]
},
"id": 1

}

Source

CTrigger::create() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.delete

Description

object trigger.delete(array triggerIds)

This method allows to delete triggers.

Parameters

(array) IDs of the triggers to delete.

824

Return values

(object) Returns an object containing the IDs of the deleted triggers under the triggerids property.

Examples

Delete multiple triggers

Delete two triggers.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.delete",
"params": [

"12002",
"12003"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"12002",
"12003"

]
},
"id": 1

}

Source

CTrigger::delete() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.deletedependencies

Description

object trigger.deletedependencies(string/array triggers)

This method allows to delete all trigger dependencies from the given triggers.

Parameters

(string/array) Triggers to delete the trigger dependencies from.

Return values

(object) Returns an object containing the IDs of the affected triggers under the triggerids property.

Examples

Deleting dependencies from multiple triggers

Delete all dependencies from two triggers.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.deleteDependencies",
"params": [

{
"triggerid": "14544"

},
{

825

"triggerid": "14545"
}

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"14544",
"14545"

]
},
"id": 1

}

See also

• trigger.update

Source

CTrigger::deleteDependencies() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.get

Description

integer/array trigger.get(object parameters)

The method allows to retrieve triggers according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

triggerids string/array Return only triggers with the given IDs.
groupids string/array Return only triggers that belong to hosts from the

given host groups.
templateids string/array Return only triggers that belong to the given

templates.
hostids string/array Return only triggers that belong to the given hosts.
itemids string/array Return only triggers that contain the given items.
applicationids string/array Return only triggers that contain items from the given

applications.
functions string/array Return only triggers that use the given functions.

Refer to the supported trigger functions page for a list
of supported functions.

group string Return only triggers that belong to hosts from the host
group with the given name.

host string Return only triggers that belong to host with the given
name.

inherited boolean If set to true return only triggers inherited from a
template.

templated boolean If set to true return only triggers that belong to
templates.

monitored flag Return only enabled triggers that belong to monitored
hosts and contain only enabled items.

826

Parameter Type Description

active flag Return only enabled triggers that belong to monitored
hosts.

maintenance boolean If set to true return only enabled triggers that belong
to hosts in maintenance.

withUnacknowledgedEvents flag Return only triggers that have unacknowledged
events.

withAcknowledgedEvents flag Return only triggers with all events acknowledged.
withLastEventUnacknowledged flag Return only triggers with the last event

unacknowledged.
skipDependent flag Skip triggers in a problem state that are dependent on

other triggers. Note that the other triggers are
ignored if disabled, have disabled items or disabled
item hosts.

lastChangeSince timestamp Return only triggers that have changed their state
after the given time.

lastChangeTill timestamp Return only triggers that have changed their state
before the given time.

only_true flag Return only triggers that have recently been in a
problem state.

min_severity integer Return only triggers with severity greater or equal
than the given severity.

expandComment flag Expand macros in the trigger description.
expandDescription flag Expand macros in the name of the trigger.
expandExpression flag Expand functions and macros in the trigger

expression.
selectGroups query Return the host groups that the trigger belongs to in

the groups property.
selectHosts query Return the hosts that the trigger belongs to in the

hosts property.
selectItems query Return items contained by the trigger in the items

property.
selectFunctions query Return functions used in the trigger in the functions

property.

The function objects represents the functions used in
the trigger expression and has the following
properties:
functionid - (string) ID of the function;
itemid - (string) ID of the item used in the function;
function - (string) name of the function;
parameter - (string) parameter passed to the
function.

selectDependencies query Return triggers that the trigger depends on in the
dependencies property.

selectDiscoveryRule query Return the low-level discovery rule that created the
trigger.

selectLastEvent query Return the last significant trigger event in the
lastEvent property.

selectTags query Return the trigger tags in tags property.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the trigger
belongs to;
hostid - ID of the host that the trigger belongs to.

827

Parameter Type Description

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: triggerid, description,
status, priority, lastchange and hostname.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by trigger ID

Retrieve all data and the functions used in trigger ”14062”.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"triggerids": "14062",
"output": "extend",
"selectFunctions": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"functions": [

{
"functionid": "13513",
"itemid": "24350",
"function": "diff",
"parameter": "0"

}
],
"triggerid": "14062",
"expression": "{13513}>0",

828

"description": "/etc/passwd has been changed on {HOST.NAME}",
"url": "",
"status": "0",
"value": "0",
"priority": "2",
"lastchange": "0",
"comments": "",
"error": "",
"templateid": "10016",
"type": "0",
"state": "0",
"flags": "0",
"recovery_mode": "0",
"recovery_expression": "",
"correlation_mode": "0",
"correlation_tag": "",
"manual_close": "0"

}
],
"id": 1

}

Retrieving triggers in problem state

Retrieve the ID, name and severity of all triggers in problem state and sort them by severity in descending order.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"output": [
"triggerid",
"description",
"priority"

],
"filter": {

"value": 1
},
"sortfield": "priority",
"sortorder": "DESC"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"triggerid": "13907",
"description": "Zabbix self-monitoring processes < 100% busy",
"priority": "4"

},
{

"triggerid": "13824",
"description": "Zabbix discoverer processes more than 75% busy",
"priority": "3"

}
],
"id": 1

}

829

Retrieving a specific trigger with tags

Retrieve a specific trigger with tags.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"output": [
"triggerid",
"description"

],
"selectTags": "extend",
"triggerids": [

"17578"
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"triggerid": "17370",
"description": "Service status"
"tags": [

{
"tag": "service",
"value": "{{ITEM.VALUE}.regsub(\"Service (.*) has stopped\", \"\\1\")}"

},
{

"tag": "error",
"value": ""

}
]

}
],
"id": 1

}

See also

• Discovery rule
• Item
• Host
• Host group

Source

CTrigger::get() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.isreadable

Description

boolean trigger.isreadable(array triggerIds)

This method checks if the given triggers are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use trigger.get instead.

830

Parameters

(array) IDs of the triggers to check.

Return values

(boolean) Returns true if the given triggers are available for reading.

Examples

Check multiple triggers

Check if the two triggers are readable.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.isreadable",
"params": [

"13938",
"14062"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• trigger.iswritable

Source

CTrigger::isReadable() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.iswritable

Description

boolean trigger.iswritable(array triggerIds)

This method checks if the given triggers are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use trigger.get instead.

Parameters

(array) IDs of the triggers to check.

Return values

(boolean) Returns true if the given triggers are available for writing.

Examples

Check multiple triggers

Check if the two triggers are writable.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.iswritable",
"params": [

831

"13938",
"14062"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• trigger.isreadable

Source

CTrigger::isWritable() in frontends/php/include/classes/api/services/CTrigger.php.

trigger.update

Description

object trigger.update(object/array triggers)

This method allows to update existing triggers.

Parameters

(object/array) Trigger properties to be updated.

The triggerid property must be defined for each trigger, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard trigger properties the method accepts the following parameters.

Parameter Type Description

dependencies array Triggers that the trigger is dependent on.

The triggers must have the triggerid property
defined.

tags array Trigger tags.

Attention:
The trigger expression has to be given in its expanded form.

Return values

(object) Returns an object containing the IDs of the updated triggers under the triggerids property.

Examples

Enabling a trigger

Enable a trigger, that is, set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.update",
"params": {

"triggerid": "13938",
"status": 0

832

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938"

]
},
"id": 1

}

Replacing trigger tags

Replace tags for one trigger.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.update",
"params": {

"triggerid": "13938",
"tags": [

{
"tag": "service",
"value": "{{ITEM.VALUE}.regsub(\"Service (.*) has stopped\", \"\\1\")}"

},
{

"tag": "error",
"value": ""

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938"

]
},
"id": 1

}

See also

• trigger.adddependencies
• trigger.deletedependencies

Source

CTrigger::update() in frontends/php/include/classes/api/services/CTrigger.php.

Trigger prototype

This class is designed to work with trigger prototypes.

833

Object references:

• Trigger prototype

Available methods:

• triggerprototype.create - creating new trigger prototypes
• triggerprototype.delete - deleting trigger prototypes
• triggerprototype.get - retrieving trigger prototypes
• triggerprototype.update - updating trigger prototypes

> Trigger prototype object

The following objects are directly related to the triggerprototype API.

Trigger

The trigger prototype object has the following properties.

Property Type Description

triggerid string (readonly) ID of the trigger prototype.
description
(required)

string Name of the trigger prototype.

expression
(required)

string Reduced trigger expression.

comments string Additional comments to the trigger prototype.
priority integer Severity of the trigger prototype.

Possible values:
0 - (default) not classified;
1 - information;
2 - warning;
3 - average;
4 - high;
5 - disaster.

status integer Whether the trigger prototype is enabled or disabled.

Possible values:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template trigger prototype.
type integer Whether the trigger prototype can generate multiple

problem events.

Possible values:
0 - (default) do not generate multiple events;
1 - generate multiple events.

url string URL associated with the trigger prototype.
recovery_mode integer OK event generation mode.

Possible values are:
0 - (default) Expression;
1 - Recovery expression;
2 - None.

recovery_expression string Reduced trigger recovery expression.
correlation_mode integer OK event closes.

Possible values are:
0 - (default) All problems;
1 - All problems if tag values match.

correlation_tag string Tag for matching.

834

Property Type Description

manual_close integer Allow manual close.

Possible values are:
0 - (default) No;
1 - Yes.

triggerprototype.create

Description

object triggerprototype.create(object/array triggerPrototypes)

This method allows to create new trigger prototypes.

Parameters

(object/array) Trigger prototypes to create.

Additionally to the standard trigger prototype properties the method accepts the following parameters.

Parameter Type Description

dependencies array Triggers and trigger prototypes that the trigger
prototype is dependent on.

The triggers must have the triggerid property
defined.

tags array Trigger prototype tags.

Attention:
The trigger expression has to be given in its expanded form and must contain at least one item prototype.

Return values

(object) Returns an object containing the IDs of the created trigger prototypes under the triggerids property. The order of
the returned IDs matches the order of the passed trigger prototypes.

Examples

Creating a trigger prototype

Create a trigger prototype to detect when a file system has less than 20% free disk space.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.create",
"params": {

"description": "Free disk space is less than 20% on volume {#FSNAME}",
"expression": "{Zabbix server:vfs.fs.size[{#FSNAME},pfree].last()}<20",
"tags": [

{
"tag": "volume",
"value": "{#FSNAME}"

},
{

"tag": "type",
"value": "{#FSTYPE}"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

835

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"17372"

]
},
"id": 1

}

Source

CTriggerPrototype::create() in frontends/php/include/classes/api/services/CTriggerPrototype.php.

triggerprototype.delete

Description

object triggerprototype.delete(array triggerPrototypeIds)

This method allows to delete trigger prototypes.

Parameters

(array) IDs of the trigger prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted trigger prototypes under the triggerids property.

Examples

Deleting multiple trigger prototypes

Delete two trigger prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.delete",
"params": [

"12002",
"12003"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"12002",
"12003"

]
},
"id": 1

}

Source

CTriggerPrototype::delete() in frontends/php/include/classes/api/services/CTriggerPrototype.php.

836

triggerprototype.get

Description

integer/array triggerprototype.get(object parameters)

The method allows to retrieve trigger prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

active flag Return only enabled trigger prototypes that belong to
monitored hosts.

applicationids string/array Return only trigger prototypes that contain items from
the given applications.

discoveryids string/array Return only trigger prototypes that belong to the
given LLD rules.

functions string/array Return only triggers that use the given functions.

Refer to the supported trigger functions page for a list
of supported functions.

group string Return only trigger prototypes that belong to hosts
from the host groups with the given name.

groupids string/array Return only trigger prototypes that belong to hosts
from the given host groups.

host string Return only trigger prototypes that belong to hosts
with the given name.

hostids string/array Return only trigger prototypes that belong to the
given hosts.

inherited boolean If set to true return only trigger prototypes inherited
from a template.

maintenance boolean If set to true return only enabled trigger prototypes
that belong to hosts in maintenance.

min_severity integer Return only trigger prototypes with severity greater or
equal than the given severity.

monitored flag Return only enabled trigger prototypes that belong to
monitored hosts and contain only enabled items.

templated boolean If set to true return only trigger prototypes that
belong to templates.

templateids string/array Return only trigger prototypes that belong to the
given templates.

triggerids string/array Return only trigger prototypes with the given IDs.
expandExpression flag Expand functions and macros in the trigger

expression.
selectDependencies query Return trigger prototypes and triggers that the trigger

prototype depends on in the dependencies property.
selectDiscoveryRule query Return the LLD rule that the trigger prototype belongs

to.
selectFunctions query Return functions used in the trigger prototype in the

functions property.

The function objects represents the functions used in
the trigger expression and has the following
properties:
functionid - (string) ID of the function;
itemid - (string) ID of the item used in the function;
function - (string) name of the function;
parameter - (string) parameter passed to the
function.

selectGroups query Return the host groups that the trigger prototype
belongs to in the groups property.

837

Parameter Type Description

selectHosts query Return the hosts that the trigger prototype belongs to
in the hosts property.

selectItems query Return items and item prototypes used the trigger
prototype in the items property.

selectTags query Return the trigger prototype tags in tags property.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the trigger
prototype belongs to;
hostid - ID of the host that the trigger prototype
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: triggerid, description,
status and priority.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve trigger prototypes from an LLD rule

Retrieve all trigger prototypes and their functions from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.get",
"params": {

"output": "extend",
"selectFunctions": "extend",
"discoveryids": "22450"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

838

Response:

{
"jsonrpc": "2.0",
"result": [

{
"functions": [

{
"functionid": "12598",
"itemid": "22454",
"function": "last",
"parameter": "0"

}
],
"triggerid": "13272",
"expression": "{12598}<20",
"description": "Free inodes is less than 20% on volume {#FSNAME}",
"url": "",
"status": "0",
"priority": "2",
"comments": "",
"templateid": "0",
"type": "0",
"flags": "2",
"recovery_mode": "0",
"recovery_expression": "",
"correlation_mode": "0",
"correlation_tag": "",
"manual_close": "0"

},
{

"functions": [
{

"functionid": "13500",
"itemid": "22686",
"function": "last",
"parameter": "0"

}
],
"triggerid": "13266",
"expression": "{13500}<201",
"description": "Free disk space is less than 20% on volume {#FSNAME}",
"url": "",
"status": "0",
"priority": "2",
"comments": "",
"templateid": "0",
"type": "0",
"flags": "2",
"recovery_mode": "0",
"recovery_expression": "",
"correlation_mode": "0",
"correlation_tag": "",
"manual_close": "0"

}
],
"id": 1

}

Retrieving a specific trigger prototype with tags

Request:

{
"jsonrpc": "2.0",

839

"method": "triggerprototype.get",
"params": {

"output": [
"triggerid",
"description"

]
"selectTags": "extend",
"triggerids": [

"17373"
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"triggerid": "17373",
"description": "Free disk space is less than 20% on volume {#FSNAME}",
"tags": [

{
"tag": "volume",
"value": "{#FSNAME}"

},
{

"tag": "type",
"value": "{#FSTYPE}"

}
]

}
],
"id": 1

}

See also

• Discovery rule
• Item
• Host
• Host group

Source

CTriggerPrototype::get() in frontends/php/include/classes/api/services/CTriggerPrototype.php.

triggerprototype.update

Description

object triggerprototype.update(object/array triggerPrototypes)

This method allows to update existing trigger prototypes.

Parameters

(object/array) Trigger prototype properties to be updated.

The triggerid property must be defined for each trigger prototype, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard trigger prototype properties the method accepts the following parameters.

840

Parameter Type Description

dependencies array Triggers and trigger prototypes that the trigger
prototype is dependent on.

The triggers must have the triggerid property
defined.

tags array Trigger prototype tags.

Attention:
The trigger expression has to be given in its expanded form and must contain at least one item prototype.

Return values

(object) Returns an object containing the IDs of the updated trigger prototypes under the triggerids property.

Examples

Enabling a trigger prototype

Enable a trigger prototype, that is, set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.update",
"params": {

"triggerid": "13938",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938"

]
},
"id": 1

}

Replacing trigger prototype tags

Replace tags for one trigger prototype.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.update",
"params": {

"triggerid": "17373",
"tags": [

{
"tag": "volume",
"value": "{#FSNAME}"

},
{

"tag": "type",
"value": "{#FSTYPE}"

}

841

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"17373"

]
},
"id": 1

}

Source

CTriggerPrototype::update() in frontends/php/include/classes/api/services/CTriggerPrototype.php.

User

This class is designed to work with users.

Object references:

• User

Available methods:

• user.addmedia - adding media to users
• user.create - creating new users
• user.delete - deleting users
• user.deletemedia - deleting media from users
• user.get - retrieving users
• user.isreadable - checking if users are readable
• user.iswritable - checking if users are writable
• user.login - logging in to the API
• user.logout - logging out of the API
• user.update - updating users
• user.updatemedia - updating user media
• user.updateprofile - updating the currently logged in user

> User object

The following objects are directly related to the user API.

User

The user object has the following properties.

Property Type Description

userid string (readonly) ID of the user.
alias
(required)

string User alias.

attempt_clock timestamp (readonly) Time of the last unsuccessful login attempt.
attempt_failed integer (readonly) Recent failed login attempt count.
attempt_ip string (readonly) IP address from where the last unsuccessful

login attempt came from.

842

Property Type Description

autologin integer Whether to enable auto-login.

Possible values:
0 - (default) auto-login disabled;
1 - auto-login enabled.

autologout integer User session life time in seconds. If set to 0, the session
will never expire.

Default: 900.
lang string Language code of the user’s language.

Default: en_GB.
name string Name of the user.
refresh integer Automatic refresh period in seconds.

Default: 30.
rows_per_page integer Amount of object rows to show per page.

Default: 50.
surname string Surname of the user.
theme string User’s theme.

Possible values:
default - (default) system default;
blue-theme - Blue;
dark-theme - Dark.

type integer Type of the user.

Possible values:
1 - (default) Zabbix user;
2 - Zabbix admin;
3 - Zabbix super admin.

url string URL of the page to redirect the user to after logging in.

user.addmedia

Description

object user.addmedia(object parameters)

This method allows to add new media to multiple users.

Parameters

(object) Parameters defining the media to create and the users to add them to.

Parameter Type Description

medias
(required)

object/array Media to create for the given users.

The media userid property must not be defined.
users
(required)

object/array Users to add the media to.

The users must have the userid property defined.

Return values

(object) Returns an object containing the IDs of the created media under the mediaids property.

Examples

Adding a media to multiple users

Create a common e-mail media for two users. The media must send notifications about all alerts at any time.

843

Request:

{
"jsonrpc": "2.0",
"method": "user.addmedia",
"params": {

"users": [
{

"userid": "1"
},
{

"userid": "2"
}

],
"medias": {

"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediaids": [
"12",
"13"

]
},
"id": 1

}

See also

• user.update
• user.updatemedia
• Media
• User

Source

CUser::addMedia() in frontends/php/include/classes/api/services/CUser.php.

user.create

Description

object user.create(object/array users)

This method allows to create new users.

Parameters

(object/array) Users to create.

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd
(required)

string User’s password.

844

Parameter Type Description

usrgrps
(required)

array User groups to add the user to.

The user groups must have the usrgrpid property
defined.

user_medias array Media to create for the user.

The media userid property must not be defined.

Return values

(object) Returns an object containing the IDs of the created users under the userids property. The order of the returned IDs
matches the order of the passed users.

Examples

Creating a user

Create a new user, add him to a user group and create a new media for him.

Request:

{
"jsonrpc": "2.0",
"method": "user.create",
"params": {

"alias": "John",
"passwd": "Doe123",
"usrgrps": [

{
"usrgrpid": "7"

}
],
"user_medias": [

{
"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"12"

]
},
"id": 1

}

See also

• Media
• User group

Source

CUser::create() in frontends/php/include/classes/api/services/CUser.php.

845

user.delete

Description

object user.delete(array users)

This method allows to delete users.

Parameters

(array) IDs of users to delete.

Return values

(object) Returns an object containing the IDs of the deleted users under the userids property.

Examples

Deleting multiple users

Delete two users.

Request:

{
"jsonrpc": "2.0",
"method": "user.delete",
"params": [

"1",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1",
"5"

]
},
"id": 1

}

Source

CUser::delete() in frontends/php/include/classes/api/services/CUser.php.

user.deletemedia

Description

object user.deletemedia(string/array mediaIds)

This method allows to delete media.

Parameters

(string/array) IDs of the media to delete.

Return values

(object) Returns an object containing the IDs of the deleted media under the mediaids property.

Examples

Deleting multiple media

Delete two media.

846

Request:

{
"jsonrpc": "2.0",
"method": "user.deletemedia",
"params": [

"11",
"13"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediaids": [
"11",
"13"

]
},
"id": 1

}

See also

• user.update
• user.updatemedia

Source

CUser::deleteMedia() in frontends/php/include/classes/api/services/CUser.php.

user.get

Description

integer/array user.get(object parameters)

The method allows to retrieve users according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediaids string/array Return only users that use the given media.
mediatypeids string/array Return only users that use the given media types.
userids string/array Return only users with the given IDs.
usrgrpids string/array Return only users that belong to the given user

groups.
getAccess flag Adds additional information about user permissions.

Adds the following properties for each user:
gui_access - (integer) user’s frontend
authentication method. Refer to the gui_access
property of the user group object for a list of possible
values.
debug_mode - (integer) indicates whether debug is
enabled for the user. Possible values: 0 - debug
disabled, 1 - debug enabled.
users_status - (integer) indicates whether the user
is disabled. Possible values: 0 - user enabled, 1 - user
disabled.

847

Parameter Type Description

selectMedias query Return media used by the user in the medias
property.

selectMediatypes query Return media types used by the user in the
mediatypes property.

selectUsrgrps query Return user groups that the user belongs to in the
usrgrps property.

sortfield string/array Sort the result by the given properties.

Possible values are: userid and alias.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving users

Retrieve all of the configured users.

Request:

{
"jsonrpc": "2.0",
"method": "user.get",
"params": {

"output": "extend"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"userid": "1",
"alias": "Admin",
"name": "Zabbix",
"surname": "Administrator",
"url": "",
"autologin": "1",
"autologout": "0",
"lang": "ru_RU",
"refresh": "0",
"type": "3",
"theme": "default",

848

"attempt_failed": "0",
"attempt_ip": "",
"attempt_clock": "0",
"rows_per_page": "50"

},
{

"userid": "2",
"alias": "guest",
"name": "Default2",
"surname": "User",
"url": "",
"autologin": "0",
"autologout": "900",
"lang": "en_GB",
"refresh": "30",
"type": "1",
"theme": "default",
"attempt_failed": "0",
"attempt_ip": "",
"attempt_clock": "0",
"rows_per_page": "50"

}
],
"id": 1

}

See also

• Media
• Media type
• User group

Source

CUser::get() in frontends/php/include/classes/api/services/CUser.php.

user.isreadable

Description

boolean user.isreadable(array userIds)

This method checks if the given users are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use user.get instead.

Parameters

(array) IDs of the users to check.

Return values

(boolean) Returns true if the given users are available for reading.

Examples

Check multiple users

Check if the two users are readable.

Request:

{
"jsonrpc": "2.0",
"method": "user.isreadable",
"params": [

"4",

849

"6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.iswritable

Source

CUser::isReadable() in frontends/php/include/classes/api/services/CUser.php.

user.iswritable

Description

boolean user.iswritable(array userIds)

This method checks if the given users are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use user.get instead.

Parameters

(array) IDs of the users to check.

Return values

(boolean) Returns true if the given users are available for writing.

Examples

Check multiple users

Check if the two users are writable.

Request:

{
"jsonrpc": "2.0",
"method": "user.iswritable",
"params": [

"4",
"6"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.isreadable

850

Source

CUser::isWritable() in frontends/php/include/classes/api/services/CUser.php.

user.login

Description

string/object user.login(object parameters)

This method allows to log in to the API and generate an authentication token.

Warning:
When using this method, you also need to do user.logout to prevent the generation of a large number of open session
records.

Parameters

Attention:
This method is available to unauthenticated users and must be called without the auth parameter in the JSON-RPC request.

(object) Parameters containing the user name and password.

The method accepts the following parameters.

Parameter Type Description

password
(required)

string User password. Unused for HTTP authentication.

user
(required)

string User name.

userData flag Return information about the authenticated user.

Attention:
When using HTTP authentication, the user name in the API request must match the one used in the Authorization
header. The password will not be validated and can be omitted.

Return values

(string/object) If the userData parameter is used, returns an object containing information about the authenticated user.

Additionally to the standard user properties, the following information is returned:

Property Type Description

debug_mode boolean Whether debug mode is enabled for the user.
gui_access integer User’s authentication method to the frontend.

Refer to the gui_access property of the user group
object for a list of possible values.

sessionid string Authentication token, which must be used in the
following API requests.

userip string IP address of the user.

Note:
If a user has been successfully authenticated after one or more failed attempts, the method will return the current values
for the attempt_clock, attempt_failed and attempt_ip properties and then reset them.

If the userData parameter is not used, the method returns an authentication token.

Note:
The generated authentication token should be remembered and used in the auth parameter of the following JSON-RPC
requests. It is also required when using HTTP authentication.

851

Examples

Authenticating a user

Authenticate a user.

Request:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "0424bd59b807674191e7d77572075f33",
"id": 1

}

Requesting authenticated user’s information

Authenticate and return additional information about the user.

Request:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix",
"userData": true

},
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userid": "1",
"alias": "Admin",
"name": "Zabbix",
"surname": "Administrator",
"url": "",
"autologin": "1",
"autologout": "0",
"lang": "ru_RU",
"refresh": "0",
"type": "3",
"theme": "default",
"attempt_failed": "0",
"attempt_ip": "127.0.0.1",
"attempt_clock": "1355919038",
"rows_per_page": "50",
"debug_mode": true,
"userip": "127.0.0.1",
"sessionid": "5b56eee8be445e98f0bd42b435736e42",
"gui_access": "0"

},

852

"id": 1
}

See also

• user.logout

Source

CUser::login() in frontends/php/include/classes/api/services/CUser.php.

user.logout

Description

string/object user.logout(array)

This method allows to log out of the API and invalidates the current authentication token.

Parameters

(array) The method accepts an empty array.

Return values

(boolean) Returns true if the user has been logged out successfully.

Examples

Logging out

Log out from the API.

Request:

{
"jsonrpc": "2.0",
"method": "user.logout",
"params": [],
"id": 1,
"auth": "16a46baf181ef9602e1687f3110abf8a"

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.login

Source

CUser::login() in frontends/php/include/classes/api/services/CUser.php.

user.update

Description

object user.update(object/array users)

This method allows to update existing users.

Parameters

(object/array) User properties to be updated.

The userid property must be defined for each user, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

853

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd string User’s password.
usrgrps array User groups to replace existing user groups.

The user groups must have the usrgrpid property
defined.

Return values

(object) Returns an object containing the IDs of the updated users under the userids property.

Examples

Renaming a user

Rename a user to John Doe.

Request:

{
"jsonrpc": "2.0",
"method": "user.update",
"params": {

"userid": "1",
"name": "John",
"surname": "Doe"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1"

]
},
"id": 1

}

See also

• user.updateprofile

Source

CUser::update() in frontends/php/include/classes/api/services/CUser.php.

user.updatemedia

Description

object user.updatemedia(object parameters)

This method allows to update media for multiple users.

Parameters

(object) Parameters defining the media and users to be updated.

854

Parameter Type Description

medias
(required)

object/array Media to replace existing media. If a media has the
mediaid property defined it will be updated,
otherwise a new media will be created.

users
(required)

object/array Users to update.

The users must have the userid property defined.

Return values

(object) Returns an object containing the IDs of the updated users under the userids property.

Examples

Replacing media for multiple users

Replace all media used by the two users with a common e-mail media. The media must send notifications about all alerts at any
time.

Request:

{
"jsonrpc": "2.0",
"method": "user.updatemedia",
"params": {

"users": [
{

"userid": "1"
},
{

"userid": "2"
}

],
"medias": {

"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1",
"2"

]
},
"id": 1

}

See also

• user.addmedia
• user.deletemedia
• user.updatemedia
• Media
• User

Source

855

CUser::updateMedia() in frontends/php/include/classes/api/services/CUser.php.

user.updateprofile

Description

object user.updateprofile(object parameters)

This method allows to update the currently logged in user.

Parameters

(object/array) User properties to be updated.

The userid property must not be defined. Only the passed properties will be updated, all others will remain unchanged.

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd string User’s password.
usrgrps array User groups to replace existing user groups.

The user groups must have the usrgrpid property
defined.

Return values

(object) Returns an object containing the ID of the updated user under the userids property.

Examples

Renaming the current user

Rename the current user to John Doe.

Request:

{
"jsonrpc": "2.0",
"method": "user.updateprofile",
"params": {

"name": "John",
"lastname": "Doe"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1"

]
},
"id": 1

}

See also

• user.update

Source

CUser::update() in frontends/php/include/classes/api/services/CUser.php.

856

User group

This class is designed to work with user groups.

Object references:

• User group

Available methods:

• usergroup.create - creating new user groups
• usergroup.delete - deleting user groups
• usergroup.get - retrieving user groups
• usergroup.isreadable - checking if user groups are readable
• usergroup.iswritable - checking if user groups are writable
• usergroup.massadd - adding permissions and users to user groups
• usergroup.massupdate - simultaneously updating multiple user groups
• usergroup.update - updating user groups

> User group object

The following objects are directly related to the usergroup API.

User group

The user group object has the following properties.

Property Type Description

usrgrpid string (readonly) ID of the user group.
name
(required)

string Name of the user group.

debug_mode integer Whether debug mode is enabled or disabled.

Possible values are:
0 - (default) disabled;
1 - enabled.

gui_access integer Frontend authentication method of the users in the
group.

Possible values:
0 - (default) use the system default authentication
method;
1 - use internal authentication;
2 - disable access to the frontend.

users_status integer Whether the user group is enabled or disabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

Permission

The permission object has the following properties.

Property Type Description

id
(required)

string ID of the host group to add permission to.

857

Property Type Description

permission
(required)

integer Access level to the host group.

Possible values:
0 - access denied;
2 - read-only access;
3 - read-write access.

usergroup.create

Description

object usergroup.create(object/array userGroups)

This method allows to create new user groups.

Parameters

(object/array) User groups to create.

Additionally to the standard user group properties, the method accepts the following parameters.

Parameter Type Description

rights object/array Permissions to assign to the group
userids string/array IDs of users to add to the user group.

Return values

(object) Returns an object containing the IDs of the created user groups under the usrgrpids property. The order of the
returned IDs matches the order of the passed user groups.

Examples

Creating a user group

Create a user group, which denies access to host group ”2”, and add a user to it.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.create",
"params": {

"name": "Operation managers",
"rights": {

"permission": 0,
"id": "2"

},
"userids": "12"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"20"

]
},
"id": 1

}

See also

858

• Permission

Source

CUserGroup::create() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.delete

Description

object usergroup.delete(array userGroupIds)

This method allows to delete user groups.

Parameters

(array) IDs of the user groups to delete.

Return values

(object) Returns an object containing the IDs of the deleted user groups under the usrgrpids property.

Examples

Deleting multiple user groups

Delete two user groups.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.delete",
"params": [

"20",
"21"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"20",
"21"

]
},
"id": 1

}

Source

CUserGroup::delete() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.get

Description

integer/array usergroup.get(object parameters)

The method allows to retrieve user groups according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

859

Parameter Type Description

status integer Return only user groups with the given status.

Refer to the user group page for a list of supported
statuses.

userids string/array Return only user groups that contain the given users.
usrgrpids string/array Return only user groups with the given IDs.
with_gui_access integer Return only user groups with the given frontend

authentication method.

Refer to the user group page for a list of supported
methods.

selectUsers query Return the users from the user group in the users
property.

selectRights query Return user group rights in the rights property.

It has the following properties:
permission - (integer) access level to the host
group;
id - (string) ID of the host group.

Refer to the user group page for a list of access levels
to host groups.

limitSelects integer Limits the number of records returned by subselects.
sortfield string/array Sort the result by the given properties.

Possible values are: usrgrpid, name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving enabled user groups

Retrieve all enabled user groups.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.get",
"params": {

"output": "extend",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

860

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"usrgrpid": "7",
"name": "Zabbix administrators",
"gui_access": "0",
"users_status": "0",
"debug_mode": "1"

},
{

"usrgrpid": "8",
"name": "Guests",
"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "11",
"name": "Enabled debug mode",
"gui_access": "0",
"users_status": "0",
"debug_mode": "1"

},
{

"usrgrpid": "12",
"name": "No access to the frontend",
"gui_access": "2",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "14",
"name": "Read only",
"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "18",
"name": "Deny",
"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

}
],
"id": 1

}

See also

• User

Source

CUserGroup::get() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.isreadable

Description

861

boolean usergroup.isreadable(array userGroupIds)

This method checks if the given user groups are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use usergroup.get instead.

Parameters

(array) IDs of the user groups to check.

Return values

(boolean) Returns true if the given user groups are available for reading.

Examples

Check multiple user groups

Check if the two user groups are readable.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.isreadable",
"params": [

"21",
"22"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• usergroup.iswritable

Source

CUserGroup::isReadable() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.iswritable

Description

boolean usergroup.iswritable(array userGroupIds)

This method checks if the given user groups are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use usergroup.get instead.

Parameters

(array) IDs of the user groups to check.

Return values

(boolean) Returns true if the given user groups are available for writing.

Examples

Check multiple user groups

862

Check if the two user groups are writable.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.iswritable",
"params": [

"21",
"22"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• usergroup.isreadable

Source

CUserGroup::isWritable() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.massadd

Description

object usergroup.massadd(object parameters)

This method allows to simultaneously add permissions and users to multiple user groups.

Parameters

(object) Parameters containing the IDs of the user groups to update and the permissions and users to add.

The method accepts the following parameters.

Parameter Type Description

usrgrpids
(required)

string/array IDs of user groups to update.

rights object/array Permissions to assign to the user groups.
userids string/array IDs of the users to add to the user groups.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Denying access to host group

Deny two user groups access to host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.massadd",
"params": {

"usrgrpids": [
"17",
"19"

863

],
"rights": {

"permission": 0,
"id": "2"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17",
"19"

]
},
"id": 1

}

See also

• Permission
• usergroup.massupdate
• usergroup.update

Source

CUserGroup::massAdd() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.massupdate

Description

object usergroup.massupdate(object parameters)

This method allows to simultaneously update properties, users or permissions for multiple user groups.

Parameters

(object) Parameters containing the IDs of the user groups to update and the properties that should be updated.

Additionally to the standard user group properties, the method accepts the following parameters.

Parameter Type Description

usrgrpids
(required)

string/array IDs of user groups to update.

rights string/array Permissions to replace the current permissions
assigned to the user group.

userids object/array IDs of the users to replace the users in the group.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Changing permissions for a user group

Update the permissions for two user groups to only allow read-write access to two host groups.

Request:

864

{
"jsonrpc": "2.0",
"method": "usergroup.massupdate",
"params": {

"usrgrpids": [
"17",
"19"

],
"rights": [

{
"permission": 3,
"id": "2"

},
{

"permission": 3,
"id": "3"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17",
"19"

]
},
"id": 1

}

See also

• Permission
• usergroup.massadd
• usergroup.update

Source

CUserGroup::massUpdate() in frontends/php/include/classes/api/services/CUserGroup.php.

usergroup.update

Description

object usergroup.update(object/array userGroups)

This method allows to update existing user groups.

Parameters

(object/array) User group properties to be updated.

The usrgrpid property must be defined for each user group, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard user group properties, the method accepts the following parameters.

Parameter Type Description

rights object/array Permissions to replace the current permissions
assigned to the user group.

865

Parameter Type Description

userids string/array IDs of the users to replace the users in the group.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Disabling a user group

Disable a user group.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.update",
"params": {

"usrgrpid": "17",
"users_status": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17"

]
},
"id": 1

}

See also

• Permission
• usergroup.massadd
• usergroup.massupdate

Source

CUserGroup::update() in frontends/php/include/classes/api/services/CUserGroup.php.

User macro

This class is designed to work with host and global macros.

Object references:

• Global macro
• Host macro

Available methods:

• usermacro.create - creating new host macros
• usermacro.createglobal - creating new global macros
• usermacro.delete - deleting host macros
• usermacro.deleteglobal - deleting global macros
• usermacro.get - retrieving host and global macros
• usermacro.update - updating host macros
• usermacro.updateglobal - updating global macros

866

> User macro object

The following objects are directly related to the usermacro API.

Global macro

The global macro object has the following properties.

Property Type Description

globalmacroid string (readonly) ID of the global macro.
macro
(required)

string Macro string.

value
(required)

string Value of the macro.

Host macro

The host macro object defines a macro available on a host or template. It has the following properties.

Property Type Description

hostmacroid string (readonly) ID of the host macro.
hostid
(required)

string ID of the host that the macro belongs to.

macro
(required)

string Macro string.

value
(required)

string Value of the macro.

usermacro.create

Description

object usermacro.create(object/array hostMacros)

This method allows to create new host macros.

Parameters

(object/array) Host macros to create.

The method accepts host macros with the standard host macro properties.

Return values

(object) Returns an object containing the IDs of the created host macros under the hostmacroids property. The order of the
returned IDs matches the order of the passed host macros.

Examples

Creating a host macro

Creat a host macro ”{$SNMP_COMMUNITY}” with the value ”public” on host ”10198”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.create",
"params": {

"hostid": "10198",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

867

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"11"

]
},
"id": 1

}

Source

CUserMacro::create() in frontends/php/include/classes/api/services/CUserMacro.php.

usermacro.createglobal

Description

object usermacro.createglobal(object/array globalMacros)

This method allows to create new global macros.

Parameters

(object/array) Global macros to create.

The method accepts global macros with the standard global macro properties.

Return values

(object) Returns an object containing the IDs of the created global macros under the globalmacroids property. The order of
the returned IDs matches the order of the passed global macros.

Examples

Creating a global macro

Create a global macro ”{$SNMP_COMMUNITY}” with value ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.createglobal",
"params": {

"macro": "{$SNMP_COMMUNITY}",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"6"

]
},
"id": 1

}

Source

CUserMacro::createGlobal() in frontends/php/include/classes/api/services/CUserMacro.php.

868

usermacro.delete

Description

object usermacro.delete(array hostMacroIds)

This method allows to delete host macros.

Parameters

(array) IDs of the host macros to delete.

Return values

(object) Returns an object containing the IDs of the deleted host macros under the hostmacroids property.

Examples

Deleting multiple host macros

Delete two host macros.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.delete",
"params": [

"32",
"11"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"32",
"11"

]
},
"id": 1

}

Source

CUserMacro::delete() in frontends/php/include/classes/api/services/CUserMacro.php.

usermacro.deleteglobal

Description

object usermacro.deleteglobal(array globalMacroIds)

This method allows to delete global macros.

Parameters

(string/array) IDs of the global macros to delete.

Return values

(object) Returns an object containing the IDs of the deleted global macros under the globalmacroids property.

Examples

Deleting multiple global macros

Delete two global macros.

869

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.deleteglobal",
"params": [

"32",
"11"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"32",
"11"

]
},
"id": 1

}

Source

CUserMacro::deleteGlobal() in frontends/php/include/classes/api/services/CUserMacro.php.

usermacro.get

Description

integer/array usermacro.get(object parameters)

The method allows to retrieve host and global macros according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

globalmacro flag Return global macros instead of host macros.
globalmacroids string/array Return only global macros with the given IDs.
groupids string/array Return only host macros that belong to hosts or

templates from the given host groups.
hostids string/array Return only host macros that belong to the given

hosts.
hostmacroids string/array Return only host macros with the given IDs.
templateids string/array Return only host macros that belong to the given

templates.
selectGroups query Return host groups that the host macro belongs to in

the groups property.

Used only when retrieving host macros.
selectHosts query Return hosts that the host macro belongs to in the

hosts property.

Used only when retrieving host macros.
selectTemplates query Return templates that the host macro belongs to in

the templates property.

Used only when retrieving host macros.

870

Parameter Type Description

sortfield string/array Sort the result by the given properties.

Possible value: macro.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving host macros for a host

Retrieve all host macros defined for host ”10198”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.get",
"params": {

"output": "extend",
"hostids": "10198"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostmacroid": "9",
"hostid": "10198",
"macro": "{$INTERFACE}",
"value": "eth0"

},
{

"hostmacroid": "11",
"hostid": "10198",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

}
],
"id": 1

}

871

Retrieving global macros

Retrieve all global macros.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.get",
"params": {

"output": "extend",
"globalmacro": true

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"globalmacroid": "6",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

}
],
"id": 1

}

Source

CUserMacro::get() in frontends/php/include/classes/api/services/CUserMacro.php.

usermacro.update

Description

object usermacro.update(object/array hostMacros)

This method allows to update existing host macros.

Parameters

(object/array) Host macro properties to be updated.

The hostmacroid property must be defined for each host macro, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated host macros under the hostmacroids property.

Examples

Changing the value of a host macro

Change the value of a host macro to ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.update",
"params": {

"hostmacroid": "1",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

872

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"1"

]
},
"id": 1

}

Source

CUserMacro::update() in frontends/php/include/classes/api/services/CUserMacro.php.

usermacro.updateglobal

Description

object usermacro.updateglobal(object/array globalMacros)

This method allows to update existing global macros.

Parameters

(object/array) Global macro properties to be updated.

The globalmacroid property must be defined for each global macro, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated global macros under the globalmacroids property.

Examples

Changing the value of a global macro

Change the value of a global macro to ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.updateglobal",
"params": {

"globalmacroid": "1",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"1"

]
},
"id": 1

}

Source

873

CUserMacro::updateGlobal() in frontends/php/include/classes/api/services/CUserMacro.php.

Value map

This class is designed to work with value maps.

Object references:

• Value map

Available methods:

• valuemap.create - creating new value maps
• valuemap.delete - deleting value maps
• valuemap.get - retrieving value maps
• valuemap.update - updating value maps

> Value map object

The following objects are directly related to the valuemap API.

Value map

The value map object has the following properties.

Property Type Description

valuemapid string (readonly) ID of the value map.
name
(required)

string Name of the value map.

mappings
(required)

array Value mappings for current value map. The mapping
object is described in detail below.

Value mappings

The value mappings object defines value mappings of the value map. It has the following properties.

Property Type Description

value
(required)

string Original value.

newvalue
(required)

string Value to which the original value is mapped to.

valuemap.create

Description

object valuemap.create(object/array valuemaps)

This method allows to create new value maps.

Parameters

(object/array) Value maps to create.

The method accepts value maps with with the standard value map properties.

Return values

(object) Returns an object containing the IDs of the created value maps the valuemapids property. The order of the returned
IDs matches the order of the passed value maps.

Examples

Creating a value map

874

Create one value map with two mappings.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.create",
"params": {

"name": "Service state",
"mappings": [

{
"value": "0",
"newvalue": "Down"

},
{

"value": "1",
"newvalue": "Up"

}
]

},
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"valuemapids": [
"1"

]
},
"id": 1

}

Source

CValueMap::create() in frontends/php/include/classes/api/services/CValueMap.php.

valuemap.delete

Description

object valuemap.delete(array valuemapids)

This method allows to delete value maps.

Parameters

(array) IDs of the value maps to delete.

Return values

(object) Returns an object containing the IDs of the deleted value maps under the valuemapids property.

Examples

Deleting multiple value maps

Delete two value maps.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.delete",
"params": [

"1",
"2"

875

],
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"valuemapids": [
"1",
"2"

]
},
"id": 1

}

Source

CValueMap::delete() in frontends/php/include/classes/api/services/CValueMap.php.

valuemap.get

Description

integer/array valuemap.get(object parameters)

The method allows to retrieve value maps according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

valuemapids string/array Return only value maps with the given IDs.
selectMappings query Return the value mappings for current value map in

the mappings property.
sortfield string/array Sort the result by the given properties.

Possible values are: valuemapid, name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving value maps

876

Retrieve all configured value maps.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.get",
"params": {

"output": "extend"
},
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"valuemapid": "4",
"name": "APC Battery Replacement Status"

},
{

"valuemapid": "5",
"name": "APC Battery Status"

},
{

"valuemapid": "7",
"name": "Dell Open Manage System Status"

}
],
"id": 1

}

Retrieve one value map with its mappings.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.get",
"params": {

"output": "extend",
"selectMappings": "extend",
"valuemapids": ["4"]

},
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"valuemapid": "4",
"name": "APC Battery Replacement Status",
"mappings": [

{
"value": "1",
"newvalue": "unknown"

},
{

"value": "2",
"newvalue": "notInstalled"

877

},
{

"value": "3",
"newvalue": "ok"

},
{

"value": "4",
"newvalue": "failed"

},
{

"value": "5",
"newvalue": "highTemperature"

},
{

"value": "6",
"newvalue": "replaceImmediately"

},
{

"value": "7",
"newvalue": "lowCapacity"

}
]

}
],
"id": 1

}

Source

CValueMap::get() in frontends/php/include/classes/api/services/CValueMap.php.

valuemap.update

Description

object valuemap.update(object/array valuemaps)

This method allows to update existing value maps.

Parameters

(object/array) Value map properties to be updated.

The valuemapid property must be defined for each value map, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated value maps under the valuemapids property.

Examples

Changing value map name

Change value map name to ”Device status”.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.update",
"params": {

"valuemapid": "2",
"name": "Device status"

},
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

878

Response:

{
"jsonrpc": "2.0",
"result": {

"valuemapids": [
"2"

]
},
"id": 1

}

Changing mappings for one value map.

Request:

{
"jsonrpc": "2.0",
"method": "valuemap.update",
"params": {

"valuemapid": "2",
"mappings": [

{
"value": "0",
"newvalue": "Online"

},
{

"value": "1",
"newvalue": "Offline"

}
]

},
"auth": "57562fd409b3b3b9a4d916d45207bbcb",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"valuemapids": [
"2"

]
},
"id": 1

}

Source

CValueMap::update() in frontends/php/include/classes/api/services/CValueMap.php.

Web scenario

This class is designed to work with web scenarios.

Object references:

• Web scenario
• Scenario step

Available methods:

• httptest.create - creating new web scenarios
• httptest.delete - deleting web scenarios
• httptest.get - retrieving web scenarios

879

• httptest.isreadable - checking if web scenarios are readable
• httptest.iswritable - checking if web scenarios are writable
• httptest.update - updating web scenarios

> Web scenario object

The following objects are directly related to the webcheck API.

Web scenario

The web scenario object has the following properties.

Property Type Description

httptestid string (readonly) ID of the web scenario.
hostid
(required)

string ID of the host that the web scenario belongs to.

name
(required)

string Name of the web scenario.

agent string User agent string that will be used by the web scenario.

Default: Zabbix
applicationid string ID of the application that the web scenario belongs to.
authentication integer Authentication method that will be used by the web

scenario.

Possible values:
0 - (default) none;
1 - basic HTTP authentication;
2 - NTLM authentication.

delay integer Execution interval of the web scenario in seconds.

Default: 60.
headers string HTTP headers that will be sent when performing a

request.
http_password string Password used for authentication.

Required for web scenarios with basic HTTP or NTLM
authentication.

http_proxy string Proxy that will be used by the web scenario given as
http://[username[:password]@]proxy.example.com[:port].

http_user string User name used for authentication.

Required for web scenarios with basic HTTP or NTLM
authentication.

nextcheck timestamp (readonly) Time of the next web scenario execution.
retries integer Number of times a web scenario will try to execute each

step before failing.

Default: 1.
ssl_cert_file string Name of the SSL certificate file used for client

authentication (must be in PEM format).
ssl_key_file string Name of the SSL private key file used for client

authentication (must be in PEM format).
ssl_key_password string SSL private key password.
status integer Whether the web scenario is enabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template web scenario.
variables string Web scenario variables.

880

Property Type Description

verify_host integer Whether to verify that the host name specified in the SSL
certificate matches the one used in the scenario.

Possible values are:
0 - (default) skip host verification;
1 - verify host.

verify_peer integer Whether to verify the SSL certificate of the web server.

Possible values are:
0 - (default) skip peer verification;
1 - verify peer.

Scenario step

The scenario step object defines a specific web scenario check. It has the following properties.

Property Type Description

httpstepid string (readonly) ID of the scenario step.
name
(required)

string Name of the scenario step.

no
(required)

integer Sequence number of the step in a web scenario.

url
(required)

string URL to be checked.

follow_redirects integer Whether to follow HTTP redirects.

Possible values are:
0 - don’t follow redirects;
1 - (default) follow redirects.

headers string HTTP headers that will be sent when performing a
request. Scenario step headers will overwrite headers
specified for the web scenario.

httptestid string (readonly) ID of the web scenario that the step belongs
to.

posts string HTTP POST variables as a string.
required string Text that must be present in the response.
retrieve_mode integer Part of the HTTP response that the scenario step must

retrieve.

Possible values are:
0 - (default) only body;
1 - only headers.

status_codes string Ranges of required HTTP status codes separated by
commas.

timeout integer Request timeout in seconds.

Default: 15.
variables string Scenario step variables.

httptest.create

Description

object httptest.create(object/array webScenarios)

This method allows to create new web scenarios.

Note:
Creating a web scenario will automatically create a set of web monitoring items.

881

Parameters

(object/array) Web scenarios to create.

Additionally to the standard web scenario properties, the method accepts the following parameters.

Parameter Type Description

steps
(required)

array Web scenario steps.

Return values

(object) Returns an object containing the IDs of the created web scenarios under the httptestids property. The order of the
returned IDs matches the order of the passed web scenarios.

Examples

Creating a web scenario

Create a web scenario to monitor the company home page. The scenario will have two steps, to check the home page and the
”About” page and make sure they return the HTTP status code 200.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.create",
"params": {

"name": "Homepage check",
"hostid": "10085",
"steps": [

{
"name": "Homepage",
"url": "http://mycompany.com",
"status_codes": 200,
"no": 1

},
{

"name": "Homepage / About",
"url": "http://mycompany.com/about",
"status_codes": 200,
"no": 2

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"5"

]
},
"id": 1

}

See also

• Scenario step

Source

CHttpTest::create() in frontends/php/include/classes/api/services/CHttpTest.php.

882

httptest.delete

Description

object httptest.delete(array webScenarioIds)

This method allows to delete web scenarios.

Parameters

(array) IDs of the web scenarios to delete.

Return values

(object) Returns an object containing the IDs of the deleted web scenarios under the httptestids property.

Examples

Deleting multiple web scenarios

Delete two web scenarios.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.delete",
"params": [

"2",
"3"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"2",
"3"

]
},
"id": 1

}

Source

CHttpTest::delete() in frontends/php/include/classes/api/services/CHttpTest.php.

httptest.get

Description

integer/array httptest.get(object parameters)

The method allows to retrieve web scenarios according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

applicationids string/array Return only web scenarios that belong to the given
applications.

groupids string/array Return only web scenarios that belong to the given
host groups.

883

Parameter Type Description

hostids string/array Return only web scenarios that belong to the given
hosts.

httptestids string/array Return only web scenarios with the given IDs.
inherited boolean If set to true return only web scenarios inherited

from a template.
monitored boolean If set to true return only enabled web scenarios that

belong to monitored hosts.
templated boolean If set to true return only web scenarios that belong to

templates.
templateids string/array Return only web scenarios that belong to the given

templates.
expandName flag Expand macros in the name of the web scenario.
expandStepName flag Expand macros in the names of scenario steps.
selectHosts query Return the host that the web scenario belongs to as

an array in the hosts property.
selectSteps query Return web scenario steps in the steps property.
sortfield string/array Sort the result by the given properties.

Possible values are: httptestid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving a web scenario

Retrieve all data about web scenario ”4”.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.get",
"params": {

"output": "extend",
"selectSteps": "extend",
"httptestids": "9"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

884

{
"httptestid": "9",
"name": "Homepage check",
"applicationid": "0",
"nextcheck": "0",
"delay": "60",
"status": "0",
"variables": "",
"agent": "Zabbix",
"authentication": "0",
"http_user": "",
"http_password": "",
"hostid": "10084",
"templateid": "0",
"http_proxy": "",
"retries": "1",
"ssl_cert_file": "",
"ssl_key_file": "",
"ssl_key_password": "",
"verify_peer": "0",
"verify_host": "0",
"headers": "",
"steps": [

{
"httpstepid": "36",
"httptestid": "9",
"name": "Homepage",
"no": "1",
"url": "http://mycompany.com",
"timeout": "15",
"posts": "",
"required": "",
"status_codes": "200",
"variables": "",
"follow_redirects": "1",
"retrieve_mode": "0",
"headers": ""

},
{

"httpstepid": "37",
"httptestid": "9",
"name": "Homepage / About",
"no": "2",
"url": "http://mycompany.com/about",
"timeout": "15",
"posts": "",
"required": "",
"status_codes": "200",
"variables": "",
"follow_redirects": "1",
"retrieve_mode": "0",
"headers": ""

}
]

}
],
"id": 1

}

See also

• Host
• Scenario step

885

Source

CHttpTest::get() in frontends/php/include/classes/api/services/CHttpTest.php.

httptest.isreadable

Description

boolean httptest.isreadable(array webScenarioIds)

This method checks if the given web scenarios are available for reading.

Warning:
This method is deprecated and will be removed in the future. Please use httptest.get instead.

Parameters

(array) IDs of the web scenarios to check.

Return values

(boolean) Returns true if the given web scenarios are available for reading.

Examples

Check multiple web scenarios

Check if the two web scenarios are readable.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.isreadable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• httptest.iswritable

Source

CHttpTest::isReadable() in frontends/php/include/classes/api/services/CHttpTest.php.

httptest.iswritable

Description

boolean httptest.iswritable(array webScenarioIds)

This method checks if the given web scenarios are available for writing.

Warning:
This method is deprecated and will be removed in the future. Please use httptest.get instead.

Parameters

886

(array) IDs of the web scenarios to check.

Return values

(boolean) Returns true if the given web scenarios are available for writing.

Examples

Check multiple web scenarios

Check if the two web scenarios are writable.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.iswritable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• httptest.isreadable

Source

CHttpTest::isWritable() in frontends/php/include/classes/api/services/CHttpTest.php.

httptest.update

Description

object httptest.update(object/array webScenarios)

This method allows to update existing web scenarios.

Parameters

(object/array) Web scenario properties to be updated.

The httptestid property must be defined for each web scenario, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard web scenario properties, the method accepts the following parameters.

Parameter Type Description

steps array Scenario steps to replace existing steps.

Return values

(object) Returns an object containing the IDs of the updated web scenarios under the httptestid property.

Examples

Enabling a web scenario

Enable a web scenario, that is, set its status to ”0”.

Request:

887

{
"jsonrpc": "2.0",
"method": "httptest.update",
"params": {

"httptestid": "5",
"status": 0

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"5"

]
},
"id": 1

}

See also

• Scenario step

Source

CHttpTest::update() in frontends/php/include/classes/api/services/CHttpTest.php.

Appendix 1. Reference commentary

Notation Data types

The Zabbix API supports the following data types:

Type Description

bool A boolean value, accepts either true or false.
flag The value is considered to be true if it is passed and not equal to null and false

otherwise.
integer A whole number.
float A floating point number.
string A text string.
text A longer text string.
timestamp A Unix timestamp.
array An ordered sequence of values, that is, a plain array.
object An associative array.
query A value which defines, what data should be returned.

Can be defined as an array of property names to return only specific properties, or as one
of the predefined values:
extend - returns all object properties;
count - returns the number of retrieved records, supported only by certain subselects.

Property labels

Some of the objects properties are marked with short labels to describe their behavior. The following labels are used:

• readonly - the value of the property is set automatically and cannot be defined or changed by the client;
• constant - the value of the property can be set when creating an object, but cannot be changed after.

888

Removing referenced object via API Reserved ID value ”0” can be used to remove referenced objects. For example, to remove
a referenced proxy from a host, proxy_hostid should be set to 0 (”proxy_hostid”: ”0”).

Common ”get” method parameters The following parameters are supported by all get methods:

Parameter Type Description

countOutput flag Return the number of records in the result instead of
the actual data.

editable boolean If set to true return only objects that the user has
write permissions to.

Default: false.
excludeSearch flag Return results that do not match the criteria given in

the search parameter.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Doesn’t work for text fields.
limit integer Limit the number of records returned.
output query Object properties to be returned.

Default: extend.
preservekeys flag Use IDs as keys in the resulting array.
search object Return results that match the given wildcard search

(case-insensitive).

Accepts an array, where the keys are property names,
and the values are strings to search for. If no
additional options are given, this will perform a LIKE
"%…%" search.

Works only for string and text fields.
searchByAny boolean If set to true return results that match any of the

criteria given in the filter or search parameter
instead of all of them.

Default: false.
searchWildcardsEnabled boolean If set to true enables the use of ”*” as a wildcard

character in the search parameter.

Default: false.
sortfield string/array Sort the result by the given properties. Refer to a

specific API get method description for a list of
properties that can be used for sorting. Macros are
not expanded before sorting.

sortorder string/array Order of sorting. If an array is passed, each value will
be matched to the corresponding property given in
the sortfield parameter.

Possible values are:
ASC - ascending;
DESC - descending.

startSearch flag The search parameter will compare the beginning of
fields, that is, perform a LIKE "…%" search instead.

889

Appendix 2. Changes from 3.0 to 3.2

Backward incompatible changes action

Changes:
ZBXNEXT-3101 action.create, action.update: removed support of trigger value condition 5 under the filter→conditions→conditiontype
property

hostgroup

Changes:
ZBXNEXT-1262 hostgroup.create, hostgroup.update: added validation for the name field restricting it to NOT contain trailing and
leading slashes, several slashes in a row and any asterisks

hostprototype

Changes:
ZBXNEXT-1262 hostprototype.create, hostprototype.update: added validation for the name field in the groupPrototypes
property restricting the new host group name to NOT contain trailing and leading slashes, several slashes in a row and any
asterisks

Other changes and bug fixes General

Changes:
ZBXNEXT-3277 added a new correlation API introducing new methods correlation.get, correlation.create,
correlation.update and correlation.delete
ZBXNEXT-3201 added a new problem API introducing a new problem.get method

action

Changes:
ZBXNEXT-3196 added new property maintenance_mode. Possible values: 0 - Don’t pause escalation during maintenance
periods, 1 - Pause escalation during maintenance periods
ZBXNEXT-2087 added new field value2 for trigger action filter conditions and two new condition types: 25 - Tag, 26 - Tag value
ZBXNEXT-3101 added support of a new operation type 11 - send recovery message
ZBXNEXT-3101 action.get: added a new selectRecoveryOperations option which returns the recovery operations in
recoveryOperations property
ZBXNEXT-3101 action.create, action:update: added a new recovery_operations property

configuration

Changes:
ZBXNEXT-178 added support of web scenario import and export
ZBXNEXT-2087 added support of trigger and trigger prototype tags import and export

drule

Bug fixes:
ZBX-10049 drule.update: fixed validation of optional fields iprange, dchecks and an undefined index name

event

Changes:
ZBXNEXT-2087 event.get added new option selectTags to retrieve event tags in tags property.
ZBXNEXT-3201 event.get: added new filtering options for events by applicationids, severities and tags
ZBXNEXT-104 event.acknowledge: added a new action field
ZBXNEXT-3277 event.get: added new fields r_eventid, c_eventid and correlationid to standard output

graph

890

https://support.zabbix.com/browse/ZBXNEXT-3101
https://support.zabbix.com/browse/ZBXNEXT-1262
https://support.zabbix.com/browse/ZBXNEXT-1262
https://support.zabbix.com/browse/ZBXNEXT-3277
https://support.zabbix.com/browse/ZBXNEXT-3201
https://support.zabbix.com/browse/ZBXNEXT-3196
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBXNEXT-3101
https://support.zabbix.com/browse/ZBXNEXT-3101
https://support.zabbix.com/browse/ZBXNEXT-3101
https://support.zabbix.com/browse/ZBXNEXT-178
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBX-10049
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBXNEXT-3201
https://support.zabbix.com/browse/ZBXNEXT-104
https://support.zabbix.com/browse/ZBXNEXT-3277

Changes:
ZBXNEXT-821 graph.delete: removed validation that prevented the removal of discovered graphs
Bug fixes:
ZBXNEXT-821 graph.create, graph.update: added read-only validation for the flags field

graphprototype

Bug fixes:
ZBXNEXT-821 graphprototype.create, graphprototype.update: added read-only validation for the flags field

hostgroup

Changes:
ZBXNEXT-3277 hostgroup.delete: added validation when deleting a host group, so host group cannot be deleted while it belongs
to a correlation condition

item

Changes:
ZBXNEXT-821 item.delete: removed validation that prevented the removal of discovered items

trigger

Changes:
ZBXNEXT-3274 added two new optional properties correlation_mode and correlation_tag
ZBXNEXT-104 added a read-write attribute manual_close. The attribute is read-only for templated triggers and discovered
triggers
ZBXNEXT-2118 added support of recovery_mode and recovery_expression trigger options
ZBXNEXT-2087 trigger.get added new option selectTags to retrieve trigger tags in tags property
ZBXNEXT-2087 trigger.create, trigger.update added new property tags
ZBXNEXT-821 trigger.delete: removed validation that prevented the removal of discovered triggers
Bug fixes:
ZBXNEXT-821 trigger.adddependencies, trigger.deletedependencies: added validation preventing to add discovered triggers to
regular triggers

triggerprototype

Changes:
ZBXNEXT-3274 added two new optional properties correlation_mode and correlation_tag
ZBXNEXT-104 added a read-write attribute manual_close
ZBXNEXT-2118 added support of recovery_mode and recovery_expression trigger options
ZBXNEXT-2087 triggerprototype.get added new option selectTags to retrieve trigger prototype tags in tags property
ZBXNEXT-2087 triggerprototype.create, triggerprototype.update added new property tags

Zabbix API changes in 3.2

3.2.11 alert

Bug fixes:
ZBX-12655 alert.get: fixed method to return only personal alerts and alerts sent to users within the same user group.

3.2.9 host

Bug fixes:
ZBX-10754 host.update, host.massupdate: fixed inheritance of template properties in web scenarios.

template

891

https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-3277
https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-3274
https://support.zabbix.com/browse/ZBXNEXT-104
https://support.zabbix.com/browse/ZBXNEXT-2118
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-821
https://support.zabbix.com/browse/ZBXNEXT-3274
https://support.zabbix.com/browse/ZBXNEXT-104
https://support.zabbix.com/browse/ZBXNEXT-2118
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBXNEXT-2087
https://support.zabbix.com/browse/ZBX-12655
https://support.zabbix.com/browse/ZBX-10754

Bug fixes:
ZBX-10754 template.update, template.massupdate: fixed inheritance of template properties in web scenarios.

3.2.8 map

Bug fixes:
ZBX-12768 map.create, trigger.update: added url field validation of map and map elements. Valid URI scheme list is defined in
ZBX_URI_VALID_SCHEMES.

screen item

Bug fixes:
ZBX-12768 screenitem.create, screenitem.update: added url field validation. Valid URI scheme list is defined in ZBX_URI_VALID_SCHEMES.

trigger

Bug fixes:
ZBX-12768 trigger.create, trigger.update: added url field validation. Valid URI scheme list is defined in ZBX_URI_VALID_SCHEMES.

trigger prototype

Bug fixes:
ZBX-12768 triggerprototype.create, triggerprototype.update: added url field validation. Valid URI scheme list is defined in
ZBX_URI_VALID_SCHEMES.

user

Bug fixes:
ZBX-12768 user.create, user.update: added url field validation. Valid URI scheme list is defined in ZBX_URI_VALID_SCHEMES.

3.2.4 trigger

Bug fixes:
ZBX-11545 trigger.update: fixed dependency validation and update when trigger expression is changed

triggerprototype

Bug fixes:
ZBX-11545 triggerprototype.update: fixed dependency validation and update when trigger expression is changed

3.2.2 General

Bug fixes:
ZBX-11244 fixed decoding a valid JSON-RPC request when PHP is compiled without JSON library

httptest

Bug fixes:
ZBX-11191 httptest.update: fixed web scenarios not properly updating step items when giving only applicationid and steps
with httpstepid properties
ZBX-11191 httptest.update: fixed updating templated web scenario steps by prohibiting to directly change the step name or giving
different amount of steps than in template
ZBX-11191 httptest.update: added mandatory field check in step validation
ZBX-10842 httptest.update: fixed SQL error when updating httptest with applicationid and without httpstepid parameters
ZBX-10842 httptest.update: prevented disappearing of step items when updating httptest without applicationid, httpstepid param-
eters
ZBX-10842 httptest.update: fixed connecting web scenario applicationid to created steps when updating

configuration

Bug fixes:
ZBX-11357 implemented exporting and importing of triggers and graphs when they use web items

trigger

Changes:
ZBXNEXT-3457 removed restriction to use forward slash ”/” in trigger tags

usergroup

892

https://support.zabbix.com/browse/ZBX-10754
https://support.zabbix.com/browse/ZBX-12768
https://support.zabbix.com/browse/ZBX-12768
https://support.zabbix.com/browse/ZBX-12768
https://support.zabbix.com/browse/ZBX-12768
https://support.zabbix.com/browse/ZBX-12768
https://support.zabbix.com/browse/ZBX-11545
https://support.zabbix.com/browse/ZBX-11545
https://support.zabbix.com/browse/ZBX-11244
https://support.zabbix.com/browse/ZBX-11191
https://support.zabbix.com/browse/ZBX-11191
https://support.zabbix.com/browse/ZBX-11191
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-11357
https://support.zabbix.com/browse/ZBXNEXT-3457

Bug fixes:
ZBX-11121 usergroup.update, usergroup.massupdate, usergroup.delete: disallowed leaving a user without linked user groups

3.2.1 host

Bug fixes:
ZBX-11196 implemented a dynamic default sort order for icon mappings; now the default sort order increases by one with each
entry of an icon mapping
ZBX-11151 implemented a dynamic default sort order for graph items; now the default sort order increases by one with each
entry of a graph item

19. Appendixes

Please use the sidebar to access content in the Appendixes section.

1 Frequently asked questions / Troubleshooting

Frequently asked questions or FAQ.

1. Q: Can I flush/clear the queue (as depicted in Administration → Queue)?
A: No.

2. Q: How do I migrate from one database to another?
A: Dump data only (for MySQL, use flag -t or --no-create-info), create the new database using schema files from Zabbix and
import the data.

3. Q: I would like to replace all spaces with underscores in my item keys because they worked in older versions but space is not
a valid symbol for an item key in 3.0 (or any other reason to mass-modify item keys). How should I do it and what should i
beware of?
A: You may use a database query to replace all occurrences of spaces in item keys with underscores:
update items set key_=replace(key_,’ ’,’_’);
Triggers will be able to use these items without any additional modifications, but you might have to change any item refer-
ences in these locations:
* Notifications (actions)
* Map element and link labels
* Calculated item formulas

4. Q: My graphs have dots instead of lines or empty areas. Why so?
A: Data is missing. This can happen for a variety of reasons - performance problems on Zabbix database, Zabbix server,
network, monitored devices...

5. Q: Zabbix daemons fail to start up with a message Listener failed with error: socket() for [[-]:10050] failed with error 22:
Invalid argument.
A: This error arises at attempt to run Zabbix agent compiled on version 2.6.27 or above on a platform with a kernel 2.6.26
and lower. Note that static linking will not help in this case because it is the socket() system call that does not support
SOCK_CLOEXEC flag on earlier kernels. ZBX-3395

6. Q: I try to set up a flexible user parameter (one that accepts parameters) with a command that uses a positional parameter
like $1, but it doesn’t work (uses item parameter instead). How to solve this?
A: Use a double dollar sign like $$1

7. Q: All dropdowns have a scrollbar and look ugly in Opera 11. Why so?
A: It’s a known bug in Opera 11.00 and 11.01; see Zabbix issue tracker for more information.

8. Q: How can I change graph background colour in a custom theme?
A: See graph_theme table in the database and theming guide.

9. Q: With DebugLevel 4 I’m seeing messages ”Trapper got [] len 0” in server/proxy log - what’s that?
A: Most likely that is frontend, connecting and checking whether server is still running.

10. Q: My system had the time set in the future and now no data is coming in. How could this be solved?
A: Clear values of database fields hosts.disable_until*, drules.nextcheck, httptest.nextcheck and restart the server/proxy.

11. Q: Text item values in frontend (when using {ITEM.VALUE}macro and in other cases) are cut/trimmed to 20 symbols. Is that
normal?
A: Yes, there is a hardcoded limit in include/items.inc.php currently.

See also

893

https://support.zabbix.com/browse/ZBX-11121
https://support.zabbix.com/browse/ZBX-11196
https://support.zabbix.com/browse/ZBX-11151
https://support.zabbix.com/browse/ZBX-3395
https://support.zabbix.com/browse/ZBX-3594

* Troubleshooting page on zabbix.org

2 Installation

1 Database creation scripts

Overview

A Zabbix database must be created during the installation of Zabbix server or proxy.

This section provides scripts for creating a Zabbix database. A separate schema script is provided for each supported database.

Note:
schema.sql, images.sql and data.sql files are located in the database subdirectory of Zabbix sources. If Zabbix was
installed from distribution packages, refer to the distribution documentation.

Attention:
For a Zabbix proxy database, only schema.sql should be imported (no images.sql nor data.sql)

Scripts

MySQL

shell> mysql -uroot -p<password>
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost identified by '<password>';
mysql> quit;
stop here if you are creating database with Zabbix packages
shell> cd database/mysql
shell> mysql -uzabbix -p<password> zabbix < schema.sql
stop here if you are creating database for Zabbix proxy
shell> mysql -uzabbix -p<password> zabbix < images.sql
shell> mysql -uzabbix -p<password> zabbix < data.sql

PostgreSQL

Please refer to this section if you are installing Zabbix from packages.

You need to have database user with permissions to create database objects. The following shell command will create user zabbix.
Specify password when prompted and repeat password (note, you may first be asked for sudo password):

shell> sudo -u postgres createuser --pwprompt zabbix

Now we will set up the database zabbix (last parameter) with the previously created user as the owner (-O zabbix) and import
initial schema and data (assuming you are in the root directory of Zabbix sources):

shell> sudo -u postgres createdb -O zabbix zabbix
shell> cd database/postgresql
shell> cat schema.sql | sudo -u zabbix psql zabbix

Stop here if you are creating database for Zabbix proxy.

shell> cat images.sql | sudo -u zabbix psql zabbix
shell> cat data.sql | sudo -u zabbix psql zabbix

Attention:
The above commands are provided as an example that will work in most of GNU/Linux installations. You can use different
commands, e. g. ”psql -U <username>” depending on how your system/database are configured. If you have troubles
setting up the database please consult your Database administrator.

Oracle

We assume that a zabbix database user with password password exists and has permissions to create database objects in ORCL
service located on the host Oracle database server with a user shell user having write access to /tmp directory. Zabbix requires a
Unicode database character set and a UTF8 national character set. Check current settings:

894

https://www.zabbix.org/wiki/Troubleshooting

sqlplus> select parameter,value from v$nls_parameters where parameter='NLS_CHARACTERSET' or parameter='NLS_NCHAR_CHARACTERSET';

If you are creating a database for Zabbix server you need to have images on a predefined location on Oracle host. Copy all images
from misc/images/png_modern to /tmp/zabbix_images directory on Oracle host:

shell> cd /path/to/zabbix-sources
shell> ssh user@host "mkdir /tmp/zabbix_images"
shell> scp -r misc/images/png_modern user@host:/tmp/zabbix_images/

Now prepare the database:

shell> cd database/oracle
shell> sqlplus zabbix/password@host/ORCL
sqlplus> @schema.sql
stop here if you are creating database for Zabbix proxy
sqlplus> @images.sql
sqlplus> @data.sql

After executing the images.sql script the /tmp/zabbix_images temporary directory can be removed.

IBM DB2

shell> db2 "create database zabbix using codeset utf-8 territory us pagesize 32768"
shell> cd database/ibm_db2
shell> db2batch -d zabbix -f schema.sql
stop here if you are creating database for Zabbix proxy
shell> db2batch -d zabbix -f images.sql
shell> db2batch -d zabbix -f data.sql

Note:
It is important to set UTF-8 locale for Zabbix server, Zabbix proxy and the web server running Zabbix frontend. Otherwise
text information from Zabbix will be interpreted by IBM DB2 server as non-UTF-8 and will be additionally converted on the
way from Zabbix to the database and back. The database will store corrupted non-ASCII characters.

Zabbix frontend uses OFFSET and LIMIT clauses in SQL queries. For this to work, IBMDB2 servermust have DB2_COMPATIBILITY_VECTOR
variable be set to 3. Run the following command before starting the database server:

shell> db2set DB2_COMPATIBILITY_VECTOR=3

SQLite

shell> cd database/sqlite3
shell> sqlite3 /var/lib/sqlite/zabbix.db < schema.sql
stop here if you are creating database for Zabbix proxy
shell> sqlite3 /var/lib/sqlite/zabbix.db < images.sql
shell> sqlite3 /var/lib/sqlite/zabbix.db < data.sql

Note:
If using SQLite with Zabbix proxy, database will be automatically created if it does not exist.

Return to the installation section.

2 Zabbix agent on Microsoft Windows

Configuring agent

Zabbix agent runs as a Windows service.

You can run a single instance of Zabbix agent or multiple instances of the agent on a Microsoft Windows host. A single instance
can use the default configuration file C:\zabbix_agentd.conf or a configuration file specified in the command line. In case of
multiple instances each agent instance must have its own configuration file (one of the instances can use the default configuration
file).

An example configuration file is available in Zabbix source archive as conf/zabbix_agentd.win.conf.

See the configuration file options for details on configuring Zabbix Windows agent.

Hostname parameter

895

To perform active checks on a host Zabbix agent needs to have the hostname defined. Moreover, the hostname value set on the
agent side should exactly match the ”Host name” configured for the host in the frontend.

The hostname value on the agent side can be defined by either the Hostname or HostnameItem parameter in the agent config-
uration file - or the default values are used if any of these parameters are not specified.

The default value for HostnameItem parameter is the value returned by the ”system.hostname” agent key and for Windows
platform it returns the NetBIOS host name.

The default value for Hostname is the value returned by the HostnameItem parameter. So, in effect, if both these parameters
are unspecified the actual hostname will be the host NetBIOS name; Zabbix agent will use NetBIOS host name to retrieve the list
of active checks from Zabbix server and send results to it.

Attention:
The system.hostname key always returns the NetBIOS host name which is limited to 15 symbols and in UPPERCASE only
- regardless of the length and lowercase/uppercase characters in the real host name.

Starting from Zabbix agent 1.8.6 version for Windows the ”system.hostname” key supports an optional parameter - type of the
name. The default value of this parameter is ”netbios” (for backward compatibility) and the other possible value is ”host”.

Attention:
The system.hostname[host] key always returns the full, real (case sensitive) Windows host name.

So, to simplify the configuration of zabbix_agentd.conf file and make it unified, two different approaches could be used.

1. leave Hostname or HostnameItem parameters undefined and Zabbix agent will use NetBIOS host name as the hostname;
2. leave Hostname parameter undefined and define HostnameItem like this:
HostnameItem=system.hostname[host]
and Zabbix agent will use the full, real (case sensitive) Windows host name as the hostname.

Host name is also used as part of Windows service name which is used for installing, starting, stopping and uninstalling theWindows
service. For example, if Zabbix agent configuration file specifies Hostname=Windows_db_server, then the agent will be installed
as a Windows service ”Zabbix Agent [Windows_db_server]”. Therefore, to have a different Windows service name for each
Zabbix agent instance, each instance must use a different host name.

Installing agent as Windows service

To install a single instance of Zabbix agent with the default configuration file c:\zabbix_agentd.conf:

zabbix_agentd.exe --install

Attention:
On a 64-bit system, a 64-bit Zabbix agent version is required for all checks related to running 64-bit processes to work
correctly.

If you wish to use a configuration file other than c:\zabbix_agentd.conf, you should use the following command for service
installation:

zabbix_agentd.exe --config <your_configuration_file> --install

A full path to the configuration file should be specified.

Multiple instances of Zabbix agent can be installed as services like this:

zabbix_agentd.exe --config <configuration_file_for_instance_1> --install --multiple-agents
zabbix_agentd.exe --config <configuration_file_for_instance_2> --install --multiple-agents
...
zabbix_agentd.exe --config <configuration_file_for_instance_N> --install --multiple-agents

The installed service should now be visible in Control Panel.

Starting agent

To start the agent service, you can use Control Panel or do it from command line.

To start a single instance of Zabbix agent with the default configuration file:

zabbix_agentd.exe --start

To start a single instance of Zabbix agent with another configuration file:

zabbix_agentd.exe --config <your_configuration_file> --start

896

To start one of multiple instances of Zabbix agent:

zabbix_agentd.exe --config <configuration_file_for_this_instance> --start --multiple-agents

Stopping agent

To stop the agent service, you can use Control Panel or do it from command line.

To stop a single instance of Zabbix agent started with the default configuration file:

zabbix_agentd.exe --stop

To stop a single instance of Zabbix agent started with another configuration file:

zabbix_agentd.exe --config <your_configuration_file> --stop

To stop one of multiple instances of Zabbix agent:

zabbix_agentd.exe --config <configuration_file_for_this_instance> --stop --multiple-agents

Uninstalling agent Windows service

To uninstall a single instance of Zabbix agent using the default configuration file:

zabbix_agentd.exe --uninstall

To uninstall a single instance of Zabbix agent using a non-default configuration file:

zabbix_agentd.exe --config <your_configuration_file> --uninstall

To uninstall multiple instances of Zabbix agent from Windows services:

zabbix_agentd.exe --config <configuration_file_for_instance_1> --uninstall --multiple-agents
zabbix_agentd.exe --config <configuration_file_for_instance_2> --uninstall --multiple-agents
...
zabbix_agentd.exe --config <configuration_file_for_instance_N> --uninstall --multiple-agents

3 Daemon configuration

1 Zabbix server

Note:
The default values reflect daemon defaults, not the values in the shipped configuration files.

The parameters supported in a Zabbix server configuration file:

Parameter Mandatory Range Default Description

AlertScriptsPath no /usr/local/share/zabbix/alertscriptsLocation of custom alert
scripts (depends on
compile-time installation
variable datadir).

AllowRoot no 0 Allow the server to run as
’root’. If disabled and the
server is started by ’root’, the
server will try to switch to the
’zabbix’ user instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow
This parameter is supported
since Zabbix 2.2.0.

897

Parameter Mandatory Range Default Description

CacheSize no 128K-8G 8M Size of configuration cache,
in bytes.
Shared memory size for
storing host, item and trigger
data.
Upper limit used to be 2GB
before Zabbix 2.2.3.

CacheUpdateFrequency no 1-3600 60 How often Zabbix will
perform update of
configuration cache, in
seconds.
See also runtime control
options.

DBHost no localhost Database host name.
In case of MySQL localhost or
empty string results in using
a socket. In case of
PostgreSQL
only empty string results in
attempt to use socket.

DBName yes Database name.
For SQLite3 path to database
file must be provided.
DBUser and DBPassword are
ignored.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBPort no 1024-65535 3306 Database port when not
using local socket. Ignored
for SQLite.

DBSchema no Schema name. Used for IBM
DB2 and PostgreSQL.

DBSocket no /tmp/mysql.sock Path to MySQL socket.
DBUser no Database user. Ignored for

SQLite.
DebugLevel no 0-5 3 Specifies debug level:

0 - basic information about
starting and stopping of
Zabbix processes
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)
5 - extended debugging
(produces even more
information)
See also runtime control
options.

ExternalScripts no /usr/local/share/zabbix/externalscriptsLocation of external scripts
(depends on compile-time
installation variable datadir).

Fping6Location no /usr/sbin/fping6 Location of fping6.
Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

898

Parameter Mandatory Range Default Description

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

HistoryCacheSize no 128K-2G 16M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryIndexCacheSize no 128K-2G 4M Size of history index cache, in
bytes.
Shared memory size for
indexing history data stored
in history cache.
The index cache size needs
roughly 100 bytes to cache
one item.
This parameter is supported
since Zabbix 3.0.0.

899

Parameter Mandatory Range Default Description

HousekeepingFrequency no 0-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
outdated information from
the database.
Note: To prevent
housekeeper from being
overloaded (for example,
when history and trend
periods are greatly reduced),
no more than 4 times
HousekeepingFrequency
hours of outdated
information are deleted in
one housekeeping cycle, for
each item. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated information
(starting from the oldest
entry) will be deleted per
cycle.
Note: To lower load on server
startup housekeeping is
postponed for 30 minutes
after server start. Thus, if
HousekeepingFrequency is 1,
the very first housekeeping
procedure after server start
will run after 30 minutes, and
will repeat with one hour
delay thereafter. This
postponing behavior is in
place since Zabbix 2.4.0.
Since Zabbix 3.0.0 it is
possible to disable automatic
housekeeping by setting
HousekeepingFrequency to 0.
In this case the housekeeping
procedure can only be started
by housekeeper_execute
runtime control option and
the period of outdated
information deleted in one
housekeeping cycle is 4
times the period since the
last housekeeping cycle, but
not less than 4 hours and not
greater than 4 days.
See also runtime control
options.

900

Parameter Mandatory Range Default Description

Include no You may include individual
files or all files in a directory
in the configuration file.
To only include relevant files
in the specified directory, the
asterisk wildcard character is
supported for pattern
matching. For example:
/absolute/path/to/config/files/*.conf.
Pattern matching is
supported since Zabbix 2.4.0.
See special notes about
limitations.

JavaGateway no IP address (or hostname) of
Zabbix Java gateway.
Only required if Java pollers
are started.
This parameter is supported
since Zabbix 2.0.0.

JavaGatewayPort no 1024-32767 10052 Port that Zabbix Java
gateway listens on.
This parameter is supported
since Zabbix 2.0.0.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported since Zabbix 1.8.3.

ListenPort no 1024-32767 10051 Listen port for trapper.
LoadModule no Module to load at server

startup. Modules are used to
extend functionality of the
server.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of server
modules.
Default depends on
compilation options.

LogFile yes, if LogType is set to
file, otherwise
no

Name of log file.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

901

Parameter Mandatory Range Default Description

LogType no file Log output type:
file - write log to file specified
by LogFile parameter,
system - write log to syslog,
console - write log to
standard output.
This parameter is supported
since Zabbix 3.0.0.

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This parameter is supported
since Zabbix 1.8.2.

MaxHousekeeperDelete no 0-1000000 5000 No more than
’MaxHousekeeperDelete’
rows (corresponding to
[tablename], [field], [value])
will be deleted per one task
in one housekeeping cycle.
SQLite3 does not use this
parameter, deletes all
corresponding rows without a
limit.
If set to 0 then no limit is
used at all. In this case you
must know what you are
doing!
This parameter is supported
since Zabbix 1.8.2 and
applies only to deleting
history and trends of already
deleted items.

PidFile no /tmp/zabbix_server.pidName of PID file.
ProxyConfigFrequency no 1-604800 3600 How often Zabbix server

sends configuration data to a
Zabbix proxy in seconds.
Used only for proxies in a
passive mode.
This parameter is supported
since Zabbix 1.8.3.

ProxyDataFrequency no 1-3600 1 How often Zabbix server
requests history data from a
Zabbix proxy in seconds.
Used only for proxies in a
passive mode.
This parameter is supported
since Zabbix 1.8.3.

SenderFrequency no 5-3600 30 How often Zabbix will try to
send unsent alerts (in
seconds).

SNMPTrapperFile no /tmp/zabbix_traps.tmpTemporary file used for
passing data from SNMP trap
daemon to the server.
Must be the same as in
zabbix_trap_receiver.pl or
SNMPTT configuration file.
This parameter is supported
since Zabbix 2.0.0.

902

Parameter Mandatory Range Default Description

SourceIP no Source IP address for
outgoing connections.

SSHKeyLocation no Location of public and private
keys for SSH checks and
actions

SSLCertLocation no Location of SSL client
certificate files for client
authentication.
This parameter is used in
web monitoring only and is
supported since Zabbix 2.4.

SSLKeyLocation no Location of SSL private key
files for client authentication.
This parameter is used in
web monitoring only and is
supported since Zabbix 2.4.

SSLCALocation no Override the location of
certificate authority (CA) files
for SSL server certificate
verification. If not set,
system-wide directory will be
used.
Note that the value of this
parameter will be set as
libcurl option
CURLOPT_CAPATH. For libcurl
versions before 7.42.0, this
only has effect if libcurl was
compiled to use OpenSSL. For
more information see cURL
web page.
This parameter is used in web
monitoring since Zabbix 2.4.0
and in SMTP authentication
since Zabbix 3.0.0.

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartEscalators no 1-100 1 Number of pre-forked
instances of escalators.
This parameter is supported
since Zabbix 3.0.0.

StartHTTPPollers no 0-1000 1 Number of pre-forked
instances of HTTP pollers.
The upper limit used to be
255 before version 1.8.5.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartJavaPollers no 0-1000 0 Number of pre-forked
instances of Java pollers.
This parameter is supported
since Zabbix 2.0.0.

903

http://curl.haxx.se/libcurl/c/CURLOPT_CAPATH.html
http://curl.haxx.se/libcurl/c/CURLOPT_CAPATH.html

Parameter Mandatory Range Default Description

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI and Java).
Since Zabbix 2.4.0, at least
one poller for unreachable
hosts must be running if
regular, IPMI or Java pollers
are started.
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
The upper limit used to be
255 before version 1.8.5.

StartProxyPollers no 0-250 1 Number of pre-forked
instances of pollers for
passive proxies.
The upper limit used to be
255 before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartSNMPTrapper no 0-1 0 If set to 1, SNMP trapper
process will be started.
This parameter is supported
since Zabbix 2.0.0.

StartTimers no 1-1000 1 Number of pre-forked
instances of timers.
Timers process time-based
trigger functions and
maintenance periods.
Only the first timer process
handles the maintenance
periods.
This parameter is supported
since Zabbix 2.2.0.

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
Trappers accept incoming
connections from Zabbix
sender, active agents and
active proxies.
At least one trapper process
must be running to display
server availability and view
queue in the frontend.
The upper limit used to be
255 before version 1.8.5.

StartVMwareCollectors no 0-250 0 Number of pre-forked
vmware collector instances.
This parameter is supported
since Zabbix 2.2.0.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

904

Parameter Mandatory Range Default Description

TLSCAFile no Full pathname of a file
containing the top-level CA(s)
certificates for peer
certificate verification, used
for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSCertFile no Full pathname of a file
containing the server
certificate or certificate
chain, used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSCRLFile no Full pathname of a file
containing revoked
certificates. This parameter
is used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSKeyFile no Full pathname of a file
containing the server private
key, used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

TrendCacheSize no 128K-2G 4M Size of trend cache, in bytes.
Shared memory size for
storing trends data.

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

User no zabbix Drop privileges to a specific,
existing user on the system.
Only has effect if run as ’root’
and AllowRoot is disabled.
This parameter is supported
since Zabbix 2.4.0.

905

Parameter Mandatory Range Default Description

ValueCacheSize no 0,128K-64G 8M Size of history value cache, in
bytes.
Shared memory size for
caching item history data
requests.
Setting to 0 disables value
cache (not recommended).
When value cache runs out of
the shared memory a
warning message is written
to the server log every 5
minutes.
This parameter is supported
since Zabbix 2.2.0.

VMwareCacheSize no 256K-2G 8M Shared memory size for
storing VMware data.
A VMware internal check
zabbix[vmware,buffer,...] can
be used to monitor the
VMware cache usage (see
Internal checks).
Note that shared memory is
not allocated if there are no
vmware collector instances
configured to start.
This parameter is supported
since Zabbix 2.2.0.

VMwareFrequency no 10-86400 60 Delay in seconds between
data gathering from a single
VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item.
This parameter is supported
since Zabbix 2.2.0.

VMwarePerfFrequency no 10-86400 60 Delay in seconds between
performance counter
statistics retrieval from a
single VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item
that uses VMware
performance counters.
This parameter is supported
since Zabbix 2.2.9, 2.4.4

VMwareTimeout no 1-300 10 The maximum number of
seconds vmware collector will
wait for a response from
VMware service (vCenter or
ESX hypervisor).
This parameter is supported
since Zabbix 2.2.9, 2.4.4

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

Comments starting with ”#” are only supported in the beginning of the line.

906

https://en.wikipedia.org/wiki/Byte_order_mark

2 Zabbix proxy

Note:
The default values reflect daemon defaults, not the values in the shipped configuration files.

The parameters supported in a Zabbix proxy configuration file:

Parameter Mandatory Range Default Description

AllowRoot no 0 Allow the proxy to run as
’root’. If disabled and the
proxy is started by ’root’, the
proxy will try to switch to the
’zabbix’ user instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow
This parameter is supported
since Zabbix 2.2.0.

CacheSize no 128K-8G 8M Size of configuration cache,
in bytes.
Shared memory size, for
storing host and item data.
Upper limit used to be 2GB
before Zabbix 2.2.3.

ConfigFrequency no 1-604800 3600 How often proxy retrieves
configuration data from
Zabbix server in seconds.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

DBHost no localhost Database host name.
In case of MySQL localhost or
empty string results in using
a socket. In case of
PostgreSQL
only empty string results in
attempt to use socket.

DBName yes Database name.
For SQLite3 path to database
file must be provided.
DBUser and DBPassword are
ignored.
Warning: Do not attempt to
use the same database
Zabbix server is using.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBSchema no Schema name. Used for IBM
DB2 and PostgreSQL.

DBSocket no 3306 Path to MySQL socket.
Database port when not
using local socket. Ignored
for SQLite.

DBUser Database user. Ignored for
SQLite.

907

Parameter Mandatory Range Default Description

DataSenderFrequency no 1-3600 1 Proxy will send collected data
to the server every N
seconds.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

DebugLevel no 0-5 3 Specifies debug level:
0 - basic information about
starting and stopping of
Zabbix processes
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)
5 - extended debugging
(produces even more
information)

ExternalScripts no /usr/local/share/zabbix/externalscriptsLocation of external scripts
(depends on compile-time
installation variable datadir).

Fping6Location no /usr/sbin/fping6 Location of fping6.
Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

HeartbeatFrequency no 0-3600 60 Frequency of heartbeat
messages in seconds.
Used for monitoring
availability of proxy on server
side.
0 - heartbeat messages
disabled.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

HistoryCacheSize no 128K-2G 16M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryIndexCacheSize no 128K-2G 4M Size of history index cache, in
bytes.
Shared memory size for
indexing history data stored
in history cache.
The index cache size needs
roughly 100 bytes to cache
one item.
This parameter is supported
since Zabbix 3.0.0.

908

Parameter Mandatory Range Default Description

Hostname no Set by
HostnameItem

Unique, case sensitive Proxy
name. Make sure the proxy
name is known to the server!
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Item used for setting
Hostname if it is undefined
(this will be run on the proxy
similarly as on an agent).
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[].

Ignored if Hostname is set.

This parameter is supported
since Zabbix 1.8.6.

909

Parameter Mandatory Range Default Description

HousekeepingFrequency no 0-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
outdated information from
the database.
Note: To prevent
housekeeper from being
overloaded (for example,
when configuration
parameters ProxyLocalBuffer
or ProxyOfflineBuffer are
greatly reduced), no more
than 4 times
HousekeepingFrequency
hours of outdated information
are deleted in one
housekeeping cycle. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated information
(starting from the oldest
entry) will be deleted per
cycle.
Note: To lower load on proxy
startup housekeeping is
postponed for 30 minutes
after proxy start. Thus, if
HousekeepingFrequency is 1,
the very first housekeeping
procedure after proxy start
will run after 30 minutes, and
will repeat every hour
thereafter. This postponing
behavior is in place since
Zabbix 2.4.0.
Since Zabbix 3.0.0 it is
possible to disable automatic
housekeeping by setting
HousekeepingFrequency to 0.
In this case the housekeeping
procedure can only be started
by housekeeper_execute
runtime control option and
the period of outdated
information deleted in one
housekeeping cycle is 4
times the period since the
last housekeeping cycle, but
not less than 4 hours and not
greater than 4 days.

910

Parameter Mandatory Range Default Description

Include no You may include individual
files or all files in a directory
in the configuration file.
To only include relevant files
in the specified directory, the
asterisk wildcard character is
supported for pattern
matching. For example:
/absolute/path/to/config/files/*.conf.
Pattern matching is
supported since Zabbix 2.4.0.
See special notes about
limitations.

JavaGateway no IP address (or hostname) of
Zabbix Java gateway.
Only required if Java pollers
are started.
This parameter is supported
since Zabbix 2.0.0.

JavaGatewayPort no 1024-32767 10052 Port that Zabbix Java
gateway listens on.
This parameter is supported
since Zabbix 2.0.0.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported since Zabbix 1.8.3.

ListenPort no 1024-32767 10051 Listen port for trapper.
LoadModule no Module to load at proxy

startup. Modules are used to
extend functionality of the
proxy.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of proxy
modules.
Default depends on
compilation options.

LogFile yes, if LogType is set to
file, otherwise
no

Name of log file.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

911

Parameter Mandatory Range Default Description

LogType no file Log output type:
file - write log to file specified
by LogFile parameter,
system - write log to syslog,
console - write log to
standard output.
This parameter is supported
since Zabbix 3.0.0.

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This parameter is supported
since Zabbix 1.8.2.

PidFile no /tmp/zabbix_proxy.pid Name of PID file.
ProxyLocalBuffer no 0-720 0 Proxy will keep data locally

for N hours, even if the data
have already been synced
with the server.
This parameter may be used
if local data will be used by
third party applications.

ProxyMode no 0-1 0 Proxy operating mode.
0 - proxy in the active mode
1 - proxy in the passive mode
This parameter is supported
since Zabbix 1.8.3.
Note that (sensitive) proxy
configuration data may
become available to parties
having access to the Zabbix
server trapper port when
using an active proxy. This is
possible because anyone
may pretend to be an active
proxy and request
configuration data;
authentication does not take
place.

ProxyOfflineBuffer no 1-720 1 Proxy will keep data for N
hours in case of no
connectivity with Zabbix
server.
Older data will be lost.

ServerPort no 1024-32767 10051 Port of Zabbix trapper on
Zabbix server.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

Server yes IP address (or hostname) of
Zabbix server.
Active proxy will get
configuration data from the
server.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

912

Parameter Mandatory Range Default Description

SNMPTrapperFile no /tmp/zabbix_traps.tmpTemporary file used for
passing data from SNMP trap
daemon to the proxy.
Must be the same as in
zabbix_trap_receiver.pl or
SNMPTT configuration file.
This parameter is supported
since Zabbix 2.0.0.

SourceIP no Source IP address for
outgoing connections.

SSHKeyLocation no Location of public and private
keys for SSH checks and
actions

SSLCertLocation no Location of SSL client
certificate files for client
authentication.
This parameter is used in
web monitoring only and is
supported since Zabbix 2.4.0.

SSLKeyLocation no Location of SSL private key
files for client authentication.
This parameter is used in
web monitoring only and is
supported since Zabbix 2.4.0.

SSLCALocation no Location of certificate
authority (CA) files for SSL
server certificate verification.
Note that the value of this
parameter will be set as
libcurl option
CURLOPT_CAPATH. For libcurl
versions before 7.42.0, this
only has effect if libcurl was
compiled to use OpenSSL. For
more information see cURL
web page.
This parameter is used in web
monitoring since Zabbix 2.4.0
and in SMTP authentication
since Zabbix 3.0.0.

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartHTTPPollers no 0-1000 1 Number of pre-forked
instances of HTTP pollers.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartJavaPollers no 0-1000 0 Number of pre-forked
instances of Java pollers.
This parameter is supported
since Zabbix 2.0.0.

913

http://curl.haxx.se/libcurl/c/CURLOPT_CAPATH.html
http://curl.haxx.se/libcurl/c/CURLOPT_CAPATH.html

Parameter Mandatory Range Default Description

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI and Java).
Since Zabbix 2.4.0, at least
one poller for unreachable
hosts must be running if
regular, IPMI or Java pollers
are started.
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
The upper limit used to be
255 before version 1.8.5.

StartSNMPTrapper no 0-1 0 If set to 1, SNMP trapper
process will be started.
This parameter is supported
since Zabbix 2.0.0.

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
Trappers accept incoming
connections from Zabbix
sender and active agents.
The upper limit used to be
255 before version 1.8.5.

StartVMwareCollectors no 0-250 0 Number of pre-forked
vmware collector instances.
This parameter is supported
since Zabbix 2.2.0.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

TLSAccept yes for passive proxy, if
TLS certificate or PSK
parameters are defined
(even for unencrypted
connection), otherwise
no

What incoming connections
to accept from Zabbix server.
Used for a passive proxy,
ignored on an active proxy.
Multiple values can be
specified, separated by
comma:
unencrypted - accept
connections without
encryption (default)
psk - accept connections with
TLS and a pre-shared key
(PSK)
cert - accept connections
with TLS and a certificate
This parameter is supported
since Zabbix 3.0.0.

914

Parameter Mandatory Range Default Description

TLSCAFile no Full pathname of a file
containing the top-level CA(s)
certificates for peer
certificate verification, used
for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSCertFile no Full pathname of a file
containing the proxy
certificate or certificate
chain, used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSConnect yes for active proxy, if
TLS certificate or PSK
parameters are defined
(even for unencrypted
connection), otherwise
no

How the proxy should
connect to Zabbix server.
Used for an active proxy,
ignored on a passive proxy.
Only one value can be
specified:
unencrypted - connect
without encryption (default)
psk - connect using TLS and a
pre-shared key (PSK)
cert - connect using TLS and
a certificate
This parameter is supported
since Zabbix 3.0.0.

TLSCRLFile no Full pathname of a file
containing revoked
certificates.This parameter is
used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSKeyFile no Full pathname of a file
containing the proxy private
key, used for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKFile no Full pathname of a file
containing the proxy
pre-shared key. used for
encrypted communications
with Zabbix server.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKIdentity no Pre-shared key identity
string, used for encrypted
communications with Zabbix
server.
This parameter is supported
since Zabbix 3.0.0.

915

Parameter Mandatory Range Default Description

TLSServerCertIssuer no Allowed server certificate
issuer.
This parameter is supported
since Zabbix 3.0.0.

TLSServerCertSubject no Allowed server certificate
subject.
This parameter is supported
since Zabbix 3.0.0.

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

User no zabbix Drop privileges to a specific,
existing user on the system.
Only has effect if run as ’root’
and AllowRoot is disabled.
This parameter is supported
since Zabbix 2.4.0.

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

VMwareCacheSize no 256K-2G 8M Shared memory size for
storing VMware data.
A VMware internal check
zabbix[vmware,buffer,...] can
be used to monitor the
VMware cache usage (see
Internal checks).
Note that shared memory is
not allocated if there are no
vmware collector instances
configured to start.
This parameter is supported
since Zabbix 2.2.0.

VMwareFrequency no 10-86400 60 Delay in seconds between
data gathering from a single
VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item.
This parameter is supported
since Zabbix 2.2.0.

VMwarePerfFrequency no 10-86400 60 Delay in seconds between
performance counter
statistics retrieval from a
single VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item
that uses VMware
performance counters.
This parameter is supported
since Zabbix 2.2.9, 2.4.4

916

Parameter Mandatory Range Default Description

VMwareTimeout no 1-300 10 The maximum number of
seconds vmware collector will
wait for a response from
VMware service (vCenter or
ESX hypervisor).
This parameter is supported
since Zabbix 2.2.9, 2.4.4

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

Comments starting with ”#” are only supported in the beginning of the line.

3 Zabbix agent (UNIX)

Note:
The default values reflect daemon defaults, not the values in the shipped configuration files.

The parameters supported in a Zabbix agent configuration file (zabbix_agentd.conf):

917

https://en.wikipedia.org/wiki/Byte_order_mark

Parameter Mandatory Range Default Description

Alias no Sets an alias for an item key.
It can be used to substitute
long and complex item key
with a smaller and simpler
one.
Multiple Alias parameters
may be present. Multiple
parameters with the same
Alias key are allowed.
Different Alias keys may
reference the same item key.
Aliases can be used in
HostMetadataItem but not in
HostnameItem parameters.

Examples:

1. Retrieving the ID of user
’zabbix’.
Alias=zabbix.userid:vfs.file.regexp[/etc/passwd,”^zabbix:.:([0-
9]+)”„„\1]
Now shorthand key
zabbix.userid may be used
to retrieve data.

2. Getting CPU utilization
with default and custom
parameters.
Alias=cpu.util:system.cpu.util
Alias=cpu.util[*]:system.cpu.util[*]
This allows use cpu.util key
to get CPU utilisation
percentage with default
parameters as well as use
cpu.util[all, idle, avg15] to
get specific data about CPU
utilisation.

3. Running multiple low-level
discovery rules processing
the same discovery items.
Alias=vfs.fs.discovery[*]:vfs.fs.discovery
Now it is possible to set up
several discovery rules using
vfs.fs.discovery with
different parameters for each
rule, e.g.,
vfs.fs.discovery[foo],
vfs.fs.discovery[bar], etc.

AllowRoot no 0 Allow the agent to run as
’root’. If disabled and the
agent is started by ’root’, the
agent will try to switch to
user ’zabbix’ instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

918

Parameter Mandatory Range Default Description

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
server or proxy if the buffer is
full.

DebugLevel no 0-5 3 Specifies debug level:
0 - basic information about
starting and stopping of
Zabbix processes
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)
5 - extended debugging
(produces even more
information)

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

HostMetadata no 0-255
characters

Optional parameter that
defines host metadata. Host
metadata is used only at host
auto-registration process
(active agent).
If not defined, the value will
be acquired from
HostMetadataItem.
An agent will issue an error
and not start if the specified
value is over the limit or a
non-UTF-8 string.
This option is supported in
version 2.2.0 and higher.

HostMetadataItem no Optional parameter that
defines a Zabbix agent item
used for getting host
metadata. This option is only
used when HostMetadata is
not defined.
Supports UserParameters
and aliases. Supports
system.run[] regardless of
EnableRemoteCommands
value.
Host metadata is used only at
host auto-registration
process (active agent).
During an auto-registration
request an agent will log a
warning message if the value
returned by the specified
item is over the limit of 255
characters.
The value returned by the
item must be a UTF-8 string
otherwise it will be ignored.
This option is supported in
version 2.2.0 and higher.

919

Parameter Mandatory Range Default Description

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Optional parameter that
defines a Zabbix agent item
used for getting host name.
This option is only used when
Hostname is not defined.
Does not support
UserParameters or aliases,
but does support
system.run[] regardless of
EnableRemoteCommands
value.
This option is supported in
version 1.8.6 and higher.

Include no You may include individual
files or all files in a directory
in the configuration file.
To only include relevant files
in the specified directory, the
asterisk wildcard character is
supported for pattern
matching. For example:
/absolute/path/to/config/files/*.conf.
Pattern matching is
supported since Zabbix 2.4.0.
See special notes about
limitations.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported in version 1.8.3
and higher.

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LoadModule no Module to load at agent
startup. Modules are used to
extend functionality of the
agent.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of agent
modules.
Default depends on
compilation options.

920

Parameter Mandatory Range Default Description

LogFile yes, if LogType is set to
file, otherwise
no

Name of log file.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

LogType no file Log output type:
file - write log to file specified
by LogFile parameter,
system - write log to syslog,
console - write log to
standard output.
This parameter is supported
since Zabbix 3.0.0.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

MaxLinesPerSecond no 1-1000 20 Maximum number of new
lines the agent will send per
second to Zabbix server or
proxy when processing ’log’
and ’eventlog’ active checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’ or ’eventlog’
item key.
Note: Zabbix will process 4
times more new lines than
set in MaxLinesPerSecond to
seek the required string in
log items.

PidFile no /tmp/zabbix_agentd.pidName of PID file.
RefreshActiveChecks no 60-3600 120 How often list of active

checks is refreshed, in
seconds.
Note that after failing to
refresh active checks the
next refresh will be
attempted after 60 seconds.

Server no List of comma delimited IP
addresses (or hostnames) of
Zabbix servers. Spaces are
allowed.
Incoming connections will be
accepted only from the hosts
listed here.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

921

Parameter Mandatory Range Default Description

ServerActive no IP:port (or hostname:port) of
Zabbix server or Zabbix
proxy for active checks.
Multiple comma-delimited
addresses can be provided to
use several independent
Zabbix servers in parallel.
Spaces are allowed.
If port is not specified,
default port is used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
If this parameter is not
specified, active checks are
disabled.

SourceIP no Source IP address for
outgoing connections.

StartAgents no 0-100 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
If set to 0, disables passive
checks and the agent will not
listen on any TCP port.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

TLSAccept yes, if TLS certificate or
PSK parameters are
defined (even for
unencrypted
connection), otherwise
no

What incoming connections
to accept. Used for a passive
checks. Multiple values can
be specified, separated by
comma:
unencrypted - accept
connections without
encryption (default)
psk - accept connections with
TLS and a pre-shared key
(PSK)
cert - accept connections
with TLS and a certificate
This parameter is supported
since Zabbix 3.0.0.

TLSCAFile no Full pathname of a file
containing the top-level CA(s)
certificates for peer
certificate verification, used
for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

922

Parameter Mandatory Range Default Description

TLSCertFile no Full pathname of a file
containing the agent
certificate or certificate
chain, used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSConnect yes, if TLS certificate or
PSK parameters are
defined (even for
unencrypted
connection), otherwise
no

How the agent should
connect to Zabbix server or
proxy. Used for active
checks. Only one value can
be specified:
unencrypted - connect
without encryption (default)
psk - connect using TLS and a
pre-shared key (PSK)
cert - connect using TLS and
a certificate
This parameter is supported
since Zabbix 3.0.0.

TLSCRLFile no Full pathname of a file
containing revoked
certificates. This parameter
is used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSKeyFile no Full pathname of a file
containing the agent private
key used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKFile no Full pathname of a file
containing the agent
pre-shared key used for
encrypted communications
with Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKIdentity no Pre-shared key identity
string, used for encrypted
communications with Zabbix
server.
This parameter is supported
since Zabbix 3.0.0.

TLSServerCertIssuer no Allowed server (proxy)
certificate issuer.
This parameter is supported
since Zabbix 3.0.0.

TLSServerCertSubject no Allowed server (proxy)
certificate subject.
This parameter is supported
since Zabbix 3.0.0.

923

Parameter Mandatory Range Default Description

UnsafeUserParameters no 0,1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
Supported since Zabbix 1.8.2.
The following characters are
not allowed:
\ ’ ” ‘ * ? [] { } ~ $! & ; () >
| # @
Additionally, newline
characters are not allowed.

User no zabbix Drop privileges to a specific,
existing user on the system.
Only has effect if run as ’root’
and AllowRoot is disabled.
This parameter is supported
since Zabbix 2.4.0.

UserParameter no User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,who|wc -l

Note:
In Zabbix agent 2.0.0 version configuration parameters related to active and passive checks have been changed.
See the ”See also” section at the bottom of this page to read more details about these changes.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

Comments starting with ”#” are only supported in the beginning of the line.

See also

1. Differences in the Zabbix agent configuration for active and passive checks starting from version 2.0.0

4 Zabbix agent (Windows)

Note:
The default values reflect daemon defaults, not the values in the shipped configuration files.

The parameters supported in a Zabbix agent (Windows) configuration file:

924

https://en.wikipedia.org/wiki/Byte_order_mark
http://blog.zabbix.com/multiple-servers-for-active-agent-sure/858

Parameter Mandatory Range Default Description

Alias no Sets an alias for an item key.
It can be used to substitute
long and complex item key
with a smaller and simpler
one.
Multiple Alias parameters
may be present. Multiple
parameters with the same
Alias key are allowed.
Different Alias keys may
reference the same item key.
Aliases can be used in
HostMetadataItem but not in
HostnameItem or
PerfCounter parameters.

Examples:

1. Retrieving paging file
usage in percents from the
server.
Alias=pg_usage:perf_counter[\Paging
File(_Total)\% Usage]
Now shorthand key
pg_usage may be used to
retrieve data.

2. Getting CPU load with
default and custom
parameters.
Alias=cpu.load:system.cpu.load
Alias=cpu.load[*]:system.cpu.load[*]
This allows use cpu.load key
to get CPU utilisation
percentage with default
parameters as well as use
cpu.load[percpu,avg15] to
get specific data about CPU
load.

3. Running multiple low-level
discovery rules processing
the same discovery items.
Alias=vfs.fs.discovery[*]:vfs.fs.discovery
Now it is possible to set up
several discovery rules using
vfs.fs.discovery with
different parameters for each
rule, e.g.,
vfs.fs.discovery[foo],
vfs.fs.discovery[bar], etc.

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
server or proxy if the buffer is
full.

925

Parameter Mandatory Range Default Description

DebugLevel no 0-5 3 Specifies debug level:
0 - basic information about
starting and stopping of
Zabbix processes
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)
5 - extended debugging
(produces even more
information)

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

HostMetadata no 0-255
characters

Optional parameter that
defines host metadata. Host
metadata is used only at host
auto-registration process
(active agent).
If not defined, the value will
be acquired from
HostMetadataItem.
An agent will issue an error
and not start if the specified
value is over the limit or a
non-UTF-8 string.
This option is supported in
version 2.2.0 and higher.

HostMetadataItem no Optional parameter that
defines a Zabbix agent item
used for getting host
metadata. This option is only
used when HostMetadata is
not defined.
Supports UserParameters,
performance counters and
aliases. Supports
system.run[] regardless of
EnableRemoteCommands
value.
Host metadata is used only at
host auto-registration
process (active agent).
During an auto-registration
request an agent will log a
warning message if the value
returned by the specified
item is over the limit of 255
characters.
The value returned by the
item must be a UTF-8 string
otherwise it will be ignored.
This option is supported in
version 2.2.0 and higher.

926

Parameter Mandatory Range Default Description

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Optional parameter that
defines a Zabbix agent item
used for getting host name.
This option is only used when
Hostname is not defined.
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[] regardless of
EnableRemoteCommands
value.
This option is supported in
version 1.8.6 and higher.
See also a more detailed
description.

Include no You may include individual
files or all files in a directory
in the configuration file.
To only include relevant files
in the specified directory, the
asterisk wildcard character is
supported for pattern
matching. For example:
/absolute/path/to/config/files/*.conf.
Pattern matching is
supported since Zabbix 2.4.0.
See special notes about
limitations.

ListenIP no 0.0.0.0 List of comma-delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported since Zabbix 1.8.3.

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LogFile yes, if LogType is set to
file, otherwise
no

C:\zabbix_agentd.log Name of the agent log file.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

927

Parameter Mandatory Range Default Description

LogType no file Log output type:
file - write log to file specified
by LogFile parameter,
system - write log Windows
Event Log,
console - write log to
standard output.
This parameter is supported
since Zabbix 3.0.0.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

MaxLinesPerSecond no 1-1000 20 Maximum number of new
lines the agent will send per
second to Zabbix server
or proxy processing ’log’,
’logrt’ and ’eventlog’ active
checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’, ’logrt’ or
’eventlog’ item keys.

PerfCounter no Syntax: <parame-
ter_name>,”<perf_counter_path>”,<period>
Defines new parameter
<parameter_name> which is
an average value for system
performance counter
<perf_counter_path> for the
specified time period
<period> (in seconds).
For example, if you wish to
receive average number of
processor interrupts per
second for last minute, you
can define new parameter
”interrupts” as following:
PerfCounter = inter-
rupts,”\Processor(0)\Interrupts/sec”,60
Please note double quotes
around performance counter
path.
The parameter name
(interrupts) is to be used as
the item key when creating
an item.
Samples for calculating
average value will be taken
every second.
You may run ”typeperf -qx” to
get list of all performance
counters available in
Windows.

RefreshActiveChecks no 60-3600 120 How often list of active
checks is refreshed, in
seconds.
Note that after failing to
refresh active checks the
next refresh will be
attempted after 60 seconds.

928

Parameter Mandatory Range Default Description

Server yes, if StartAgents is not
0; no otherwise

List of comma delimited IP
addresses (or hostnames) of
Zabbix servers. Spaces are
allowed.
Incoming connections will be
accepted only from the hosts
listed here.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

ServerActive no (*) IP:port (or hostname:port) of
Zabbix server or Zabbix
proxy for active checks.
Multiple comma-delimited
addresses can be provided to
use several independent
Zabbix servers in parallel.
Spaces are allowed.
If port is not specified,
default port is used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
If this parameter is not
specified, active checks are
disabled.

SourceIP no Source IP address for
outgoing connections.

StartAgents no 0-63 (*) 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
If set to 0, disables passive
checks and the agent will not
listen on any TCP port.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

TLSAccept yes, if TLS certificate or
PSK parameters are
defined (even for
unencrypted
connection), otherwise
no

What incoming connections
to accept. Used for a passive
checks. Multiple values can
be specified, separated by
comma:
unencrypted - accept
connections without
encryption (default)
psk - accept connections with
TLS and a pre-shared key
(PSK)
cert - accept connections
with TLS and a certificate
This parameter is supported
since Zabbix 3.0.0.

929

Parameter Mandatory Range Default Description

TLSCAFile no Full pathname of a file
containing the top-level CA(s)
certificates for peer
certificate verification, used
for encrypted
communications between
Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSCertFile no Full pathname of a file
containing the agent
certificate or certificate
chain, used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSConnect yes, if TLS certificate or
PSK parameters are
defined (even for
unencrypted
connection), otherwise
no

How the agent should
connect to Zabbix server or
proxy. Used for active
checks. Only one value can
be specified:
unencrypted - connect
without encryption (default)
psk - connect using TLS and a
pre-shared key (PSK)
cert - connect using TLS and
a certificate
This parameter is supported
since Zabbix 3.0.0.

TLSCRLFile no Full pathname of a file
containing revoked
certificates. This parameter
is used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSKeyFile no Full pathname of a file
containing the agent private
key used for encrypted
communications with Zabbix
components.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKFile no Full pathname of a file
containing the agent
pre-shared key used for
encrypted communications
with Zabbix components.
This parameter is supported
since Zabbix 3.0.0.

TLSPSKIdentity no Pre-shared key identity
string, used for encrypted
communications with Zabbix
server.
This parameter is supported
since Zabbix 3.0.0.

TLSServerCertIssuer no Allowed server (proxy)
certificate issuer.
This parameter is supported
since Zabbix 3.0.0.

930

Parameter Mandatory Range Default Description

TLSServerCertSubject no Allowed server (proxy)
certificate subject.
This parameter is supported
since Zabbix 3.0.0.

UnsafeUserParameters no 0-1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
0 - do not allow
1 - allow
The following characters are
not allowed:
\ ’ ” ‘ * ? [] { } ~ $! & ; () >
| # @
Additionally, newline
characters are not allowed.

UserParameter User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,echo 1

Note:
(*) The number of active servers listed in ServerActive plus the number of pre-forked instances for passive checks specified
in StartAgents must be less than 64.

Note:
In Zabbix agent 2.0.0 version configuration parameters related to active and passive checks have been changed.
See the ”See also” section at the bottom of this page to read more details about these changes.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

Comments starting with ”#” are only supported in the beginning of the line.

See also

1. Differences in the Zabbix agent configuration for active and passive checks starting from version 2.0.0.

5 Zabbix Java gateway

If you use startup.sh and shutdown.sh scripts for starting Zabbix Java gateway, then you can specify the necessary configura-
tion parameters in file settings.sh. The startup and shutdown scripts source the settings file and take care of converting shell
variables (listed in the first column) to Java properties (listed in the second column).

If you start Zabbix Java gateway manually by running java directly, then you specify the corresponding Java properties on the
command line.

Variable Property Mandatory Range Default Description

LISTEN_IP zabbix.listenIP no 0.0.0.0 IP address to listen on.
LISTEN_PORT zabbix.listenPort no 1024-

32767
10052 Port to listen on.

931

https://en.wikipedia.org/wiki/Byte_order_mark
http://blog.zabbix.com/multiple-servers-for-active-agent-sure/858

Variable Property Mandatory Range Default Description

PID_FILE zabbix.pidFile no /tmp/zabbix_java.pidName of PID file. If
omitted, Zabbix Java
Gateway is started as a
console application.

START_POLLERS zabbix.startPollers no 1-1000 5 Number of worker
threads to start.

TIMEOUT zabbix.timeout no 1-30 3 How long to wait for
network operations.
This parameter is
supported since Zabbix
2.0.15, 2.2.10 and 2.4.5.

Warning:
Port 10052 is not IANA registered.

6 Special notes on ”Include” parameter

If an Include parameter is used for including a file, the file must be readable.

If an Include parameter is used for including a directory:

- All files in the directory must be readable.
- No particular order of inclusion should be assumed (e.g. files are not included in alphabetical order). Therefore do not define one parameter in several ''Include'' files (e.g. to override a general setting with a specific one).
- All files in the directory are included into configuration.
- Beware of file backup copies automatically created by some text editors. For example, if editing the ''include/my_specific.conf'' file produces a backup copy ''include/my_specific_conf.BAK'' then both files will be included. Move ''include/my_specific.conf.BAK'' out of the "Include" directory. On Linux, contents of the ''Include'' directory can be checked with a ''ls -al'' command for unnecessary files.

If an Include parameter is used for including files using a pattern:

- All files matching the pattern must be readable.
- No particular order of inclusion should be assumed (e.g. files are not included in alphabetical order). Therefore do not define one parameter in several ''Include'' files (e.g. to override a general setting with a specific one).

4 Protocols

Server-proxy data exchange protocol

Overview

Server - proxy data exchange is based on JSON format.

Passive proxy

Proxy config request

The proxy config request is sent by server to provide proxy configuration data. This request is sent every ProxyConfigFrequency
(server configuration parameter) seconds.

name value type description

server→proxy:
request string ’proxy config’
<table> object one or more objects with <table> data

fields array array of field names
- string field name

data array array of rows
- array array of columns

- string,number column value with type depending on
column type in database schema

proxy→server:

932

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

name value type description

response string the request success information (’success’
or ’failed’)

Example:

server→proxy:

{
"globalmacro":{

"fields":[
"globalmacroid",
"macro",
"value"

],
"data":[

[
2,
"{$SNMP_COMMUNITY}",
"public"

]
]

},
"hosts":{

"fields":[
"hostid",
"host",
"status",
"ipmi_authtype",
"ipmi_privilege",
"ipmi_username",
"ipmi_password",
"name",
"tls_connect",
"tls_accept",
"tls_issuer",
"tls_subject",
"tls_psk_identity",
"tls_psk"

],
"data":[

[
10001,
"Template OS Linux",
3,
-1,
2,
"",
"",
"Template OS Linux",
1,
1,
"",
"",
"",
""

],
[

10050,
"Template App Zabbix Agent",
3,
-1,
2,

933

"",
"",
"Template App Zabbix Agent",
1,
1,
"",
"",
"",
""

],
[

10105,
"Logger",
0,
-1,
2,
"",
"",
"Logger",
1,
1,
"",
"",
"",
""

]
]

},
"interface":{

"fields":[
"interfaceid",
"hostid",
"main",
"type",
"useip",
"ip",
"dns",
"port",
"bulk"

],
"data":[

[
2,
10105,
1,
1,
1,
"127.0.0.1",
"",
"10050",
1

]
]

},
...

}

proxy→server:

{
"response": "success"

}

Host availability request

934

The host availability request is used to obtain host availability data from proxy. This request is sent every ProxyDataFrequency
(server configuration parameter) seconds.

name value type description

server→proxy:
request string ’host availability’
proxy→server:
data array array of host availability data objects

hostidnumber host identifier
availablenumber Zabbix agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

error string Zabbix agent error message or empty string
snmp_availablenumber SNMP agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

snmp_errorstring SNMP agent error message or empty string
ipmi_availablenumber IPMI agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

ipmi_errorstring IPMI agent error message or empty string
jmx_availablenumber JMX agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

jmx_errorstring JMX agent error message or empty string
server→proxy:
response string the request success information (’success’ or

’failed’)

Example:

server→proxy:

{
"request": "host availability"

}

proxy→server:

{
"data": [

{
"hostid": 10106,
"available": 1,
"error": "",
"snmp_available": 0,
"snmp_error": "",
"ipmi_available": 0,
"ipmi_error": "",
"jmx_available": 0,
"jmx_error": ""

},
{
"hostid": 10107,
"available": 1,
"error": "",

935

"snmp_available": 0,
"snmp_error": "",
"ipmi_available": 0,
"ipmi_error": "",
"jmx_available": 0,
"jmx_error": ""

}
]

}

server→proxy:

{
"response": "success"

}

History data request

The history data request is used to obtain item history data from proxy. This request is sent every ProxyDataFrequency
(server configuration parameter) seconds.

name value type description

server→proxy:
request string ’history data’
proxy→server:
data array array of history data objects

host number host identifier
key number item key
clock number item value timestamp (seconds)
ns number item value timestamp (nanoseconds)
value string (optional) item value
timestampnumber (optional) timestamp of log type items
sourcestring (optional) eventlog item source value
severitynumber (optional) eventlog item severity value
eventidnumber (optional) eventlog item eventid value
state string (optional) item state

0, ITEM_STATE_NORMAL
1, ITEM_STATE_NOTSUPPORTED

lastlogsizenumber (optional) last log size of log type items
mtimenumber (optional) modify time of log type items

clock number data transfer timestamp (seconds)
ns number data transfer timestamp (nanoseconds)
server→proxy:
response string the request success information (’success’ or

’failed’)

Example:

server→proxy:

{
"request": "history data"

}

proxy→server:

{
"data":[

{
"host":"Logger1",
"key":"system.cpu.switches",
"clock":1478609647,
"ns":332510044,
"value":"52956612"

},

936

{
"host":"Logger2",
"key":"net.if.in[vboxnet0]",
"clock":1478609647,
"ns":330690279,
"state":1,
"value":"Cannot find information for this network interface in /proc/net/dev."

}
],
"clock":1478609648,
"ns":157729208

}

server→proxy:

{
"response": "success"

}

Discovery data request

The discovery data request is used to obtain network discovery data from proxy. This request is sent every ProxyDataFrequency
(server configuration parameter) seconds.

name value type description

server→proxy:
request string ’discovery data’
proxy→server:
data array array of discovery data objects

clock number the discovery data timestamp
druleidnumber the discovery rule identifier
dcheckidnumber the discovery check indentifier or null for

discovery rule data
type number the discovery check type:

-1 discovery rule data
0, SVC_SSH - SSH service check
1, SVC_LDAP - LDAP service check
2, SVC_SMTP - SMTP service check
3, SVC_FTP - FTP service check
4, SVC_HTTP - HTTP service check
5, SVC_POP - POP service check
6, SVC_NNTP - NNTP service check
7, SVC_IMAP - IMAP service check
8, SVC_TCP - TCP port availability check
9, SVC_AGENT - Zabbix agent
10, SVC_SNMPv1 - SNMPv1 agent
11, SVC_SNMPv2 - SNMPv2 agent
12, SVC_ICMPPING - ICMP ping
13, SVC_SNMPv3 - SNMPv3 agent
14, SVC_HTTPS - HTTPS service check
15, SVC_TELNET - Telnet availability check

ip string the host IP address
dns string the host DNS name
port number (optional) service port number
key_ string (optional) the item key for discovery check of

type 9 SVC_AGENT
value string (optional) value received from the service, can

be empty for most of services
statusnumber (optional) service status:

0, DOBJECT_STATUS_UP - Service UP
1, DOBJECT_STATUS_DOWN - Service DOWN

server→proxy:

937

name value type description

response string the request success information (’success’ or
’failed’)

Example:

server→proxy:

{
"request": "discovery data"

}

proxy→server:

{
"data":[

{
"clock":1478608764,
"drule":2,
"dcheck":3,
"type":12,
"ip":"10.3.0.10",
"dns":"vdebian",
"status":1

},
{

"clock":1478608764,
"drule":2,
"dcheck":null,
"type":-1,
"ip":"10.3.0.10",
"dns":"vdebian",
"status":1

}
],
"clock":1478608768

}

server→proxy:

{
"response": "success"

}

Auto registration data request

The auto registration request is used to obtain agent auto registration data from proxy. This request is sent every
ProxyDataFrequency (server configuration parameter) seconds.

name value type description

server→proxy:
request string ’auto registration’
proxy→server:
data array array of auto registration data objects

clock number the auto registration data timestamp
host string the host name
ip string (optional) the host IP address
dns string (optional) the resolved DNS name from IP

address
port string (optional) the host port
host_metadatastring (optional) the host metadata sent by agent

(based on HostMetadata or HostMetadataItem
agent configuration parameter)

server→proxy:

938

name value type description

response string the request success information (’success’ or
’failed’)

Example:

server→proxy:

{
"request": "auto registration"

}

proxy→server:

{
"data": [

{
"clock": 1478608371,
"host": "Logger1",
"ip": "10.3.0.1",
"dns": "localhost",
"port": "10050"

},
{

"clock": 1478608381,
"host": "Logger2",
"ip": "10.3.0.2",
"dns": "localhost",
"port": "10050"

}
],
"clock": 1478608390

}

server→proxy:

{
"response": "success"

}

Active proxy

Proxy heartbeat request

The proxy heartbeat request is sent by proxy to report that proxy is running. This request is sent every HeartbeatFrequency
(proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’proxy heartbeat’
host string the proxy name
server→proxy:
response string the request success information (’success’ or ’failed’)

proxy→server:

{
"request": "proxy heartbeat",
"host": "Proxy #12"

}

server→proxy:

{
"response": "success"

}

939

Proxy config request

The proxy config request is sent by proxy to obtain proxy configuration data. This request is sent every ConfigFrequency
(proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’proxy config’
host string proxy name
server→proxy:
request string ’proxy config’
<table> object one or more objects with <table> data

fields array array of field names
- string field name

data array array of rows
- array array of columns

- string,number column value with type depending on
column type in database schema

proxy→server:
response string the request success information (’success’

or ’failed’)

Example:

proxy→server:

{
"request": "proxy config",
"host": "Proxy #12",

}

server→proxy:

{
"globalmacro":{

"fields":[
"globalmacroid",
"macro",
"value"

],
"data":[

[
2,
"{$SNMP_COMMUNITY}",
"public"

]
]

},
"hosts":{

"fields":[
"hostid",
"host",
"status",
"ipmi_authtype",
"ipmi_privilege",
"ipmi_username",
"ipmi_password",
"name",
"tls_connect",
"tls_accept",
"tls_issuer",
"tls_subject",
"tls_psk_identity",
"tls_psk"

940

],
"data":[

[
10001,
"Template OS Linux",
3,
-1,
2,
"",
"",
"Template OS Linux",
1,
1,
"",
"",
"",
""

],
[

10050,
"Template App Zabbix Agent",
3,
-1,
2,
"",
"",
"Template App Zabbix Agent",
1,
1,
"",
"",
"",
""

],
[

10105,
"Logger",
0,
-1,
2,
"",
"",
"Logger",
1,
1,
"",
"",
"",
""

]
]

},
"interface":{

"fields":[
"interfaceid",
"hostid",
"main",
"type",
"useip",
"ip",
"dns",
"port",

941

"bulk"
],
"data":[

[
2,
10105,
1,
1,
1,
"127.0.0.1",
"",
"10050",
1

]
]

},
...

}

proxy→server:

{
"response": "success"

}

Host availability request

The host availability request is sent by proxy to provide host availability data. This request is sent every DataSenderFrequency
(proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’host availability’
host string the proxy name
data array array of host availability data objects

hostidnumber host identifier
availablenumber Zabbix agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

error string Zabbix agent error message or empty string
snmp_availablenumber SNMP agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

snmp_errorstring SNMP agent error message or empty string
ipmi_availablenumber IPMI agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

ipmi_errorstring IPMI agent error message or empty string
jmx_availablenumber JMX agent availability

0, HOST_AVAILABLE_UNKNOWN - unknown
1, HOST_AVAILABLE_TRUE - available
2, HOST_AVAILABLE_FALSE - unavailable

jmx_errorstring JMX agent error message or empty string
server→proxy:
response string the request success information (’success’ or

’failed’)

942

Example:

proxy→server:

{
"request": "host availability",
"host": "Proxy #12",
"data": [

{
"hostid": 10106,
"available": 1,
"error": "",
"snmp_available": 0,
"snmp_error": "",
"ipmi_available": 0,
"ipmi_error": "",
"jmx_available": 0,
"jmx_error": ""

},
{
"hostid": 10107,
"available": 1,
"error": "",
"snmp_available": 0,
"snmp_error": "",
"ipmi_available": 0,
"ipmi_error": "",
"jmx_available": 0,
"jmx_error": ""

}
]

}

server→proxy:

{
"response": "success"

}

History data request

The history data request is sent by proxy to provide item history data. This request is sent every DataSenderFrequency
(proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’history data’
host string the proxy name
data array array of history data objects

host number host identifier
key number item key
clock number item value timestamp (seconds)
ns number item value timestamp (nanoseconds)
value string (optional) item value
timestampnumber (optional) timestamp of log type items
sourcestring (optional) eventlog item source value
severitynumber (optional) eventlog item severity value
eventidnumber (optional) eventlog item eventid value
state string (optional) item state

0, ITEM_STATE_NORMAL
1, ITEM_STATE_NOTSUPPORTED

lastlogsizenumber (optional) last log size of log type items
mtimenumber (optional) modify time of log type items

clock number data transfer timestamp (seconds)
ns number data transfer timestamp (nanoseconds)

943

name value type description

server→proxy:
response string the request success information (’success’ or

’failed’)

Example:

proxy→server:

{
"request": "history data",
"host": "Proxy #12",
"data":[

{
"host":"Logger1",
"key":"system.cpu.switches",
"clock":1478609647,
"ns":332510044,
"value":"52956612"

},
{

"host":"Logger2",
"key":"net.if.in[vboxnet0]",
"clock":1478609647,
"ns":330690279,
"state":1,
"value":"Cannot find information for this network interface in /proc/net/dev."

}
],
"clock":1478609648,
"ns":157729208

}

server→proxy:

{
"response": "success"

}

Discovery data request

The discovery data request is sent by proxy to provide network discovery data. This request is sent every DataSenderFrequency
(proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’discovery data’
host string the proxy name
data array array of discovery data objects

clock number the discovery data timestamp
druleidnumber the discovery rule identifier
dcheckidnumber the discovery check indentifier or null for

discovery rule data

944

name value type description

type number the discovery check type:

-1 discovery rule data
0, SVC_SSH - SSH service check
1, SVC_LDAP - LDAP service check
2, SVC_SMTP - SMTP service check
3, SVC_FTP - FTP service check
4, SVC_HTTP - HTTP service check
5, SVC_POP - POP service check
6, SVC_NNTP - NNTP service check
7, SVC_IMAP - IMAP service check
8, SVC_TCP - TCP port availability check
9, SVC_AGENT - Zabbix agent
10, SVC_SNMPv1 - SNMPv1 agent
11, SVC_SNMPv2 - SNMPv2 agent
12, SVC_ICMPPING - ICMP ping
13, SVC_SNMPv3 - SNMPv3 agent
14, SVC_HTTPS - HTTPS service check
15, SVC_TELNET - Telnet availability check

ip string the host IP address
dns string the host DNS name
port number (optional) service port number
key_ string (optional) the item key for discovery check of

type 9 SVC_AGENT
value string (optional) value received from the service, can

be empty for most of services
statusnumber (optional) service status:

0, DOBJECT_STATUS_UP - Service UP
1, DOBJECT_STATUS_DOWN - Service DOWN

server→proxy:
response string the request success information (’success’ or

’failed’)

Example:

proxy→server:

{
"request": "discovery data",
"host": "Proxy #12",
"data":[

{
"clock":1478608764,
"drule":2,
"dcheck":3,
"type":12,
"ip":"10.3.0.10",
"dns":"vdebian",
"status":1

},
{

"clock":1478608764,
"drule":2,
"dcheck":null,
"type":-1,
"ip":"10.3.0.10",
"dns":"vdebian",
"status":1

}
],
"clock":1478608768

945

}

server→proxy:

{
"response": "success"

}

Auto registration data request

The auto registration request is sent by proxy to provide agent auto registration data data. This request is sent every
DataSenderFrequency (proxy configuration parameter) seconds.

name value type description

proxy→server:
request string ’auto registration’
host string the proxy name
data array array of auto registration data objects

clock number the auto registration data timestamp
host string the host name
ip string (optional) the host IP address
dns string (optional) the resolved DNS name from IP

address
port string (optional) the host port
host_metadatastring (optional) the host metadata sent by agent

(based on HostMetadata or HostMetadataItem
agent configuration parameter)

server→proxy:
response string the request success information (’success’ or

’failed’)

proxy→server:

{
"request": "auto registration",
"host": "Proxy #12",
"data": [

{
"clock": 1478608371,
"host": "Logger1",
"ip": "10.3.0.1",
"dns": "localhost",
"port": "10050"

},
{

"clock": 1478608381,
"host": "Logger2",
"ip": "10.3.0.2",
"dns": "localhost",
"port": "10050"

}
],
"clock": 1478608390

}

server→proxy:

{
"response": "success"

}

5 Items

946

1 Items supported by platform

The table displays support for Zabbix agent items on various platforms:

• Items marked with ”X” are supported, the ones marked with ”-” are not supported.
• If an item is marked with ”?”, it is not known whether it is supported or not.
• If an item is marked with ”r”, it means that it requires root privileges.
• Parameters that are included in angle brackets <like_this> are optional.

Note:
Windows-only Zabbix agent items are not included in this table.

NetBSD
OpenBSD ▼▼
Mac
OS X

▼▼

Tru64 ▼▼
AIX ▼▼
HP-UX ▼▼
Solaris ▼▼
FreeBSD ▼▼
Linux
2.6
(and
later)

▼▼

Linux
2.4

▼▼

Windows ▼▼
Parameter
/ sys-
tem

▼▼

▼▼ 1 2 3 4 5 6 7 8 9 10 11
agent.hostname X X X X X X X X X X X
agent.ping X X X X X X X X X X X
agent.version X X X X X X X X X X X
kernel.maxfiles - X X X - - - ? X X X
kernel.maxproc - - X X X - - ? X X X
log[file,<regexp>,<encoding>,<maxlines>,<mode>,<output>]X X X X X X X X X X X
logrt[file_format,<regexp>,<encoding>,<maxlines>,<mode>,<output>]X X X X X X X X X X X
net.dns[<ip>,zone,<type>,<timeout>,<count>]X X X X X X X X X X X
net.dns.record[<ip>,zone,<type>,<timeout>,<count>]X X X X X X X X X X X
net.if.collisions[if]- X X X X - X - X X r
net.if.discovery X X X X X X X - - X X
net.if.in[if,<mode>]X X X X X X 1 X - X X r
mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r
errors X X X X X 2 X X - X X r
dropped X X X X - X - - X X r

net.if.out[if,<mode>]X X X X X X 1 X - X X r
mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r
errors X X X X X 2 X X - X X r
dropped X X X - - X - - - - -

net.if.total[if,<mode>]X X X X X X 1 X - X X r
mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r

947

errors X X X X X 2 X X - X X r
dropped X X X - - X - - - - -

net.tcp.listen[port]X X X X X - - - X - -
net.tcp.port[<ip>,port]X X X X X X X X X X X
net.tcp.service[service,<ip>,<port>]X X X X X X X X X X X
net.tcp.service.perf[service,<ip>,<port>]X X X X X X X X X X X
net.udp.listen[port]- X X X X - - - X - -
net.udp.service[service,<ip>,<port>]X X X X X X X X X X X
net.udp.service.perf[service,<ip>,<port>]X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11
proc.cpu.util[<name>,<user>,<type>,<cmdline>,<mode>,<zone>]- X X - X 3 - - - - - -
type
▲

total
(de-
fault)

- X X - X - - - - - -

user - X X - X - - - - - -
system - X X - X - - - - - -

mode
▲

avg1
(de-
fault)

- X X - X - - - - - -

avg5 - X X - X - - - - - -
avg15 - X X - X - - - - - -

zone
▲

current
(de-
fault)

- - - - X - - - - - -

all - - - - X - - - - - -
proc.mem[<name>,<user>,<mode>,<cmdline><memtype>]- X X X X 3 - X X - X X
mode
▲

sum
(de-
fault)

- X X X X - X X - X X

avg - X X X X - X X - X X
max - X X X X - X X - X X
min - X X X X - X X - X X

memtype
▲

- X X X X - X - - - -

proc.num[<name>,<user>,<state>,<cmdline>]X X X X X 3 X X X - X X
state
▲

all
(de-
fault)

- X X X X X X X - X X

sleep - X X X X X X X - X X
zomb - X X X X X X X - X X
run - X X X X X X X - X X

cmdline
▲

- X X X X X X X - X X

sensor[device,sensor,<mode>]- X X - - - - - - X -
system.boottime- X X X X - - - X X X
system.cpu.discoveryX X X X X X X X X X X
system.cpu.intr - X X X X - X - - X X
system.cpu.load[<cpu>,<mode>]X X X X X X X X X X X
cpu ▲ all

(de-
fault)

X X X X X X X X X X X

percpu X X X X X X X - X X X
mode
▲

avg1
(de-
fault)

X X X X X X X X X X X

avg5 X X X X X X X X X X X
avg15 X X X X X X X X X X X

system.cpu.num[<type>]X X X X X X X - X X X
type
▲

online
(de-
fault)

X X X X X X X - X X X

max - X X X X - - - X - -

948

system.cpu.switches- X X X X - X - - X X
system.cpu.util[<cpu>,<type>,<mode>]X X X X X X X X - X X
type
▲

user
(de-
fault)

- X X X X X X X - X X

nice - X X X - X - X - X X
idle - X X X X X X X - X X
system X X X X X X X X - X X
iowait - - X - X - X - - - -
interrupt - - X X - - - - - X -
softirq - - X - - - - - - - -
steal - - X - - - - - - - -
guest - - X - - - - - - - -
guest_nice- - X - - - - - - - -

mode
▲

avg1
(de-
fault)

X X X X X X X X - X X

avg5 X X X X X X X - - X X
avg15 X X X X X X X - - X X

1 2 3 4 5 6 7 8 9 10 11
system.hostname[<type>]X X X X X X X X X X X
system.hw.chassis[<info>]- X X - - - - - - - -
system.hw.cpu[<cpu>,<info>]- X X - - - - - - - -
system.hw.devices[<type>]- X X - - - - - - - -
system.hw.macaddr[<interface>,<format>]- X X - - - - - - - -
system.localtime[<type>]X X X X X X X X X X X
type
▲

utc
(de-
fault)

X X X X X X X X X X X

local X X X X X X X X X X X
system.run[command,<mode>]X X X X X X X X X X X
mode
▲

wait
(de-
fault)

X X X X X X X X X X X

nowait X X X X X X X X X X X
system.stat[resource,<type>]- - - - - - X - - - -
system.sw.arch X X X X X X X X X X X
system.sw.os[<info>]- X X - - - - - - - -
system.sw.packages[<package>,<manager>,<format>]- X X - - - - - - - -
system.swap.in[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -

949

pages
(de-
fault
under
Linux)

- X X - X - - - - X -

system.swap.out[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -
pages
(de-
fault
under
Linux)

- X X - X - - - - X -

system.swap.size[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
FreeBSD,
for
other
plat-
forms
must
be
empty
or
”all”)

X X X X X - X X - X -

type
▲

free
(de-
fault)

X X X X X - X X - X -

total X X X X X - X X - X -
used X X X X X - X X - X -
pfree X X X X X - X X - X -
pused - X X X X - X X - X -

system.uname X X X X X X X X X X X
system.uptime X X X X X - X ? X X X
system.users.num- X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11
vfs.dev.read[<device>,<type>,<mode>]- X X X X - X - - X -

950

type
▲

(defaults
are
differ-
ent
under
vari-
ous
OSes)

sectors - X X - - - - - - - -

operations- X X X X - X - - X -
bytes - - - X X - X - - X -
sps - X X - - - - - - - -
ops - X X X - - - - - - -
bps - - - X - - - - - - -

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - - -

avg5 - X X X - - - - - - -
avg15 - X X X - - - - - - -

vfs.dev.write[<device>,<type>,<mode>]- X X X X - X - - X -
type
▲

(defaults
are
differ-
ent
under
vari-
ous
OSes)

sectors - X X - - - - - - - -

operations- X X X X - X - - X -
bytes - - - X X - X - - X -
sps - X X - - - - - - - -
ops - X X X - - - - - - -
bps - - - X - - - - - - -

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - - -

avg5 - X X X - - - - - - -
avg15 - X X X - - - - - - -

vfs.file.cksum[file]X X X X X X X X X X X
vfs.file.contents[file,<encoding>]X X X X X X X X X X X
vfs.file.exists[file]X X X X X X X X X X X
vfs.file.md5sum[file]X X X X X X X X X X X
vfs.file.regexp[file,regexp,<encoding>,<output>]X X X X X X X X X X X
vfs.file.regmatch[file,regexp,<encoding>]X X X X X X X X X X X
vfs.file.size[file] X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11
vfs.file.time[file,<mode>]X X X X X X X X X X X

951

mode
▲

modify
(de-
fault)

X X X X X X X X X X X

access X X X X X X X X X X X
change X X X X X X X X X X X

vfs.fs.discovery X X X X X X X - X X X
vfs.fs.inode[fs,<mode>]- X X X X X X X X X X
mode
▲

total
(de-
fault)

- X X X X X X X X X X

free - X X X X X X X X X X
used - X X X X X X X X X X
pfree - X X X X X X X X X X
pused - X X X X X X X X X X

vfs.fs.size[fs,<mode>]X X X X X X X X X X X
mode
▲

total
(de-
fault)

X X X X X X X X X X X

free X X X X X X X X X X X
used X X X X X X X X X X X
pfree X X X X X X X X X X X
pused X X X X X X X X X X X

vm.memory.size[<mode>]X X X X X X X X X X X
mode
▲

total
(de-
fault)

X X X X X X X X X X X

active - - - X - X - - X X X
anon - - - - - - - - - - X
buffers - X X X - - - - - X X
cached X X X X - - X - - X X
exec - - - - - - - - - - X
file - - - - - - - - - - X
free X X X X X X X X X X X
inactive - - - X - - - - X X X
pinned - - - - - - X - - - -
shared - X - X - - - - - X X
wired - - - X - - - - X X X
used X X X X X X X X X X X
pused X X X X X X X X X X X
available X X X X X X X X X X X
pavailableX X X X X X X X X X X

web.page.get[host,<path>,<port>]X X X X X X X X X X X
web.page.perf[host,<path>,<port>]X X X X X X X X X X X
web.page.regexp[host,<path>,<port>,<regexp>,<length>,<output>]X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11

Note:
See also a description of vm.memory.size parameters.

Footnotes
1 net.if.in, net.if.out and net.if.total items do not provide statistics of loopback interfaces (e.g. lo0).
2 These values for these items are not supported for loopback interfaces on Solaris systems up to and including Solaris 10 6/06 as
byte, error and utilisation statistics are not stored and/or reported by the kernel. However, if you’re monitoring a Solaris system
via net-snmp, values may be returned as net-snmp carries legacy code from the cmu-snmp dated as old as 1997 that, upon failing
to read byte values from the interface statistics returns the packet counter (which does exist on loopback interfaces) multiplied
by an arbitrary value of 308. This makes the assumption that the average length of a packet is 308 octets, which is a very rough
estimation as the MTU limit on Solaris systems for loopback interfaces is 8892 bytes.

These values should not be assumed to be correct or even closely accurate. They are guestimates. The Zabbix agent does not do
any guess work, but net-snmp will return a value for these fields.

952

3 The command line on Solaris, obtained from /proc/pid/psinfo, is limited to 80 bytes and contains the command line as it was
when the process was started.

2 vm.memory.size parameters

Overview

This section provides more details and platform-specific information on the parameters of the vm.memory.size[<mode>] agent
item.

Parameters

The following parameters are possible for this item:

• active - memory currently in use or very recently used, and so it is in RAM
• anon - memory not associated with a file (cannot be re-read from it)
• available - available memory, calculated differently depending on the platform (see the table below)
• buffers - cache for things like file system metadata
• cached - cache for various things
• exec - executable code, typically from a (program) file
• file - cache for contents of recently accessed files
• free - memory that is readily available to any entity requesting memory
• inactive - memory that is marked as not used
• pavailable - inactive + cached + free memory as percentage of ’total’
• pinned - same as ’wired’
• pused - active + wired memory as percentage of ’total’
• shared - memory that may be simultaneously accessed by multiple processes
• total - total physical memory available
• used - used memory, calculated differently depending on the platform (see the table below)
• wired - memory that is marked to always stay in RAM. It is never moved to disk.

Platform-specific calculation of available and used:

Platform ”available” ”used”

AIX free + cached real memory in use
FreeBSD inactive + cached + free active + wired + cached
HP UX free total - free
Linux<3.14 free + buffers + cached total - free
Linux 3.14+ /proc/meminfo, ”Cached”:+”MemAvailable:” total - free
NetBSD inactive + execpages + file + free total - free
OpenBSD inactive + free + cached active + wired
OSX inactive + free active + wired
Solaris free total - free
Win32 free total - free

Attention:
The sum of vm.memory.size[used] and vm.memory.size[available] does not necessarily equal total. For instance, on
FreeBSD:
* Active, inactive, wired, cached memories are considered used, because they store some useful information.
* At the same time inactive, cached, free memories are considered available, because these kinds of memories can be
given instantly to processes that request more memory.

So inactive memory is both used and available simultaneously. Because of this, the vm.memory.size[used] item is
designed for informational purposes only, while vm.memory.size[available] is designed to be used in triggers.

See the ”See also” section at the bottom of this page to find more detailed information about memory calculation in different OS.

Platform-specific notes

• on Linux shared works only on kernel 2.4

See also

1. Detailed information about memory calculation in different OS

953

http://blog.zabbix.com/when-alexei-isnt-looking#vm.memory.size

3 Passive and active agent checks

Overview

This section provides details on passive and active checks performed by Zabbix agent.

Zabbix uses a JSON based communication protocol for communicating with Zabbix agent.

There are some definitions used in the details of protocols used by Zabbix:

<HEADER> - "ZBXD\x01" (5 bytes)
<DATALEN> - data length (8 bytes). 1 will be formatted as 01/00/00/00/00/00/00/00 (eight bytes in HEX, 64 bit number)

To not exhaust memory (potentially) Zabbix server is limited to accept only 128MB in one connection when using the Zabbix
protocol.

Passive checks

A passive check is a simple data request. Zabbix server or proxy asks for some data (for example, CPU load) and Zabbix agent
sends back the result to the server.

Server request

<item key>\n

Agent response

<HEADER><DATALEN><DATA>[\0<ERROR>]

Above, the part in square brackets is optional and is only sent for not supported items.

For example, for supported items:

1. Server opens a TCP connection
2. Server sends agent.ping\n
3. Agent reads the request and responds with <HEADER><DATALEN>1
4. Server processes data to get the value, ’1’ in our case
5. TCP connection is closed

For not supported items:

1. Server opens a TCP connection
2. Server sends vfs.fs.size[/nono]\n
3. Agent reads the request and responds with <HEADER><DATALEN>ZBX_NOTSUPPORTED\0Cannot obtain filesystem
information: [2] No such file or directory

4. Server processes data, changes item state to not supported with the specified error message
5. TCP connection is closed

Active checks

Active checks require more complex processing. The agent must first retrieve from the server(s) a list of items for independent
processing.

The servers to get the active checks from are listed in the ’ServerActive’ parameter of the agent configuration file. The frequency
of asking for these checks is set by the ’RefreshActiveChecks’ parameter in the same configuration file. However, if refreshing
active checks fails, it is retried after hardcoded 60 seconds.

The agent then periodically sends the new values to the server(s).

Getting the list of items

Agent request

<HEADER><DATALEN>{
"request":"active checks",
"host":"<hostname>"

}

Server response

<HEADER><DATALEN>{
"response":"success",
"data":[

{
"key":"log[/home/zabbix/logs/zabbix_agentd.log]",

954

"delay":30,
"lastlogsize":0,
"mtime":0

},
{

"key":"agent.version",
"delay":600,
"lastlogsize":0,
"mtime":0

},
{

"key":"vfs.fs.size[/nono]",
"delay":600,
"lastlogsize":0,
"mtime":0

}
]

}

The server must respond with success. For each returned item, all properties key, delay, lastlogsize and mtime must exist,
regardless of whether item is a log item or not.

For example:

1. Agent opens a TCP connection
2. Agent asks for the list of checks
3. Server responds with a list of items (item key, delay)
4. Agent parses the response
5. TCP connection is closed
6. Agent starts periodical collection of data

Attention:
Note that (sensitive) configuration data may become available to parties having access to the Zabbix server trapper
port when using an active check. This is possible because anyone may pretend to be an active agent and request item
configuration data; authentication does not take place unless you use encryption options.

Sending in collected data

Agent sends

<HEADER><DATALEN>{
"request":"agent data",
"data":[

{
"host":"<hostname>",
"key":"agent.version",
"value":"2.4.0",
"clock":1400675595,
"ns":76808644

},
{

"host":"<hostname>",
"key":"log[/home/zabbix/logs/zabbix_agentd.log]",
"lastlogsize":112,
"value":" 19845:20140621:141708.521 Starting Zabbix Agent [<hostname>]. Zabbix 2.4.0 (revision 50000).",
"clock":1400675595,
"ns":77053975

},
{

"host":"<hostname>",
"key":"vfs.fs.size[/nono]",
"state":1,
"value":"Cannot obtain filesystem information: [2] No such file or directory",
"clock":1400675595,
"ns":78154128

955

}
],
"clock": 1400675595,
"ns": 78211329

}

Server response

<HEADER><DATALEN>{
"response":"success",
"info":"processed: 3; failed: 0; total: 3; seconds spent: 0.003534"

}

Attention:
If sending of some values fails on the server (for example, because host or item has been disabled or deleted), agent will
not retry sending of those values.

For example:

1. Agent opens a TCP connection
2. Agent sends a list of values
3. Server processes the data and sends the status back
4. TCP connection is closed

Note how in the example above the not supported status for vfs.fs.size[/nono] is indicated by the ”state” value of 1 and the error
message in ”value” property.

Attention:
Error message will be trimmed to 2048 symbols on server side.

Older XML protocol

Note:
Zabbix will take up to 16 MB of XML Base64-encoded data, but a single decoded value should be no longer than 64 KB
otherwise it will be truncated to 64 KB while decoding.

See also

1. More details on Zabbix agent protocol

4 Encoding of returned values

Zabbix server expects every returned text value in the UTF8 encoding. This is related to any type of checks: zabbix agent, ssh,
telnet, etc.

Different monitored systems/devices and checks can return non-ASCII characters in the value. For such cases, almost all possible
zabbix keys contain an additional item key parameter - <encoding>. This key parameter is optional but it should be specified if
the returned value is not in the UTF8 encoding and it contains non-ASCII characters. Otherwise the result can be unexpected and
unpredictable.

A description of behavior with different database back-ends in such cases follows.

MySQL

If a value contains a non-ASCII character in non UTF8 encoding - this character and the following will be discarded when the
database stores this value. No warning messages will be written to the zabbix_server.log.
Relevant for at least MySQL version 5.1.61

PostgreSQL

If a value contains a non-ASCII character in non UTF8 encoding - this will lead to a failed SQL query (PGRES_FATAL_ERROR:ERROR
invalid byte sequence for encoding) and data will not be stored. An appropriate warning message will be written to the zab-
bix_server.log.
Relevant for at least PostgreSQL version 9.1.3

956

https://www.zabbix.org/wiki/Docs/protocols/zabbix_agent/3.0

5 Large file support

Large file support, often abbreviated to LFS, is the term applied to the ability to work with files larger than 2 GB on 32-bit operating
systems. Since Zabbix 2.0 support for large files has been added. This change affects at least log file monitoring and all vfs.file.*
items. Large file support depends on the capabilities of a system at Zabbix compilation time, but is completely disabled on a 32-bit
Solaris due to its incompatibility with procfs and swapctl.

6 Unreachable/unavailable host settings

Overview

Several configuration parameters define how Zabbix server should behave when an agent check (Zabbix, SNMP, IPMI, JMX) fails
and a host becomes unreachable.

Unreachable host

A host is treated as unreachable after a failed check (network error, timeout) by Zabbix, SNMP, IPMI or JMX agents. Note that
Zabbix agent active checks do not influence host availability in any way.

From that moment UnreachableDelay defines how often a host is rechecked using one of the items (including LLD rules) in this
unreachability situation and such rechecks will be performed already by unreachable pollers. By default it is 15 seconds before
the next check.

In the Zabbix server log unreachability is indicated by messages like these:

Zabbix agent item "system.cpu.load[percpu,avg1]" on host "New host" failed: first network error, wait for 15 seconds
Zabbix agent item "system.cpu.load[percpu,avg15]" on host "New host" failed: another network error, wait for 15 seconds

Note that the exact item that failed is indicated and the item type (Zabbix agent).

Note:
The Timeout parameter will also affect how early a host is rechecked during unreachability. If the Timeout is 20 seconds
and UnreachableDelay 30 seconds, the next check will be in 50 seconds after the first attempt.

The UnreachablePeriod parameter defines how long the unreachability period is in total. By default UnreachablePeriod is 45
seconds. UnreachablePeriod should be several times bigger than UnreachableDelay, so that a host is rechecked more than once
before a host becomes unavailable.

If the unreachable host reappears, the monitoring returns to normal automatically:

resuming Zabbix agent checks on host "New host": connection restored

Unavailable host

After the UnreachablePeriod ends and the host has not reappeared, the host is treated as unavailable.

In the server log it is indicated by messages like these:

temporarily disabling Zabbix agent checks on host "New host": host unavailable

and in the frontend the host availability icon for the respective interface goes from green (or gray) to red (note that on mouseover
a tooltip with the error description is displayed):

The UnavailableDelay parameter defines how often a host is checked during host unavailability.

By default it is 60 seconds (so in this case ”temporarily disabling”, from the log message above, will mean disabling checks for
one minute).

When the connection to the host is restored, the monitoring returns to normal automatically, too:

enabling Zabbix agent checks on host "New host": host became available

957

7 Sensor

Each sensor chip gets its own directory in the sysfs /sys/devices tree. To find all sensor chips, it is easier to follow the device
symlinks from /sys/class/hwmon/hwmon*, where * is a real number (0,1,2,...).

The sensor readings are located either in /sys/class/hwmon/hwmon*/ directory for virtual devices, or in /sys/class/hwmon/hwmon*/device
directory for non-virtual devices. A file, called name, located inside hwmon* or hwmon*/device directories contains the name of
the chip, which corresponds to the name of the kernel driver used by the sensor chip.

There is only one sensor reading value per file. The common scheme for naming the files that contain sensor readings inside any
of the directories mentioned above is: <type><number>_<item>, where

• type - for sensor chips is ”in” (voltage), ”temp” (temperature), ”fan” (fan), etc.,
• item - ”input” (measured value), ”max” (high threshold), ”min” (low threshold), etc.,
• number - always used for elements that can be present more than once (usually starts from 1, except for voltages which
start from 0). If files do not refer to a specific element they have a simple name with no number.

The information regarding sensors available on the host can be acquired using sensor-detect and sensors tools (lm-sensors
package: http://lm-sensors.org/). Sensors-detect helps to determine which modules are necessary for available sensors. When
modules are loaded the sensors program can be used to show the readings of all sensor chips. The labeling of sensor readings,
used by this program, can be different from the common naming scheme (<type><number>_<item>):

• if there is a file called <type><number>_label, then the label inside this file will be used instead of <type><number><item>
name;

• if there is no <type><number>_label file, then the program searches inside the /etc/sensors.conf (could be also
/etc/sensors3.conf, or different) for the name substitution.

This labeling allows user to determine what kind of hardware is used. If there is neither <type><number>_label file nor label
inside the configuration file the type of hardware can be determined by the name attribute (hwmon*/device/name). The actual
names of sensors, which zabbix_agent accepts, can be obtained by running sensors program with -u parameter (sensors -u).

In sensor program the available sensors are separated by the bus type (ISA adapter, PCI adapter, SPI adapter, Virtual device, ACPI
interface, HID adapter).

On Linux 2.4:

(Sensor readings are obtained from /proc/sys/dev/sensors directory)

• device - device name (if <mode> is used, it is a regular expression);
• sensor - sensor name (if <mode> is used, it is a regular expression);
• mode - possible values: avg, max, min (if this parameter is omitted, device and sensor are treated verbatim).

Example key: sensor[w83781d-i2c-0-2d,temp1]

Prior to Zabbix 1.8.4, the sensor[temp1] format was used.

On Linux 2.6+:

(Sensor readings are obtained from /sys/class/hwmon directory)

• device - device name (non regular expression). The device name could be the actual name of the device (e.g 0000:00:18.3)
or the name acquired using sensors program (e.g. k8temp-pci-00c3). It is up to the user to choose which name to use;

• sensor - sensor name (non regular expression);
• mode - possible values: avg, max, min (if this parameter is omitted, device and sensor are treated verbatim).

Example key:

sensor[k8temp-pci-00c3,temp,max] or sensor[0000:00:18.3,temp1]

sensor[smsc47b397-isa-0880,in,avg] or sensor[smsc47b397.2176,in1]

Obtaining sensor names

Sensor labels, as printed by the sensors command, cannot always be used directly because the naming of labels may be different
for each sensor chip vendor. For example, sensors output might contain the following lines:

$ sensors
in0: +2.24 V (min = +0.00 V, max = +3.32 V)
Vcore: +1.15 V (min = +0.00 V, max = +2.99 V)
+3.3V: +3.30 V (min = +2.97 V, max = +3.63 V)
+12V: +13.00 V (min = +0.00 V, max = +15.94 V)
M/B Temp: +30.0°C (low = -127.0°C, high = +127.0°C)

958

http://lm-sensors.org/

Out of these, only one label may be used directly:

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,in0]
2.240000

Attempting to use other labels (like Vcore or +12V) will not work.

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,Vcore]
ZBX_NOTSUPPORTED

To find out the actual sensor name, which can be used by Zabbix to retrieve the sensor readings, run sensors -u. In the output, the
following may be observed:

$ sensors -u
...
Vcore:
in1_input: 1.15
in1_min: 0.00
in1_max: 2.99
in1_alarm: 0.00

...
+12V:
in4_input: 13.00
in4_min: 0.00
in4_max: 15.94
in4_alarm: 0.00

...

So Vcore should be queried as in1, and +12V should be queried as in4.5

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,in1]
1.301000

Not only voltage (in), but also current (curr), temperature (temp) and fan speed (fan) readings can be retrieved by Zabbix.

8 Notes on memtype parameter in proc.mem items

Overview

The memtype parameter is supported on Linux, AIX, FreeBSD, and Solaris platforms.

Three common values of ’memtype’ are supported on all of these platforms: pmem, rss and vsize. Additionally, platform-specific
’memtype’ values are supported on some platforms.

AIX

See values supported for ’memtype’ parameter on AIX in the table.

Supported value Description Source in procentry64 structure Tries to be compatible with

vsize ((- default
value))

Virtual memory
size

pi_size

pmem Percentage of
real memory

pi_prm ps -o pmem

rss Resident set
size

pi_trss + pi_drss ps -o rssize

size Size of process
(code + data)

pi_dvm ”ps gvw” SIZE column

dsize Data size pi_dsize
tsize Text (code) size pi_tsize ”ps gvw” TSIZ column
sdsize Data size from

shared library
pi_sdsize

drss Data resident
set size

pi_drss

trss Text resident
set size

pi_trss

5According to specification these are voltages on chip pins and generally speaking may need scaling.

959

https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface

FreeBSD

See values supported for ’memtype’ parameter on FreeBSD in the table.

Supported value Description Source in kinfo_proc structure Tries to be compatible with

vsize Virtual memory
size

kp_eproc.e_vm.vm_map.size or ki_size ps -o vsz

pmem Percentage of
real memory

calculated from rss ps -o pmem

rss Resident set
size

kp_eproc.e_vm.vm_rssize or ki_rssize ps -o rss

size ((- default
value))

Size of process
(code + data +
stack)

tsize + dsize + ssize

tsize Text (code) size kp_eproc.e_vm.vm_tsize or ki_tsize ps -o tsiz
dsize Data size kp_eproc.e_vm.vm_dsize or ki_dsize ps -o dsiz
ssize Stack size kp_eproc.e_vm.vm_ssize or ki_ssize ps -o ssiz

Linux

See values supported for ’memtype’ parameter on Linux in the table.

Supported value Description Source in /proc/<pid>/status file

vsize ((- default value)) Virtual memory size VmSize
pmem Percentage of real memory (VmRSS/total_memory) * 100
rss Resident set size VmRSS
data Size of data segment VmData
exe Size of code segment VmExe
hwm Peak resident set size VmHWM
lck Size of locked memory VmLck
lib Size of shared libraries VmLib
peak Peak virtual memory size VmPeak
pin Size of pinned pages VmPin
pte Size of page table entries VmPTE
size Size of process code + data + stack segments VmExe + VmData + VmStk
stk Size of stack segment VmStk
swap Size of swap space used VmSwap

Notes for Linux:

1. Not all ’memtype’ values are supported by older Linux kernels. For example, Linux 2.4 kernels do not support hwm, pin,
peak, pte and swap values.

2. We have noticed that self-monitoring of the Zabbix agent active check process with proc.mem[...,...,...,...,data]
shows a value that is 4 kB larger than reported by VmData line in the agent’s /proc/<pid>/status file. At the time of self-
measurement the agent’s data segment increases by 4 kB and then returns to the previous size.

Solaris

See values supported for ’memtype’ parameter on Solaris in the table.

Supported value Description Source in psinfo structure Tries to be compatible with

vsize ((- default
value))

Size of process
image

pr_size ps -o vsz

pmem Percentage of
real memory

pr_pctmem ps -o pmem

960

Supported value Description Source in psinfo structure Tries to be compatible with

rss Resident set
size
It may be un-
derestimated -
see rss
description in
”man ps”.

pr_rssize ps -o rss

9 Notes on selecting processes in proc.mem and proc.num items

Processes modifying their commandline

Some programs use modifying their commandline as a method for displaying their current activity. A user can see the activity by
running ps and top commands. Examples of such programs include PostgreSQL, Sendmail, Zabbix.

Let’s see an example from Linux. Let’s assume we want to monitor a number of Zabbix agent processes.

ps command shows processes of interest as

$ ps -fu zabbix
UID PID PPID C STIME TTY TIME CMD
...
zabbix 6318 1 0 12:01 ? 00:00:00 sbin/zabbix_agentd -c /home/zabbix/ZBXNEXT-1078/zabbix_agentd.conf
zabbix 6319 6318 0 12:01 ? 00:00:01 sbin/zabbix_agentd: collector [idle 1 sec]
zabbix 6320 6318 0 12:01 ? 00:00:00 sbin/zabbix_agentd: listener #1 [waiting for connection]
zabbix 6321 6318 0 12:01 ? 00:00:00 sbin/zabbix_agentd: listener #2 [waiting for connection]
zabbix 6322 6318 0 12:01 ? 00:00:00 sbin/zabbix_agentd: listener #3 [waiting for connection]
zabbix 6323 6318 0 12:01 ? 00:00:00 sbin/zabbix_agentd: active checks #1 [idle 1 sec]
...

Selecting processes by name and user does the job:

$ zabbix_get -s localhost -k 'proc.num[zabbix_agentd,zabbix]'
6

Now let’s rename zabbix_agentd executable to zabbix_agentd_30 and restart it.

ps now shows

$ ps -fu zabbix
UID PID PPID C STIME TTY TIME CMD
...
zabbix 6715 1 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30 -c /home/zabbix/ZBXNEXT-1078/zabbix_agentd.conf
zabbix 6716 6715 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30: collector [idle 1 sec]
zabbix 6717 6715 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30: listener #1 [waiting for connection]
zabbix 6718 6715 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30: listener #2 [waiting for connection]
zabbix 6719 6715 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30: listener #3 [waiting for connection]
zabbix 6720 6715 0 12:53 ? 00:00:00 sbin/zabbix_agentd_30: active checks #1 [idle 1 sec]
...

Now selecting processes by name and user produces an incorrect result:

$ zabbix_get -s localhost -k 'proc.num[zabbix_agentd_30,zabbix]'
1

Why a simple renaming of executable to a longer name lead to quite different result ?

Zabbix agent starts with checking the process name. /proc/<pid>/status file is opened and the line Name is checked. In our
case the Name lines are:

$ grep Name /proc/{6715,6716,6717,6718,6719,6720}/status
/proc/6715/status:Name: zabbix_agentd_3
/proc/6716/status:Name: zabbix_agentd_3
/proc/6717/status:Name: zabbix_agentd_3
/proc/6718/status:Name: zabbix_agentd_3
/proc/6719/status:Name: zabbix_agentd_3
/proc/6720/status:Name: zabbix_agentd_3

961

The process name in status file is truncated to 15 characters.

A similar result can be seen with ps command:

$ ps -u zabbix
PID TTY TIME CMD

...
6715 ? 00:00:00 zabbix_agentd_3
6716 ? 00:00:01 zabbix_agentd_3
6717 ? 00:00:00 zabbix_agentd_3
6718 ? 00:00:00 zabbix_agentd_3
6719 ? 00:00:00 zabbix_agentd_3
6720 ? 00:00:00 zabbix_agentd_3
...

Obviously, that is not equal to our proc.num[] name parameter value zabbix_agentd_30. Having failed to match the process
name from status file the Zabbix agent turns to /proc/<pid>/cmdline file.

How the agent sees the ”cmdline” file can be illustrated with running a command

$ for i in 6715 6716 6717 6718 6719 6720; do cat /proc/$i/cmdline | awk '{gsub(/\x0/,"<NUL>"); print};'; done
sbin/zabbix_agentd_30<NUL>-c<NUL>/home/zabbix/ZBXNEXT-1078/zabbix_agentd.conf<NUL>
sbin/zabbix_agentd_30: collector [idle 1 sec]<NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL>...
sbin/zabbix_agentd_30: listener #1 [waiting for connection]<NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL>...
sbin/zabbix_agentd_30: listener #2 [waiting for connection]<NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL>...
sbin/zabbix_agentd_30: listener #3 [waiting for connection]<NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL>...
sbin/zabbix_agentd_30: active checks #1 [idle 1 sec]<NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL><NUL>...

/proc/<pid>/cmdline files in our case contain invisible, non-printable null bytes, used to terminate strings in C language. The
null bytes are shown as ”<NUL>” in this example.

Zabbix agent checks ”cmdline” for the main process and takes a zabbix_agentd_30, which matches our name parameter value
zabbix_agentd_30. So, the main process is counted by item proc.num[zabbix_agentd_30,zabbix].

When checking the next process, the agent takes zabbix_agentd_30: collector [idle 1 sec] from the cmdline file and
it does not meet our name parameter zabbix_agentd_30. So, only the main process which does not modify its commandline,
gets counted. Other agent processes modify their command line and are ignored.

This example shows that the name parameter cannot be used in proc.mem[] and proc.num[] for selecting processes in this
case.

Using cmdline parameter with a proper regular expression produces a correct result:

$ zabbix_get -s localhost -k 'proc.num[,zabbix,,zabbix_agentd_30[:]]'
6

Be careful when using proc.mem[] and proc.num[] items for monitoring programs which modify their commandlines.

Before putting name and cmdline parameters into proc.mem[] and proc.num[] items, you may want to test the parameters
using proc.num[] item and ps command.

Linux kernel threads

Threads cannot be selected with cmdline parameter in proc.mem[] and proc.num[] items

Let’s take as an example one of kernel threads:

$ ps -ef| grep kthreadd
root 2 0 0 09:33 ? 00:00:00 [kthreadd]

It can be selected with process name parameter:

$ zabbix_get -s localhost -k 'proc.num[kthreadd,root]'
1

But selection by process cmdline parameter does not work:

$ zabbix_get -s localhost -k 'proc.num[,root,,kthreadd]'
0

The reason is that Zabbix agent takes the regular expression specified in cmdline parameter and applies it to contents of pro-
cess /proc/<pid>/cmdline. For kernel threads their /proc/<pid>/cmdline files are empty. So, cmdline parameter never
matches.

962

Counting of threads in proc.mem[] and proc.num[] items

Linux kernel threads are counted by proc.num[] item but do not report memory in proc.mem[] item. For example:

$ ps -ef | grep kthreadd
root 2 0 0 09:51 ? 00:00:00 [kthreadd]

$ zabbix_get -s localhost -k 'proc.num[kthreadd]'
1

$ zabbix_get -s localhost -k 'proc.mem[kthreadd]'
ZBX_NOTSUPPORTED: Cannot get amount of "VmSize" memory.

But what happens if there is a user process with the same name as a kernel thread ? Then it could look like this:

$ ps -ef | grep kthreadd
root 2 0 0 09:51 ? 00:00:00 [kthreadd]
zabbix 9611 6133 0 17:58 pts/1 00:00:00 ./kthreadd

$ zabbix_get -s localhost -k 'proc.num[kthreadd]'
2

$ zabbix_get -s localhost -k 'proc.mem[kthreadd]'
4157440

proc.num[] counted both the kernel thread and the user process. proc.mem[] reports memory for the user process only and
counts the kernel thread memory as if it was 0. This is different from the case above when ZBX_NOTSUPPORTED was reported.

Be careful when using proc.mem[] and proc.num[] items if the program name happens to match one of the thread.

Before putting parameters into proc.mem[] and proc.num[] items, you may want to test the parameters using proc.num[]
item and ps command.

10 Implementation details of net.tcp.service and net.udp.service checks

Implementation of net.tcp.service and net.udp.service checks is detailed on this page for various services specified in the service
parameter.

Item net.tcp.service parameters

ftp

Creates a TCP connection and expects the first 4 characters of the response to be ”220 ”, then sends ”QUIT\r\n”. Default port 21
is used if not specified.

http

Creates a TCP connection without expecting and sending anything. Default port 80 is used if not specified.

https

Uses (and only works with) libcurl, does not verify the authenticity of the certificate, does not verify the host name in the SSL
certificate, only fetches the response header (HEAD request). Default port 443 is used if not specified.

imap

Creates a TCP connection and expects the first 4 characters of the response to be ”* OK”, then sends ”a1 LOGOUT\r\n”. Default
port 143 is used if not specified.

ldap

Opens a connection to an LDAP server and performs an LDAP search operation with filter set to (objectClass=*). Expects successful
retrieval of the first attribute of the first entry. Default port 389 is used if not specified.

nntp

Creates a TCP connection and expects the first 3 characters of the response to be ”200” or ”201”, then sends ”QUIT\r\n”. Default
port 119 is used if not specified.

pop

Creates a TCP connection and expects the first 3 characters of the response to be ”+OK”, then sends ”QUIT\r\n”. Default port 110
is used if not specified.

963

smtp

Creates a TCP connection and expects the first 3 characters of the response to be ”220”, followed by a space, the line ending or a
dash. The lines containing a dash belong to a multi-line response and the response will be re-read until a line without the dash is
received. Then sends ”QUIT\r\n”. Default port 25 is used if not specified.

ssh

Creates a TCP connection. If the connection has been established, both sides exchange an identification string (SSH-major.minor-
XXXX), where major and minor are protocol versions and XXXX is a string. Zabbix checks if the string matching the specification
is found and then sends back the string ”SSH-major.minor-zabbix_agent\r\n” or ”0\n” on mismatch. Default port 22 is used if not
specified.

tcp

Creates a TCP connection without expecting and sending anything. Unlike the other checks requires the port parameter to be
specified.

telnet

Creates a TCP connection and expects a login prompt (’:’ at the end). Default port 23 is used if not specified.

Item net.udp.service parameters

ntp

Sends an SNTP packet over UDP and validates the response according to RFC 4330, section 5. Default port 123 is used if not
specified.

6 Triggers

1 Supported trigger functions

All functions supported in trigger expressions are listed here.

FUNCTION

Description Parameters Comments
abschange

The
amount of
absolute
difference
between
last and
previous
values.

Supported
value
types:
float, int,
str, text,
log

For
example:
(previous
value;last
value=abschange)
1;5=4
3;1=2
0;-
2.5=2.5

For
strings
returns:
0 - values
are equal
1 - values
differ

avg (sec|#num,<time_shift>)

964

http://tools.ietf.org/html/rfc4330#section-5

FUNCTION

Average
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- evalua-
tion point
is moved
the
number of
seconds
back in
time

Supported
value
types:
float, int

Examples:
=>
avg(#5)
→
average
value for
the five
latest
values
=>
avg(1h) →
average
value for
an hour
=>
avg(1h,1d)
→
average
value for
an hour
one day
ago.

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2. It is
useful
when
there is a
need to
compare
the
current
average
value with
the
average
value
time_shift
seconds
back.

band (sec|#num,mask,<time_shift>)

965

FUNCTION

Value of
”bitwise
AND” of
an item
value and
mask.

sec
(ignored)
or #num
- the Nth
most
recent
value
mask
(manda-
tory) -
64-bit
unsigned
integer (0
-
18446744073709551615)
time_shift
(optional)
- see avg()

Supported
value
types: int

Take note
that #num
works
differently
here than
with many
other
functions
(see
last()).

Although
the com-
parison is
done in a
bitwise
manner,
all the
values
must be
supplied
and are
returned
in
decimal.
For
example,
checking
for the
3rd bit is
done by
compar-
ing to 4,
not 100.

Examples:
=>
band(,12)=8
or
band(,12)=4
→ 3rd or
4th bit
set, but
not both
at the
same
time
=>
band(,20)=16
→ 3rd bit
not set
and 5th
bit set.

This
function is
supported
since
Zabbix
2.2.0.966

FUNCTION

change
The
amount of
difference
between
last and
previous
values.

Supported
value
types:
float, int,
str, text,
log

For
example:
(previous
value;last
value=change)
1;5=+4
3;1=-2
0;-2.5=-
2.5

For
strings
returns:
0 - values
are equal
1 - values
differ

count (sec|#num,<pattern>,<operator>,<time_shift>)

967

FUNCTION

Number
of values
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
pattern
(optional)
- required
pattern

operator
(optional)

Supported
operators:
eq - equal
ne - not
equal
gt -
greater
ge -
greater or
equal
lt - less
le - less or
equal
like -
matches
if contains
pattern
(case-
sensitive)
band -
bitwise
AND
regexp -
case
sensitive
match of
regular
expres-
sion given
in
pattern
iregexp -
case in-
sensitive
match of
regular
expres-
sion given
in
pattern

Note that:
eq
(default),
ne, gt, ge,
lt, le,
band,
regexp,
iregexp
are
supported
for
integer
items
eq
(default),
ne, gt, ge,
lt, le,
regexp,
iregexp
are
supported
for float
items
like
(default),
eq, ne,
regexp,
iregexp
are
supported
for string,
text and
log items

time_shift
(optional)
- see avg()

Supported
value
types:
float,
integer,
string,
text, log
Float
items
match
with the
precision
of
0.000001.

With band
as third
parame-
ter, the
second
pattern
parame-
ter can be
specified
as two
numbers,
separated
by ’/’:
num-
ber_to_compare_with/mask.
count()
calculates
”bitwise
AND”
from the
value and
the mask
and
compares
the result
to num-
ber_to_compare_with.
If the
result of
”bitwise
AND” is
equal to
num-
ber_to_compare_with,
the value
is
counted.
If num-
ber_to_compare_with
and mask
are equal,
only the
mask
need be
specified
(without
’/’).

With
regexp or
iregexp
as third
parame-
ter the
second
pattern
parame-
ter can be
an
ordinary
or global
(starting
with ’@’)
regular
expres-
sion. In
case of
global
regular
expres-
sions case
sensitivity
is
inherited
from
global
regular
expres-
sion
settings.
For the
purpose
of regexp
matching,
float
values will
always be
repre-
sented
with 4
decimal
digits
after ’.’.
Also note
that for
large
numbers
difference
in decimal
(stored in
database)
and
binary
(used by
Zabbix
server)
represen-
tation
may
affect the
4th
decimal
digit.

Examples:
=>
count(10m)
→ number
of values
for last 10
minutes
=>
count(10m,”error”,eq)
→ number
of values
for last 10
minutes
that equal
’error’
=>
count(10m,12)
→ number
of values
for last 10
minutes
that equal
’12’
=>
count(10m,12,gt)
→ number
of values
for last 10
minutes
that are
over ’12’
=>
count(#10,12,gt)
→ number
of values
within last
10 values
that are
over ’12’
=>
count(10m,12,gt,1d)
→ number
of values
for
preceding
10
minutes
up to 24
hours ago
that were
over ’12’
=>
count(10m,6/7,band)
→ number
of values
for last 10
minutes
having
’110’ (in
binary) in
the 3
least
significant
bits.
=>
count(10m„,1d)
→ number
of values
for
preceding
10
minutes
up to 24
hours ago

The #num
parame-
ter is
supported
since
Zabbix
1.6.1.
The
time_shift
parame-
ter and
string
operators
are
supported
since
Zabbix
1.8.2.
The band
operator
is
supported
since
Zabbix
2.2.0.
The
regexp,
iregexp
operators
are
supported
since
Zabbix
3.2.0.

968

FUNCTION

date
Current
date in
YYYYM-
MDD
format.

Supported
value
types:
any

Example
of
returned
value:
20150731

dayofmonth
Day of
month in
range of 1
to 31.

Supported
value
types:
any

This
function is
supported
since
Zabbix
1.8.5.

dayofweek
Day of
week in
range of 1
to 7 (Mon
- 1, Sun -
7).

Supported
value
types:
any

delta (sec|#num,<time_shift>)
Difference
between
the
maximum
and
minimum
values
within the
defined
evalua-
tion
period
(’max()’
minus
’min()’).

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
specified
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

diff

969

FUNCTION

Checking
if last and
previous
values
differ.

Supported
value
types:
float, int,
str, text,
log

Returns:
1 - last
and
previous
values
differ
0 -
otherwise

forecast (sec|#num,<time_shift>,time,<fit>,<mode>)

970

FUNCTION

Future
value,
max, min,
delta or
avg of the
item.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
specified
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()
time -
forecast-
ing
horizon in
seconds
fit
(optional)
- function
used to fit
historical
data

Supported
fits:
linear -
linear
function
polynomialN
- polyno-
mial of
degree N
(1 <= N
<= 6)
exponential
- exponen-
tial
function
logarithmic
- logarith-
mic
function
power -
power
function

Note that:
linear is
default,
polyno-
mial1 is
equiva-
lent to
linear

mode
(optional)
- de-
manded
output

Supported
modes:
value -
value
(default)
max -
maximum
min -
minimum
delta -
max-min
avg -
average

Note that:
value
estimates
item
value at
the
moment
now +
time
max, min,
delta and
avg inves-
tigate
item
value
estimate
on the
interval
between
now and
now +
time

Supported
value
types:
float, int

If value to
return is
larger
than
999999999999.9999
or less
than -
999999999999.9999,
return
value is
cropped
to
999999999999.9999
or -
999999999999.9999
corre-
spond-
ingly.

Becomes
not
supported
only if
misused
in expres-
sion
(wrong
item type,
invalid
parame-
ters),
otherwise
returns -1
in case of
errors.

Examples:
=> fore-
cast(#10„1h)
→ forecast
of item
value
after one
hour
based on
last 10
values
=> fore-
cast(1h„30m)
→ forecast
of item
value
after 30
minutes
based on
last hour
data
=> fore-
cast(1h,1d,12h)
→ forecast
of item
after 12
hours
based on
one hour
one day
ago
=> fore-
cast(1h„10m,exponential)
→ forecast
of item
value
after 10
minutes
based on
last hour
data and
exponen-
tial
function
=> fore-
cast(1h„2h,polynomial3,max)
→ forecast
of
maximum
value
item can
reach in
next two
hours
based on
last hour
data and
cubic
(third
degree)
polyno-
mial
=>
forecast(#2„-
20m) →
estimate
the value
of an item
which was
20
minutes
ago based
on last
two
values
(this can
be more
precise
than
using
last() or
prev(),
especially
if item is
updated
rarely,
say, once
an hour)

This
function is
supported
since
Zabbix
3.0.0.
Negative
time
values are
supported
since
Zabbix
3.2.2.
See also
additional
informa-
tion on
predictive
trigger
functions.

971

FUNCTION

fuzzytime (sec)
Checking
how much
an item
times-
tamp
value
differs
from the
Zabbix
server
time.

sec -
seconds

Supported
value
types:
float, int

Returns:
0 - if
difference
between
item
times-
tamp
value and
Zabbix
server
times-
tamp is
over T
seconds
1 - other-
wise.

Usually
used with
sys-
tem.localtime
to check
that local
time is in
sync with
local time
of Zabbix
server.
Can be
used also
with
vfs.file.time[/path/file,modify]
key to
check
that file
didn’t get
updates
for long
time.

Example:
=> fuzzy-
time(60)=0
→ detect
a problem
if time
difference
is over 60
seconds

iregexp (pattern,<sec|#num>)

972

FUNCTION

This
function is
a non
case-
sensitive
analogue
of
regexp().

see
regexp()

Supported
value
types: str,
log, text

last (sec|#num,<time_shift>)

973

FUNCTION

The most
recent
value.

sec
(ignored)
or #num
- the Nth
most
recent
value
time_shift
(optional)
- see avg()

Supported
value
types:
float, int,
str, text,
log

Take note
that #num
works
differently
here than
with many
other
functions.
For
example:
last() is
always
equal to
last(#1)
last(#3) -
third most
recent
value (not
three
latest
values)

Zabbix
does not
guarantee
exact
order of
values if
more than
two
values
exist
within one
second in
history.

The #num
parame-
ter is
supported
since
Zabbix
1.6.2.
The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

logeventid (pattern)

974

FUNCTION

Checking
if event ID
of the last
log entry
matches
a regular
expres-
sion.

pattern -
regular
expres-
sion
describing
the
required
pattern,
POSIX
extended
style.

Supported
value
types: log

Returns:
0 - does
not match
1 -
matches

This
function is
supported
since
Zabbix
1.8.5.

logseverity
Log
severity
of the last
log entry.

Supported
value
types: log

Returns:
0 - default
severity
N -
severity
(integer,
useful for
Windows
event
logs: 1 -
Informa-
tion, 2 -
Warning,
4 - Error,
7 - Failure
Audit, 8 -
Success
Audit, 9 -
Critical,
10 -
Verbose).
Zabbix
takes log
severity
from
Informa-
tion field
of
Windows
event log.

logsource (pattern)

975

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

FUNCTION

Checking
if log
source of
the last
log entry
matches
parame-
ter.

pattern -
required
string

Supported
value
types: log

Returns:
0 - does
not match
1 -
matches
Normally
used for
Windows
event
logs. For
example,
log-
source(”VMware
Server”).

max (sec|#num,<time_shift>)
Highest
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

min (sec|#num,<time_shift>)
Lowest
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

nodata (sec)

976

FUNCTION

Checking
for no
data
received.

sec - eval-
uation
period in
seconds.
The
period
should
not be
less than
30
seconds.

nodata(0)
is disal-
lowed
since
Zabbix
3.2.2.

Supported
value
types:
any

Returns:
1 - if no
data
received
during the
defined
period of
time
0 -
otherwise

Note that
this
function
will
display an
error if,
within the
period of
the 1st pa-
rameter:
- there’s
no data
and
Zabbix
server
was
restarted
- there’s
no data
and main-
tenance
was com-
pleted
- there’s
no data
and the
item was
added or
re-
enabled
Errors are
displayed
in the Info
column in
trigger
configura-
tion.

now

977

FUNCTION

Number
of
seconds
since the
Epoch
(00:00:00
UTC,
January 1,
1970).

Supported
value
types:
any

percentile (sec|#num,<time_shift>,percentage)
P-th
percentile
of a
period,
where P
(percent-
age) is
specified
by the
third pa-
rameter.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()
percentage
- a
floating-
point
number
between
0 and 100
(inclusive)
with up to
4 digits
after the
decimal
point

Supported
value
types:
float, int

This
function is
supported
since
Zabbix
3.0.0.

prev
Previous
value.

Supported
value
types:
float, int,
str, text,
log

Returns
the same
as
last(#2).

regexp (pattern,<sec|#num>)

978

FUNCTION

Checking
if the
latest
(most
recent)
value
matches
regular
expres-
sion.

pattern -
regular
expres-
sion,
POSIX
extended
style.
sec or
#num
(optional)
-
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark). In
this case,
more than
one value
may be
pro-
cessed.

Supported
value
types: str,
text, log

Returns:
1 - found
0 -
otherwise

If more
than one
value is
pro-
cessed,
’1’ is
returned
if there is
at least
one
matching
value.

This
function is
case-
sensitive.

str (pattern,<sec|#num>)
Finding a
string in
the latest
(most
recent)
value.

pattern -
required
string
sec or
#num
(optional)
-
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark). In
this case,
more than
one value
may be
pro-
cessed.

Supported
value
types: str,
text, log

Returns:
1 - found
0 -
otherwise

If more
than one
value is
pro-
cessed,
’1’ is
returned
if there is
at least
one
matching
value.

This
function is
case-
sensitive.

strlen (sec|#num,<time_shift>)

979

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

FUNCTION

Length of
the latest
(most
recent)
value in
charac-
ters (not
bytes).

sec
(ignored)
or #num
- the Nth
most
recent
value
time_shift
(optional)
- see avg()

Supported
value
types: str,
text, log

Take note
that #num
works
differently
here than
with many
other
functions.

Examples:
=>
strlen()(is
equal to
strlen(#1))
→ length
of the
latest
value
=>
strlen(#3)
→ length
of the
third most
recent
value
=>
strlen(,1d)
→ length
of the
most
recent
value one
day ago.

This
function is
supported
since
Zabbix
1.8.4.

sum (sec|#num,<time_shift>)

980

FUNCTION

Sum of
collected
values
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
function is
evaluated
starting
with the
first
received
value.

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

time
Current
time in
HHMMSS
format.

Supported
value
types:
any

Example
of
returned
value:
123055

timeleft (sec|#num,<time_shift>,threshold,<fit>)

981

FUNCTION

Time in
seconds
needed
for an
item to
reach a
specified
threshold.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
specified
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()
threshold
- value to
reach
fit
(optional)
- see
forecast()

Supported
value
types:
float, int

If value to
return is
larger
than
999999999999.9999,
return
value is
cropped
to
999999999999.9999.

Returns
999999999999.9999
if
threshold
cannot be
reached.

Becomes
not
supported
only if
misused
in expres-
sion
(wrong
item type,
invalid
parame-
ters),
otherwise
returns -1
in case of
errors.

Examples:
=>
timeleft(#10„0)
→ time
until item
value
reaches
zero
based on
last 10
values
=>
timeleft(1h„100)
→ time
until item
value
reaches
100 based
on last
hour data
=>
timeleft(1h,1d,0)
→ time
until item
value
reaches 0
based on
one hour
one day
ago
=>
timeleft(1h„200,polynomial2)
→ time
until item
reaches
200
based on
last hour
data and
assump-
tion that
item
behaves
like
quadratic
(second
degree)
polyno-
mial

This
function is
supported
since
Zabbix
3.0.0.
Unit
symbols
in
threshold
parame-
ter are
supported
since
Zabbix
3.2.2.
See also
additional
informa-
tion on
predictive
trigger
functions.

982

FUNCTION

Warning:
Important notes:
1) All functions return numeric values only. Comparison to strings is not supported.
2) Some of the functions cannot be used for non-numeric values!
3) String arguments should be double quoted. Otherwise, they might get misinterpreted.
4) For all trigger functions sec and time_shift must be an integer with an optional time unit suffix and has absolutely
nothing to do with the item’s data type.

Footnotes
1 The function is evaluated starting with the first received value (unless the timeshift parameter is used).

Functions and unsupported items

Since Zabbix 3.2, nodata(), date(), dayofmonth(), dayofweek(), now() and time() functions are calculated for unsupported
items, too. Other functions require that the referenced item is in a supported state.

7 Macros

1 Supported macros

Overview

The table contains a complete list of macros supported by Zabbix.

Macro Supported in Description

{ACTION.ID} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Numeric ID of the triggered action.
Supported since 2.2.0.

{ACTION.NAME} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Name of the triggered action.
Supported since 2.2.0.

{ALERT.MESSAGE} → Alert script parameters ’Default message’ value from action
configuration.
Supported since 3.0.0.

{ALERT.SENDTO} → Alert script parameters ’Send to’ value from user media configuration.
Supported since 3.0.0.

{ALERT.SUBJECT} → Alert script parameters ’Default subject’ value from action
configuration.
Supported since 3.0.0.

{DATE} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Current date in yyyy.mm.dd. format.

{DISCOVERY.DEVICE.IPADDRESS}→ Discovery notifications IP address of the discovered device.
Available always, does not depend on host
being added.

{DISCOVERY.DEVICE.DNS}→ Discovery notifications DNS name of the discovered device.
Available always, does not depend on host
being added.

{DISCOVERY.DEVICE.STATUS}→ Discovery notifications Status of the discovered device: can be either
UP or DOWN.

983

Macro Supported in Description

{DISCOVERY.DEVICE.UPTIME}→ Discovery notifications Time since the last change of discovery status
for a particular device.
For example: 1h 29m.
For devices with status DOWN, this is the
period of their downtime.

{DISCOVERY.RULE.NAME}→ Discovery notifications Name of the discovery rule that discovered the
presence or absence of the device or service.

{DISCOVERY.SERVICE.NAME}→ Discovery notifications Name of the service that was discovered.
For example: HTTP.

{DISCOVERY.SERVICE.PORT}→ Discovery notifications Port of the service that was discovered.
For example: 80.

{DISCOVERY.SERVICE.STATUS}→ Discovery notifications Status of the discovered service:// can be
either UP or DOWN. |
|{DISCOVERY.SERVICE.UPTIME} |→ Discovery
notifications |Time since the last change of
discovery status for a particular
service.
For example: 1h 29m.
For
services with status DOWN, this is the period
of their downtime. | |{ESC.HISTORY} |→
Trigger-based notifications and
commands
→ Internal notifications
|Escalation history. Log of previously sent
messages.
Shows previously sent
notifications, on which escalation step they
were sent and their status (sent//, in progress
or failed).

{EVENT.ACK.HISTORY} → Trigger-based notifications and commands Log of acknowledgements on the problem.
{EVENT.ACK.STATUS} → Trigger-based notifications and commands Acknowledgement status of the event

(Yes/No).
{EVENT.AGE} → Trigger-based notifications and commands

→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Age of the event that triggered an action.
Useful in escalated messages.

{EVENT.DATE} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Date of the event that triggered an action.

{EVENT.ID} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Numeric ID of the event that triggered an
action.

{EVENT.RECOVERY.DATE}→ Trigger-based notifications
→ Internal notifications

Date of the recovery event.
Can be used in recovery messages only.
Supported since 2.2.0.

{EVENT.RECOVERY.ID} → Trigger-based notifications
→ Internal notifications

Numeric ID of the recovery event.
Can be used in recovery messages only.
Supported since 2.2.0.

{EVENT.RECOVERY.STATUS}→ Trigger-based notifications
→ Internal notifications

Verbal value of the recovery event.
Can be used in recovery messages only.
Supported since 2.2.0.

{EVENT.RECOVERY.TAGS}→ Trigger-based notifications and commands A comma separated list of recovery event
tags. Expanded to an empty string if no tags
exist.
Supported since 3.2.0.

{EVENT.RECOVERY.TIME}→ Trigger-based notifications
→ Internal notifications

Time of the recovery event.
Can be used in recovery messages only.
Supported since 2.2.0.

{EVENT.RECOVERY.VALUE}→ Trigger-based notifications
→ Internal notifications

Numeric value of the recovery event.
Can be used in recovery messages only.
Supported since 2.2.0.

984

Macro Supported in Description

{EVENT.STATUS} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Verbal value of the event that triggered an
action.
Supported since 2.2.0.

{EVENT.TAGS} → Trigger-based notifications and commands A comma separated list of event tags.
Expanded to an empty string if no tags exist.
Supported since 3.2.0.

{EVENT.TIME} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Time of the event that triggered an action.

{EVENT.VALUE} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Numeric value of the event that triggered an
action (1 for problem, 0 for recovering).
Supported since 2.2.0.

{HOST.CONN<1-9>} → Trigger-based notifications and commands
→ Internal notifications
→ Global scripts (including confirmation text)
→ Icon labels in maps1

→ Item key parameters2

→ Host interface IP/DNS
→ Database monitoring additional parameters5

→ SSH and Telnet scripts5

→ Web monitoring6

→ Low-level discovery rule filter regular
expressions8

→ URL field of dynamic URL screen element8

→ Trigger names and descriptions
→ Trigger URLs10

Host IP address or DNS name, depending on
host settings3.
Supported in trigger names since 2.0.0.

{HOST.DESCRIPTION<1-
9>}

→ Trigger-based notifications and commands
→ Internal notifications
→ Icon labels in maps1

Host description.
Supported since 2.4.0.

{HOST.DNS<1-9>} → Trigger-based notifications and commands
→ Internal notifications
→ Global scripts (including confirmation text)
→ Icon labels in maps1

→ Item key parameters2

→ Host interface IP/DNS
→ Database monitoring additional parameters5

→ SSH and Telnet scripts5

→ Web monitoring6

→ Low-level discovery rule filter regular
expressions8

→ URL field of dynamic URL screen element8

→ Trigger names and descriptions
→ Trigger URLs10

Host DNS name3.
Supported in trigger names since 2.0.0.

{HOST.HOST<1-9>} → Trigger-based notifications and commands
→ Auto registration notifications
→ Internal notifications
→ Global scripts (including confirmation text)
→ Item key parameters
→ Icon labels in maps1

→ Host interface IP/DNS
→ Database monitoring additional parameters5

→ SSH and Telnet scripts5

→ Web monitoring6

→ Low-level discovery rule filter regular
expressions8

→ URL field of dynamic URL screen element8

→ Trigger names and descriptions
→ Trigger URLs 10

Host name.
{HOSTNAME<1-9>} is deprecated.

985

Macro Supported in Description

{HOST.ID<1-9>} → Map URLs
→ URL field of dynamic URL screen element8

→ Trigger URLs10

Host ID.

{HOST.IP<1-9>} → Trigger-based notifications and commands
→ Auto registration notifications
→ Internal notifications
→ Global scripts (including confirmation text)
→ Icon labels in maps1

→ Item key parameters2

→ Host interface IP/DNS
→ Database monitoring additional parameters5

→ SSH and Telnet scripts5

→ Web monitoring6

→ Low-level discovery rule filter regular
expressions8

→ URL field of dynamic URL screen element8

→ Trigger names and descriptions
→ Trigger URLs10

Host IP address3.
Supported since 2.0.0. {IPADDRESS<1-9>}
is deprecated.

{HOST.METADATA} → Auto registration notifications Host metadata.
Used only for active agent auto-registration.
Supported since 2.2.0.

{HOST.NAME<1-9>} → Trigger-based notifications and commands
→ Internal notifications
→ Global scripts (including confirmation text)
→ Icon labels in maps1

→ Item key parameters
→ Host interface IP/DNS
→ Database monitoring additional parameters5

→ SSH and Telnet scripts5

→ Web monitoring6

→ Low-level discovery rule filter regular
expressions8

→ URL field of dynamic URL screen element8

→ Trigger names and descriptions
→ Trigger URLs10

Visible host name.
Supported since 2.0.0.

{HOST.PORT<1-9>} → Trigger-based notifications and commands
→ Auto registration notifications
→ Internal notifications
→ Trigger names and descriptions
→ Trigger URLs10

Host (agent) port3.
Supported in auto-registration since 2.0.0.
Supported in trigger names, trigger
descriptions, internal and trigger-based
notifications since 2.2.2.

{HOSTGROUP.ID} → Map URLs Host group ID.
{INVENTORY.ALIAS<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Alias field in host inventory.

{INVENTORY.ASSET.TAG<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Asset tag field in host inventory.

{INVENTORY.CHASSIS<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Chassis field in host inventory.

{INVENTORY.CONTACT<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Contact field in host inventory.
{PROFILE.CONTACT<1-9>} is deprecated.

{INVENTORY.CONTRACT.NUMBER<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Contract number field in host inventory.

{INVENTORY.DEPLOYMENT.STATUS<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Deployment status field in host inventory.

{INVENTORY.HARDWARE<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Hardware field in host inventory.
{PROFILE.HARDWARE<1-9>} is deprecated.

{INVENTORY.HARDWARE.FULL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Hardware (Full details) field in host inventory.

{INVENTORY.HOST.NETMASK<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Host subnet mask field in host inventory.

{INVENTORY.HOST.NETWORKS<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Host networks field in host inventory.

986

Macro Supported in Description

{INVENTORY.HOST.ROUTER<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Host router field in host inventory.

{INVENTORY.HW.ARCH<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Hardware architecture field in host inventory.

{INVENTORY.HW.DATE.DECOMM<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Date hardware decommissioned field in host
inventory.

{INVENTORY.HW.DATE.EXPIRY<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Date hardware maintenance expires field in
host inventory.

{INVENTORY.HW.DATE.INSTALL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Date hardware installed field in host inventory.

{INVENTORY.HW.DATE.PURCHASE<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Date hardware purchased field in host
inventory.

{INVENTORY.INSTALLER.NAME<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Installer name field in host inventory.

{INVENTORY.LOCATION<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Location field in host inventory.
{PROFILE.LOCATION<1-9>} is deprecated.

{INVENTORY.LOCATION.LAT<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Location latitude field in host inventory.

{INVENTORY.LOCATION.LON<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Location longitude field in host inventory.

{INVENTORY.MACADDRESS.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

MAC address A field in host inventory.
{PROFILE.MACADDRESS<1-9>} is
deprecated.

{INVENTORY.MACADDRESS.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

MAC address B field in host inventory.

{INVENTORY.MODEL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Model field in host inventory.

{INVENTORY.NAME<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Name field in host inventory.
{PROFILE.NAME<1-9>} is deprecated.

{INVENTORY.NOTES<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Notes field in host inventory.
{PROFILE.NOTES<1-9>} is deprecated.

{INVENTORY.OOB.IP<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OOB IP address field in host inventory.

{INVENTORY.OOB.NETMASK<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OOB subnet mask field in host inventory.

{INVENTORY.OOB.ROUTER<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OOB router field in host inventory.

{INVENTORY.OS<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OS field in host inventory.
{PROFILE.OS<1-9>} is deprecated.

{INVENTORY.OS.FULL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OS (Full details) field in host inventory.

{INVENTORY.OS.SHORT<1-
9>}

→ Trigger-based notifications
→ Internal notifications

OS (Short) field in host inventory.

{INVENTORY.POC.PRIMARY.CELL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC cell field in host inventory.

{INVENTORY.POC.PRIMARY.EMAIL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC email field in host inventory.

{INVENTORY.POC.PRIMARY.NAME<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC name field in host inventory.

{INVENTORY.POC.PRIMARY.NOTES<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC notes field in host inventory.

{INVENTORY.POC.PRIMARY.PHONE.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC phone A field in host inventory.

{INVENTORY.POC.PRIMARY.PHONE.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC phone B field in host inventory.

{INVENTORY.POC.PRIMARY.SCREEN<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Primary POC screen name field in host
inventory.

{INVENTORY.POC.SECONDARY.CELL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC cell field in host inventory.

{INVENTORY.POC.SECONDARY.EMAIL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC email field in host inventory.

987

Macro Supported in Description

{INVENTORY.POC.SECONDARY.NAME<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC name field in host inventory.

{INVENTORY.POC.SECONDARY.NOTES<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC notes field in host inventory.

{INVENTORY.POC.SECONDARY.PHONE.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC phone A field in host
inventory.

{INVENTORY.POC.SECONDARY.PHONE.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC phone B field in host
inventory.

{INVENTORY.POC.SECONDARY.SCREEN<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Secondary POC screen name field in host
inventory.

{INVENTORY.SERIALNO.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Serial number A field in host inventory.
{PROFILE.SERIALNO<1-9>} is deprecated.

{INVENTORY.SERIALNO.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Serial number B field in host inventory.

{INVENTORY.SITE.ADDRESS.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site address A field in host inventory.

{INVENTORY.SITE.ADDRESS.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site address B field in host inventory.

{INVENTORY.SITE.ADDRESS.C<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site address C field in host inventory.

{INVENTORY.SITE.CITY<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site city field in host inventory.

{INVENTORY.SITE.COUNTRY<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site country field in host inventory.

{INVENTORY.SITE.NOTES<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site notes field in host inventory.

{INVENTORY.SITE.RACK<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site rack location field in host inventory.

{INVENTORY.SITE.STATE<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site state/province field in host inventory.

{INVENTORY.SITE.ZIP<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Site ZIP/postal field in host inventory.

{INVENTORY.SOFTWARE<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software field in host inventory.
{PROFILE.SOFTWARE<1-9>} is deprecated.

{INVENTORY.SOFTWARE.APP.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software application A field in host inventory.

{INVENTORY.SOFTWARE.APP.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software application B field in host inventory.

{INVENTORY.SOFTWARE.APP.C<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software application C field in host inventory.

{INVENTORY.SOFTWARE.APP.D<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software application D field in host inventory.

{INVENTORY.SOFTWARE.APP.E<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software application E field in host inventory.

{INVENTORY.SOFTWARE.FULL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Software (Full details) field in host inventory.

{INVENTORY.TAG<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Tag field in host inventory.
{PROFILE.TAG<1-9>} is deprecated.

{INVENTORY.TYPE<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Type field in host inventory.
{PROFILE.DEVICETYPE<1-9>} is
deprecated.

{INVENTORY.TYPE.FULL<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Type (Full details) field in host inventory.

{INVENTORY.URL.A<1-
9>}

→ Trigger-based notifications
→ Internal notifications

URL A field in host inventory.

{INVENTORY.URL.B<1-
9>}

→ Trigger-based notifications
→ Internal notifications

URL B field in host inventory.

{INVENTORY.URL.C<1-
9>}

→ Trigger-based notifications
→ Internal notifications

URL C field in host inventory.

{INVENTORY.VENDOR<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Vendor field in host inventory.

988

Macro Supported in Description

{ITEM.DESCRIPTION<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Description of the Nth item in the trigger
expression that caused a notification.
Supported since 2.0.0.

{ITEM.ID<1-9>} → Trigger-based notifications
→ Internal notifications

Numeric ID of the Nth item in the trigger
expression that caused a notification.
Supported since 1.8.12.

{ITEM.KEY<1-9>} → Trigger-based notifications
→ Internal notifications

Key of the Nth item in the trigger expression
that caused a notification. Supported since
2.0.0.
{TRIGGER.KEY} is deprecated.

{ITEM.KEY.ORIG<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Original key (with macros not expanded) of
the Nth item in the trigger expression that
caused a notification. Supported since 2.0.6.

{ITEM.LASTVALUE<1-
9>}

→ Trigger-based notifications
→ Trigger names and descriptions
→ Event tags and values

The latest value of the Nth item in the trigger
expression that caused a notification.
It will resolve to *UNKNOWN* in the frontend if
the latest history value has been collected
more than the ZBX_HISTORY_PERIOD time ago
(defined in defines.inc.php).
Supported since 1.4.3. It is alias to
{{HOST.HOST}:{ITEM.KEY}.last()}

Customizing the macro value is supported for
this macro; starting with Zabbix 3.2.0.

{ITEM.LOG.AGE<1-
9>}

→ Trigger-based notifications Age of the log item event.

{ITEM.LOG.DATE<1-
9>}

→ Trigger-based notifications Date of the log item event.

{ITEM.LOG.EVENTID<1-
9>}

→ Trigger-based notifications ID of the event in the event log.
For Windows event log monitoring only.

{ITEM.LOG.NSEVERITY<1-
9>}

→ Trigger-based notifications Numeric severity of the event in the event log.
For Windows event log monitoring only.

{ITEM.LOG.SEVERITY<1-
9>}

→ Trigger-based notifications Verbal severity of the event in the event log.
For Windows event log monitoring only.

{ITEM.LOG.SOURCE<1-
9>}

→ Trigger-based notifications Source of the event in the event log.
For Windows event log monitoring only.

{ITEM.LOG.TIME<1-
9>}

→ Trigger-based notifications Time of the log item event.

{ITEM.NAME<1-9>} → Trigger-based notifications
→ Internal notifications

Name of the Nth item in the trigger expression
that caused a notification.

{ITEM.NAME.ORIG<1-
9>}

→ Trigger-based notifications
→ Internal notifications

Original name (with macros not expanded) of
the Nth item in the trigger expression that
caused a notification. Supported since 2.0.6.

{ITEM.STATE<1-9>} → Item-based internal notifications The latest state of the Nth item in the trigger
expression that caused a notification. Possible
values: Not supported and Normal.
Supported since 2.2.0.

989

Macro Supported in Description

{ITEM.VALUE<1-9>} → Trigger-based notifications
→ Trigger names and descriptions
→ Event tags and values

Resolved to either:
1) the historical (at-the-time-of-event) value of
the Nth item in the trigger expression, if used
in the context of trigger status change, for
example, when displaying events or sending
notifications.
2) the latest value of the Nth item in the
trigger expression, if used without the context
of trigger status change, for example, when
displaying a list of triggers in a pop-up
selection window. In this case works the same
as {ITEM.LASTVALUE}
In the first case it will resolve to *UNKNOWN*
if the history value has already been deleted
or has never been stored.
In the second case, and in the frontend only, it
will resolve to *UNKNOWN* if the latest history
value has been collected more than the
ZBX_HISTORY_PERIOD time ago (defined in
defines.inc.php).
Supported since 1.4.3.

Customizing the macro value is supported for
this macro, starting with Zabbix 3.2.0.

{LLDRULE.DESCRIPTION}→ LLD-rule based internal notifications Description of the low-level discovery rule
which caused a notification.
Supported since 2.2.0.

{LLDRULE.ID} → LLD-rule based internal notifications Numeric ID of the low-level discovery rule
which caused a notification.
Supported since 2.2.0.

{LLDRULE.KEY} → LLD-rule based internal notifications Key of the low-level discovery rule which
caused a notification.
Supported since 2.2.0.

{LLDRULE.KEY.ORIG} → LLD-rule based internal notifications Original key (with macros not expanded) of
the low-level discovery rule which caused a
notification.
Supported since 2.2.0.

{LLDRULE.NAME} → LLD-rule based internal notifications Name of the low-level discovery rule which
caused a notification.
Supported since 2.2.0.

{LLDRULE.NAME.ORIG} → LLD-rule based internal notifications Original name (with macros not expanded) of
the low-level discovery rule which caused a
notification.
Supported since 2.2.0.

{LLDRULE.STATE} → LLD-rule based internal notifications The latest state of the low-level discovery rule.
Possible values: Not supported and Normal.
Supported since 2.2.0.

{MAP.ID} → Map URLs Network map ID.
{PROXY.DESCRIPTION<1-
9>}

→ Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Description of the proxy. Resolves to either:
1) proxy of the Nth item in the trigger
expression (in trigger-based notifications). You
may use indexed macros here.
2) proxy, which executed discovery (in
discovery notifications). Use
{PROXY.DESCRIPTION} here, without indexing.
3) proxy to which an active agent registered
(in auto-registration notifications). Use
{PROXY.DESCRIPTION} here, without indexing.
Supported since 2.4.0.

990

Macro Supported in Description

{PROXY.NAME<1-
9>}

→ Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Name of the proxy. Resolves to either:
1) proxy of the Nth item in the trigger
expression (in trigger-based notifications). You
may use indexed macros here.
2) proxy, which executed discovery (in
discovery notifications). Use {PROXY.NAME}
here, without indexing.
3) proxy to which an active agent registered
(in auto-registration notifications). Use
{PROXY.NAME} here, without indexing.
Supported since 1.8.4.

{TIME} → Trigger-based notifications and commands
→ Discovery notifications
→ Auto-registration notifications
→ Internal notifications

Current time in hh:mm:ss.

{TRIGGER.DESCRIPTION}→ Trigger-based notifications
→ Trigger-based internal notifications

Trigger description. Supported since 2.0.4.
Starting with 2.2.0, all macros supported in a
trigger description will be expanded if
{TRIGGER.DESCRIPTION} is used in
notification text.
{TRIGGER.COMMENT} is deprecated.

{TRIGGER.EVENTS.ACK}→ Trigger-based notifications
→ Icon labels in maps1

Number of acknowledged events for a map
element in maps, or for the trigger which
generated current event in notifications.
Supported since 1.8.3.

{TRIGGER.EVENTS.PROBLEM.ACK}→ Trigger-based notifications
→ Icon labels in maps1

Number of acknowledged PROBLEM events for
all triggers disregarding their state. Supported
since 1.8.3.

{TRIGGER.EVENTS.PROBLEM.UNACK}→ Trigger-based notifications
→ Icon labels in maps1

Number of unacknowledged PROBLEM events
for all triggers disregarding their state.
Supported since 1.8.3.

{TRIGGER.EVENTS.UNACK}→ Trigger-based notifications
→ Icon labels in maps1

Number of unacknowledged events for a map
element in maps, or for the trigger which
generated current event in notifications.
Supported in map element labels since 1.8.3.

{TRIGGER.HOSTGROUP.NAME}→ Trigger-based notifications
→ Trigger-based internal notifications

A sorted (by SQL query), comma-space
separated list of host groups in which the
trigger is defined. Supported since 2.0.6.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.ACK}→ Icon labels in maps1 Number of acknowledged PROBLEM events for
triggers in PROBLEM state. Supported since
1.8.3.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.UNACK}→ Icon labels in maps1 Number of unacknowledged PROBLEM events
for triggers in PROBLEM state. Supported
since 1.8.3.

{TRIGGER.EXPRESSION}→ Trigger-based notifications
→ Trigger-based internal notifications

Trigger expression. Supported since 1.8.12.

{TRIGGER.EXPRESSION.RECOVERY}→ Trigger-based notifications
→ Trigger-based internal notifications

Trigger recovery expression if OK event
generation in trigger configuration is set to
’Recovery expression’; otherwise an empty
string is returned.
Supported since 3.2.0.

{TRIGGER.ID} → Trigger-based notifications
→ Trigger-based internal notifications
→ Map URLs
→ Trigger URLs

Numeric trigger ID which triggered this action.
Supported in trigger URLs since Zabbix 1.8.8.

{TRIGGER.NAME} → Trigger-based notifications
→ Trigger-based internal notifications

Name of the trigger.

{TRIGGER.NAME.ORIG} → Trigger-based notifications
→ Trigger-based internal notifications

Original name (with macros not expanded) of
the trigger. Supported since 2.0.6.

991

Macro Supported in Description

{TRIGGER.NSEVERITY} → Trigger-based notifications
→ Trigger-based internal notifications

Numerical trigger severity. Possible values: 0 -
Not classified, 1 - Information, 2 - Warning, 3 -
Average, 4 - High, 5 - Disaster.
Supported starting from Zabbix 1.6.2.

{TRIGGER.SEVERITY} → Trigger-based notifications
→ Trigger-based internal notifications

Trigger severity name. Can be defined in
Administration → General → Trigger severities.

{TRIGGER.STATE} → Trigger-based internal notifications The latest state of the trigger. Possible values:
Unknown and Normal.
Supported since 2.2.0.

{TRIGGER.STATUS} → Trigger-based notifications Current trigger value. Can be either PROBLEM
or OK.
{STATUS} is deprecated.

{TRIGGER.TEMPLATE.NAME}→ Trigger-based notifications
→ Trigger-based internal notifications

A sorted (by SQL query), comma-space
separated list of templates in which the trigger
is defined, or *UNKNOWN* if the trigger is
defined in a host. Supported since 2.0.6.

{TRIGGER.URL} → Trigger-based notifications
→ Trigger-based internal notifications

Trigger URL.

{TRIGGER.VALUE} → Trigger-based notifications
→ Trigger expressions

Current trigger numeric value: 0 - trigger is in
OK state, 1 - trigger is in PROBLEM state.

{TRIGGERS.UNACK} → Icon labels in maps1 Number of unacknowledged triggers for a map
element, disregarding trigger state.
A trigger is considered to be unacknowledged
if at least one of its PROBLEM events is
unacknowledged.

{TRIGGERS.PROBLEM.UNACK}→ Icon labels in maps1 Number of unacknowledged PROBLEM triggers
for a map element.
A trigger is considered to be unacknowledged
if at least one of its PROBLEM events is
unacknowledged.
Supported since 1.8.3.

{TRIGGERS.ACK} → Icon labels in maps1 Number of acknowledged triggers for a map
element, disregarding trigger state.
A trigger is considered to be acknowledged if
all of it’s PROBLEM events are acknowledged.
Supported since 1.8.3.

{TRIGGERS.PROBLEM.ACK}→ Icon labels in maps1 Number of acknowledged PROBLEM triggers
for a map element.
A trigger is considered to be acknowledged if
all of it’s PROBLEM events are acknowledged.
Supported since 1.8.3.

{host:key.func(param)} → Trigger-based notifications
→ Icon labels and link labels in maps1 4

→ Graph names7

→ Trigger expressions9

Simple macros, as used in building trigger
expressions.

{$MACRO} → See: Additional support for user macros User-definable macros.
Supported in item and trigger names since
1.8.4.
Supported in global script commands and
confirmation texts since Zabbix 2.2.0.

{#MACRO} → See: Low-level discovery macros Low-level discovery macros.
Supported since 2.0.0.

Footnotes
1 Macros for map labels are supported since 1.8.
2 The {HOST.*} macros supported in item key parameters will resolve to the interface that is selected for the item. When used in
items without interfaces they will resolve to either the Zabbix agent, SNMP, JMX or IPMI interface of the host in this order of priority,
since Zabbix 3.2.2. In Zabbix 3.2.0, 3.2.1 they will not resolve when used in items without interfaces e.g. ”Zabbix agent (active)”,
”Calculated” etc.

992

3 In remote commands, global scripts, interface IP/DNS fields and web scenarios the macro will resolve to the main agent interface,
however, if it is not present, the main SNMP interface will be used. If SNMP is also not present, the main JMX interface will be used.
If JMX is not present either, the main IPMI interface will be used.
4 Only the avg, last, max and min functions, with seconds as parameter are supported in this macro in map labels.
5 Supported since 2.0.3.
6 Supported since Zabbix 2.2.0. {HOST.*} macros are supported in web scenario Name, Variables, Headers, SSL certificate file
and SSL key file fields and in scenario step Name, URL, Post, Headers and Required string fields.
7 Supported since Zabbix 2.2.0. Only the avg, last,max andmin functions, with seconds as parameter are supported within this
macro in graph names. The {HOST.HOST<1-9>} macro can be used as host within the macro. For example:

* {Cisco switch:ifAlias[{#SNMPINDEX}].last()}
* %%{{%%HOST.HOST}:ifAlias[{#SNMPINDEX}].last()}

8 Supported since 2.4.0.
9 While supported to build trigger expressions, simple macros may not be used inside each other.
10 Supported since 3.0.0.

Indexed macros

The indexed macro syntax of {MACRO<1-9>} is limited to the context of trigger expressions. It can be used to reference hosts
in the order in which they appear in the expression. Macros like {HOST.IP1}, {HOST.IP2}, {HOST.IP3} will resolve to the IP of the
first, second and third host in the trigger expression (providing the trigger expression contains those hosts).

Additionally the {HOST.HOST<1-9>} macro is also supported within the {host:key.func(param)}macro in graph names. For
example, {{HOST.HOST2}:key.func()} in the graph name will refer to the host of the second item in the graph.

Warning:
Use macros without index (i. e.{HOST.HOST}, {HOST.IP}, etc) in all other contexts.

Additional support for user macros

In addition to the locations listed, user-definable macros since Zabbix 2.0 are supported in numerous other locations:

• Hosts
– Interface IP/DNS
– Interface port

• Passive proxy
– Interface port

• Items and item prototypes
– Name (since Zabbix 1.8.4)
– Key parameters
– SNMPv3 context name
– SNMPv3 security name
– SNMPv3 auth pass
– SNMPv3 priv pass
– SNMPv1/v2 community
– SNMP OID
– SNMP port
– SSH username
– SSH public key
– SSH private key
– SSH password
– SSH script (since Zabbix 2.0.3)
– Telnet username
– Telnet password
– Telnet script (since Zabbix 2.0.3)
– Calculated item formula
– Trapper item ”Allowed hosts” field (since Zabbix 2.2)
– Database monitoring additional parameters (since Zabbix 2.0.3)

• Discovery

993

* SNMPv3 context name
* SNMPv3 security name
* SNMPv3 auth pass
* SNMPv3 priv pass
* SNMPv1/v2 community
* SNMP OID

• Low-level discovery rule

* Name (since Zabbix 1.8.4)
* Key parameters
* SNMPv3 context name
* SNMPv3 security name
* SNMPv3 auth pass
* SNMPv3 priv pass
* SNMPv1/v2 community
* SNMP OID
* SNMP port
* SSH username
* SSH public key
* SSH private key
* SSH password
* SSH script (since Zabbix 2.0.3)
* Telnet username
* Telnet password
* Telnet script (since Zabbix 2.0.3)
* Trapper item “Allowed hosts ” field (since Zabbix 2.2)
* Database monitoring additional parameters (since Zabbix 2.0.3)
* Filter regular expressions (since Zabbix 2.4)

* Web scenario (since Zabbix 2.2.0)
* Name
* Agent
* HTTP proxy
* Variables
* Headers
* Step name
* Step URL
* Step post variables
* Step headers
* Required string
* Required status codes
* Authentication (user and password)
* SSL certificate file
* SSL key file
* SSL key password

• Triggers

* Name (since Zabbix 1.8.4)
* Expression (only in constants and function parameters)
* Description
* URLs (since Zabbix 3.0)

• Trigger-based notifications (since Zabbix 2.4)

• Trigger-based internal notifications (since Zabbix 2.4)

• Event tags (since Zabbix 3.2.2)

* Tag name
* Tag value
* Tag for matching

• Global scripts (including confirmation text) (since Zabbix 2.2.0)

• URL field of dynamic URL screen element (since Zabbix 2.4)

994

8 Setting time periods

1 Format

To set a time period, the following format has to be used:

d-d,hh:mm-hh:mm

You can specify more than one time period using a semicolon (;) separator:

d-d,hh:mm-hh:mm;d-d,hh:mm-hh:mm...

2 Description

Symbol Description

d Day of the week: 1 - Monday, 2 - Tuesday ,... , 7 - Sunday
hh Hours: 00-24
mm Minutes: 00-59

3 Default

Empty time period specification equals 01-07,00:00-24:00, which is the default value.

Attention:
The upper limit of a time period is not included. Thus, if you specify 09:00-18:00 the last second included in the time period
is 17:59:59. This is true starting from version 1.8.7, for everything, while Working time has always worked this way.

4 Examples

Working hours. Monday - Friday from 9:00 till 18:00:

1-5,09:00-18:00

Working hours plus weekend. Monday - Friday from 9:00 till 18:00 and Saturday, Sunday from 10:00 till 16:00:

1-5,09:00-18:00;6-7,10:00-16:00

9 Command execution

Zabbix uses common functionality to execute user parameters, remote commands, system.run[] items without the ”nowait” flag,
scripts (alert, external and global) and some internal commands.

The command/script is executed similarly on both Unix and Windows platforms:

1. Zabbix (the parent process) creates a pipe for communication
2. Zabbix sets the pipe as the output for the to-be-created child process
3. Zabbix creates the child process (runs the command/script)
4. A new process group (in Unix) or a job (in Windows) is created for the child process
5. Zabbix reads from the pipe until timeout occurs or no one is writing to the other end (ALL handles/file descriptors have been
closed). Note that the child process can create more processes and exit before they exit or close the handle/file descriptor.

6. If the timeout has not been reached, Zabbix waits until the initial child process exits or timeout occurs
7. At this point it is assumed that everything is done and the whole process tree (i.e. the process group or the job) is terminated

Attention:
Steps 5-7 do not refer to remote commands as they are executed with a ”nowait” flag.

Attention:
Zabbix assumes that a command/script has done processing when the initial child process has exited AND no other process
is still keeping the output handle/file descriptor open. When processing is done, ALL created processes are terminated.

All double quotes and backslashes in the command are escaped with backslashes and the command is enclosed in double quotes.

Read more about user parameters, remote commands, alert scripts.

995

10 Recipes for monitoring

General

Monitoring server availability

At least three methods (or combination of all methods) may be used in order to monitor availability of a server.

• ICMP ping (”icmpping” key)
• ”zabbix[host,agent,available]” item
• trigger function nodata() for monitoring the availability of hosts that use active checks only

Sending alerts via WinPopUps

WinPopUps maybe very useful if you’re running Windows OS and want to get quick notification from Zabbix. It could be good
addition for email-based alert messages. Details about enabling of WinPopUps can be found at http://www.zabbix.com/forum/
showthread.php?t=2147.

Monitoring specific applications

AS/400

IBM AS/400 platform can be monitored using SNMP. More information is available at http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg244504.html?Open.

MySQL

Several user parameters can be used for the monitoring of MySQL in the agent configuration file: /usr/local/etc/zabbix_agentd.conf

Set of parameters for monitoring MySQL server (v3.23.42 and later)
Change -u and add -p if required
#UserParameter=mysql.ping,mysqladmin -uroot ping|grep alive|wc -l
#UserParameter=mysql.uptime,mysqladmin -uroot status|cut -f2 -d":"|cut -f2 -d" "
#UserParameter=mysql.threads,mysqladmin -uroot status|cut -f3 -d":"|cut -f2 -d" "
#UserParameter=mysql.questions,mysqladmin -uroot status|cut -f4 -d":"|cut -f2 -d" "
#UserParameter=mysql.slowqueries,mysqladmin -uroot status|cut -f5 -d":"|cut -f2 -d" "
#UserParameter=mysql.qps,mysqladmin -uroot status|cut -f9 -d":"|cut -f2 -d" "
#UserParameter=mysql.version,mysql -V

• mysql.ping

Check whether MySQL is alive.

Result: 0 - not started 1 - alive

• mysql.uptime

Number of seconds MySQL is running.

• mysql.threads

Number of MySQL threads.

• mysql.questions

Number of processed queries.

• mysql.slowqueries

Number of slow queries.

• mysql.qps

Queries per second.

• mysql.version

Version of MySQL. For example: mysql Ver 14.14 Distrib 5.1.53, for pc-linux-gnu (i686)

For additional information see also the userparameter_mysql.conf file in conf/zabbix_agentd directory.

Mikrotik routers

Use SNMP agent provided by Mikrotik. See http://www.mikrotik.com for more information.

Windows

996

http://www.zabbix.com/forum/showthread.php?t=2147
http://www.zabbix.com/forum/showthread.php?t=2147
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open
http://www.mikrotik.com

Use Zabbix Windows agent included (pre-compiled) into Zabbix distribution.

Tuxedo

Tuxedo command line utilities tmadmin and qmadmin can be used in definition of a UserParameter in order to return per
server/service/queue performance counters and availability of Tuxedo resources.

Informix

Standard Informix utility onstat can be used for monitoring of virtually every aspect of Informix database. Also, Zabbix can retrieve
information provided by Informix SNMP agent.

HP OpenView

Zabbix can be configured to send messages to OpenView server. The following steps must be performed:

Step 1

Define new media.

The media will execute a script which will send required information to OpenView.

Step 2

Define new user.

The user has to be linked with the media.

Step 3

Configure actions.

Configure actions to send all (or selected) trigger status changes to the user.

Step 4

Write media script.

The script will have the following logic. If trigger is ON, then execute OpenView command opcmsg -id application=<application>
msg_grp=<msg_grp> object=<object> msg_text=<text>. The command will return unique message ID which has to be stored
somewhere, preferrably in a new table of ZABBIX database. If trigger is OFF then opcmack <message id> has to be executed with
message ID retrieved from the database.

Refer to OpenView official documentation for more details about opcmsg and opcmack. The media script is not given here.

11 Performance tuning

Attention:
This is a work in progress.

Overview

It is very important to have Zabbix system properly tuned for maximum performance.

Hardware

General advice on hardware:

• Use fastest processor available
• SCSI or SAS is better than IDE (performance of IDE disks may be significantly improved by using utility hdparm) and SATA
• 15K RPM is better than 10K RPM which is better than 7200 RPM
• Use fast RAID storage
• Use fast Ethernet adapter
• Having more memory is always better

Operating system

• Use latest (stable!) version of OS
• Exclude unnecessary functionality from kernel
• Tune kernel parameters

997

Zabbix configuration parameters

Many parameters may be tuned to get optimal performance.

zabbix_server

StartPollers

General rule - keep value of this parameter as low as possible. Every additional instance of zabbix_server adds known overhead,
in the same time, parallelism is increased. Optimal number of instances is achieved when queue, on average, contains minimum
number of parameters (ideally, 0 at any given moment). This value can be monitored by using internal check zabbix[queue].

Note:
See the ”See also” section at the bottom of this page to find out how to configure optimal count of zabbix processes.

DebugLevel

Optimal value is 3.

DBSocket

MySQL only. It is recommended to use DBSocket for connection to the database. That is the fastest and the most secure way.

Database engine

This is probably the most important part of Zabbix tuning. Zabbix heavily depends on the availability and performance of database
engine.

• use fastest database engine, i.e. MySQL or PostgreSQL
• use stable release of a database engine
• rebuild MySQL or PostgreSQL from sources to get maximum performance
• follow performance tuning instructions taken from MySQL or PostgreSQL documentation
• for MySQL, use InnoDB table structure
• ZABBIX works at least 1.5 times faster (comparing to MyISAM) if InnoDB is used. This is because of increased parallelism.
However, InnoDB requires more CPU power.

• tuning the database server for the best performance is highly recommended.
• keep database tables on different hard disks
• ’history’, ’history_str, ’items’ ’functions’, triggers’, and ’trends’ are most heavily used tables.
• for large installations keeping MySQL temporary files in tmpfs is:

– MySQL >= 5.5: not recommended (MySQL bug #58421)
– MySQL < 5.5: recommended

GUI debugging

Problems related to the frontend performance may be diagnosed using the frontend debug mode.

General advice

• monitor required parameters only
• tune ’Update interval’ for all items. Keeping a small update interval may be good for nice graphs, however, this may overload
Zabbix

• tune parameters for default templates
• tune housekeeping parameters
• do not monitor parameters which return the same information.
• avoid the use of triggers with long period given as function argument. For example, max(3600) will be calculated significantly
slower than max(60).

Viewing Zabbix process performance with ”ps” and ”top”

Since Zabbix 2.2 processes change their commandlines to display current activity and meaningful statistics, like:

UID PID PPID C STIME TTY TIME CMD
zabbix22 4584 1 0 14:55 ? 00:00:00 zabbix_server -c /home/zabbix22/zabbix_server.conf
zabbix22 4587 4584 0 14:55 ? 00:00:00 zabbix_server: configuration syncer [synced configuration in 0.041169 sec, idle 60 sec]
zabbix22 4588 4584 0 14:55 ? 00:00:00 zabbix_server: db watchdog [synced alerts config in 0.018748 sec, idle 60 sec]
zabbix22 4608 4584 0 14:55 ? 00:00:00 zabbix_server: timer #1 [processed 3 triggers, 0 events in 0.007867 sec, 0 maint.periods in 0.005677 sec, idle 30 sec]
zabbix22 4609 4584 0 14:55 ? 00:00:00 zabbix_server: timer #2 [processed 2 triggers, 0 events in 0.004209 sec, idle 30 sec]
zabbix22 4637 4584 0 14:55 ? 00:00:01 zabbix_server: history syncer #4 [synced 35 items in 0.166198 sec, idle 5 sec]
zabbix22 4657 4584 0 14:55 ? 00:00:00 zabbix_server: vmware collector #1 [updated 0, removed 0 VMware services in 0.000004 sec, idle 5 sec]
zabbix22 4670 1 0 14:55 ? 00:00:00 zabbix_proxy -c /home/zabbix22/zabbix_proxy.conf
zabbix22 4673 4670 0 14:55 ? 00:00:00 zabbix_proxy: configuration syncer [synced config 15251 bytes in 0.111861 sec, idle 60 sec]

998

https://bugs.mysql.com/bug.php?id=58421

zabbix22 4674 4670 0 14:55 ? 00:00:00 zabbix_proxy: heartbeat sender [sending heartbeat message success in 0.013643 sec, idle 30 sec]
zabbix22 4688 4670 0 14:55 ? 00:00:00 zabbix_proxy: icmp pinger #1 [got 1 values in 1.811128 sec, idle 5 sec]
zabbix22 4690 4670 0 14:55 ? 00:00:00 zabbix_proxy: housekeeper [deleted 9870 records in 0.233491 sec, idle 3599 sec]
zabbix22 4701 4670 0 14:55 ? 00:00:08 zabbix_proxy: http poller #2 [got 1 values in 0.024105 sec, idle 1 sec]
zabbix22 4707 4670 0 14:55 ? 00:00:00 zabbix_proxy: history syncer #4 [synced 22 items in 0.008565 sec, idle 5 sec]
zabbix22 4738 1 0 14:55 ? 00:00:00 zabbix_agentd -c /home/zabbix22/zabbix_agentd.conf
zabbix22 4739 4738 0 14:55 ? 00:00:00 zabbix_agentd: collector [idle 1 sec]
zabbix22 4740 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #1 [waiting for connection]
zabbix22 4741 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #2 [processing request]

The main process is an exception. Instead of current activity the original commandline is shown. This helps to distinguish processes
on systems with multiple Zabbix instances.

This feature is not implemented for Microsoft Windows.

If logging level is set to DebugLevel=4 these activity and statistics messages are also written into log file.

Linux

On Linux systems ps command can be used together with watch command for observing how Zabbix is doing. For example, to
run ps command 5 times per second to see process activities:

watch -n 0.2 ps -fu zabbix

To show only Zabbix proxy and agent processes:

watch -tn 0.2 'ps -f -C zabbix_proxy -C zabbix_agentd'

To show only history syncer processes:

watch -tn 0.2 'ps -fC zabbix_server | grep history'

The ps command produces a wide output (approximately 190 columns) as some activity messages are long. If your terminal has
less than 190 columns of text you can try

watch -tn 0.2 'ps -o cmd -C zabbix_server -C zabbix_proxy -C zabbix_agentd'

to display only commandlines without UID, PID, start time etc.

top command also can be used for observing Zabbix performance. Pressing ’c’ key in top shows processes with their command-
lines. In our tests on Linux top and atop correctly displayed changing activities of Zabbix processes, but htop was not displaying
changing activities.

BSD systems

If watch command is not installed, a similar effect can be achieved with

while [1]; do ps x; sleep 0.2; clear; done

AIX, HP-UX

If watch command is not available, one can try

while [1]; do ps -fu zabbix; sleep 1; clear; done

Solaris

By default the ps command does not show changing activities. One option is to use /usr/ucb/ps instead. If watch command is
not installed, a periodically updated list of processes can be shown with

while [1]; do /usr/ucb/ps gxww; sleep 1; clear; done

On Solaris 11:

• /usr/ucb/ps is not installed by default. You may need to install ucb package, e.g. pkg install compatibility/ucb,
• if Zabbix daemon has been started by privileged user its activities are not shown to non-privileged user.
• the sleep command accepts not only whole seconds but also fractions of second (e.g. sleep 0.2).

See also

1. How to configure optimal count of zabbix processes

999

http://blog.zabbix.com/monitoring-how-busy-zabbix-processes-are/457

12 Version compatibility

Supported agents

Zabbix agents from previous Zabbix versions are compatible with Zabbix 3.2. However, you may need to review the configuration
of older agents as some parameters have changed, for example, parameters related to logging for versions before 3.0.

To take full advantage of new and improved items, improved performance and reduced memory usage, use the latest 3.2 agent.

Supported Zabbix proxies

Both Zabbix 3.2 proxies and Zabbix 3.2 server are supported to work only with Zabbix 3.2 server and Zabbix 3.2 proxies respectively.

Supported XML files

XML files, exported with 1.8, 2.0, 2.2, 2.4 and 3.0 are supported for import in Zabbix 3.2.

Attention:
In Zabbix 1.8 XML export format, trigger dependencies are stored by name only. If there are several triggers with the same
name (for example, having different severities and expressions) that have a dependency defined between them, it is not
possible to import them. Such dependencies must be manually removed from the XML file and re-added after import.

13 Database error handling

If Zabbix detects that the backend database is not accessible, it will send a notification message and continue the attempts to
connect to the database. For some database engines, specific error codes are recognised.

MySQL

• CR_CONN_HOST_ERROR
• CR_SERVER_GONE_ERROR
• CR_CONNECTION_ERROR
• CR_SERVER_LOST
• CR_UNKNOWN_HOST
• ER_SERVER_SHUTDOWN
• ER_ACCESS_DENIED_ERROR
• ER_ILLEGAL_GRANT_FOR_TABLE
• ER_TABLEACCESS_DENIED_ERROR
• ER_UNKNOWN_ERROR

14 Zabbix sender dynamic link library for Windows

In a Windows environment applications can send data to Zabbix server/proxy directly by using the Zabbix sender dynamic link
library (zabbix_sender.dll) instead of having to launch an external process (zabbix_sender.exe).

The dynamic link library with the development files is located in bin\winXX\dev folders. To use it, include the zabbix_sender.h
header file and link with the zabbix_sender.lib library. An example file with Zabbix sender API usage can be found in
build\win32\examples\zabbix_sender folder.

The following functionality is provided by the Zabbix sender dynamic link library:

int zabbix_sender_send_values(const char *address, unsigned short port,const char *source, const zabbix_sender_value_t *values, int count,char **result);

char **result);‘{.c}

The following data structures are used by the Zabbix sender dynamic link library:

typedef struct
{

/* host name, must match the name of target host in Zabbix */
char *host;

1000

https://www.zabbix.com/documentation/3.0/manual/installation/upgrade_notes_300#changes_in_configuration_parameters_related_to_logging

/* the item key */
char *key;
/* the item value */
char *value;

}
zabbix_sender_value_t;

typedef struct
{

/* number of total values processed */
int total;
/* number of failed values */
int failed;
/* time in seconds the server spent processing the sent values */
double time_spent;

}
zabbix_sender_info_t;

Zabbix manpages

These are Zabbix manpages for Zabbix processes.

zabbix_agentd

Section: Maintenance Commands (8)
Updated: 2016-01-13
Index Return to Main Contents

NAME

zabbix_agentd - Zabbix agent daemon

SYNOPSIS

zabbix_agentd [-c config-file]
zabbix_agentd [-c config-file] -p
zabbix_agentd [-c config-file] -t item-key
zabbix_agentd [-c config-file] -R runtime-option
zabbix_agentd -h
zabbix_agentd -V

DESCRIPTION

zabbix_agentd is a daemon for monitoring of various server parameters.

OPTIONS

-c, --config config-file
Use the alternate config-file instead of the default one. Absolute path should be specified.

-f, --foreground
Run Zabbix agent in foreground.

-R, --runtime-control runtime-option
Perform administrative functions according to runtime-option.

1001

Runtime control options

log_level_increase[=target]
Increase log level, affects all processes if target is not specified

log_level_decrease[=target]
Decrease log level, affects all processes if target is not specified

Log level control targets

pid
Process identifier

process-type
All processes of specified type (e.g., listener)

process-type,N
Process type and number (e.g., listener,3)

-p, --print
Print known items and exit. For each item either generic defaults are used, or specific defaults for testing are supplied. These
defaults are listed in square brackets as item key parameters. Returned values are enclosed in square brackets and prefixed with
the type of the returned value, separated by a pipe character. For user parameters type is always t, as the agent can not determine
all possible return values. Items, displayed as working, are not guaranteed to work from the Zabbix server or zabbix_get when
querying a running agent daemon as permissions or environment may be different. Returned value types are:

d
Number with a decimal part.

m
Not supported. This could be caused by querying an item that only works in the active mode like a log monitoring item or an item
that requires multiple collected values. Permission issues or incorrect user parameters could also result in the not supported state.

s
Text. Maximum length not limited.

t
Text. Same as s.

u
Unsigned integer.

-t, --test item-key
Test single item and exit. See --print for output description.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/usr/local/etc/zabbix_agentd.conf
Default location of Zabbix agent configuration file (if not modified during compile time).

SEE ALSO

zabbix_get(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

1002

Index

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 08:31:40 GMT, January 19, 2016

zabbix_get

Section: User Commands (1)
Updated: 2015-08-06
Index Return to Main Contents

NAME

zabbix_get - Zabbix get utility

SYNOPSIS

zabbix_get -s host-name-or-IP [-p port-number] [-I IP-address] -k item-key
zabbix_get -s host-name-or-IP [-p port-number] [-I IP-address] --tls-connect cert --tls-ca-file CA-file [--tls-crl-file CRL-file] [--
tls-agent-cert-issuer cert-issuer] [--tls-agent-cert-subject cert-subject] --tls-cert-file cert-file --tls-key-file key-file -k item-
key
zabbix_get -s host-name-or-IP [-p port-number] [-I IP-address] --tls-connect psk --tls-psk-identity PSK-identity --tls-psk-file
PSK-file -k item-key
zabbix_get -h
zabbix_get -V

DESCRIPTION

zabbix_get is a command line utility for getting data from Zabbix agent.

OPTIONS

-s, --host host-name-or-IP
Specify host name or IP address of a host.

-p, --port port-number
Specify port number of agent running on the host. Default is 10050.

-I, --source-address IP-address
Specify source IP address.

-k, --key item-key
Specify key of item to retrieve value for.

--tls-connect value
How to connect to agent. Values:

1003

unencrypted
connect without encryption

psk
connect using TLS and a pre-shared key

cert
connect using TLS and a certificate

--tls-ca-file CA-file
Full pathname of a file containing the top-level CA(s) certificates for peer certificate verification.

--tls-crl-file CRL-file
Full pathname of a file containing revoked certificates.

--tls-agent-cert-issuer cert-issuer
Allowed agent certificate issuer.

--tls-agent-cert-subject cert-subject
Allowed agent certificate subject.

--tls-cert-file cert-file
Full pathname of a file containing the certificate or certificate chain.

--tls-key-file key-file
Full pathname of a file containing the private key.

--tls-psk-identity PSK-identity
PSK-identity string.

--tls-psk-file PSK-file
Full pathname of a file containing the pre-shared key.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

EXAMPLES

zabbix_get -s 127.0.0.1 -p 10050 -k ”system.cpu.load[all,avg1]”
zabbix_get -s 127.0.0.1 -p 10050 -k ”system.cpu.load[all,avg1]” --tls-connect cert --tls-ca-file /home/zabbix/zabbix_ca_file
--tls-agent-cert-issuer ”CN=Signing CA,OU=IT operations,O=Example Corp,DC=example,DC=com” --tls-agent-cert-
subject ”CN=server1,OU=IT operations,O=Example Corp,DC=example,DC=com” --tls-cert-file /home/zabbix/zabbix_get.crt
--tls-key-file /home/zabbix/zabbix_get.key
zabbix_get -s 127.0.0.1 -p 10050 -k ”system.cpu.load[all,avg1]” --tls-connect psk --tls-psk-identity ”PSK ID Zabbix
agentd” --tls-psk-file /home/zabbix/zabbix_agentd.psk

SEE ALSO

zabbix_agentd(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

EXAMPLES

1004

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 09:21:04 GMT, January 08, 2016

zabbix_proxy

Section: Maintenance Commands (8)
Updated: 2016-01-13
Index Return to Main Contents

NAME

zabbix_proxy - Zabbix proxy daemon

SYNOPSIS

zabbix_proxy [-c config-file]
zabbix_proxy [-c config-file] -R runtime-option
zabbix_proxy -h
zabbix_proxy -V

DESCRIPTION

zabbix_proxy is a daemon that collects monitoring data from devices and sends it to Zabbix server.

OPTIONS

-c, --config config-file
Use the alternate config-file instead of the default one. Absolute path should be specified.

-f, --foreground
Run Zabbix proxy in foreground.

-R, --runtime-control runtime-option
Perform administrative functions according to runtime-option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Active Zabbix proxy will connect to the Zabbix server and
request configuration data. Default configuration file (unless -c option is specified) will be used to find PID file and signal will be
sent to process, listed in PID file.

housekeeper_execute
Execute the housekeeper. Ignored if housekeeper is being currently executed.

log_level_increase[=target]
Increase log level, affects all processes if target is not specified

log_level_decrease[=target]
Decrease log level, affects all processes if target is not specified

1005

Log level control targets

pid
Process identifier

process-type
All processes of specified type (e.g., poller)

process-type,N
Process type and number (e.g., poller,3)

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/usr/local/etc/zabbix_proxy.conf
Default location of Zabbix proxy configuration file (if not modified during compile time).

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 09:10:13 GMT, January 19, 2016

zabbix_sender

Section: User Commands (1)
Updated: 2015-10-16
Index Return to Main Contents

NAME

zabbix_sender - Zabbix sender utility

1006

SYNOPSIS

zabbix_sender [-v] -z server [-p port] [-I IP-address] -s host -k key -o value
zabbix_sender [-v] -z server [-p port] [-I IP-address] [-s host] [-T] [-r] -i input-file
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] -k key -o value
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] [-T] [-r] -i input-file
zabbix_sender [-v] -z server [-p port] [-I IP-address] -s host --tls-connect cert --tls-ca-file CA-file [--tls-crl-file CRL-file] [--
tls-server-cert-issuer cert-issuer] [--tls-server-cert-subject cert-subject] --tls-cert-file cert-file --tls-key-file key-file -k key
-o value
zabbix_sender [-v] -z server [-p port] [-I IP-address] [-s host] --tls-connect cert --tls-ca-file CA-file [--tls-crl-file CRL-file]
[--tls-server-cert-issuer cert-issuer] [--tls-server-cert-subject cert-subject] --tls-cert-file cert-file --tls-key-file key-file [-T]
[-r] -i input-file
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] --tls-connect cert --tls-ca-file CA-file [--tls-crl-
file CRL-file] [--tls-server-cert-issuer cert-issuer] [--tls-server-cert-subject cert-subject] --tls-cert-file cert-file --tls-key-file
key-file -k key -o value
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] --tls-connect cert --tls-ca-file CA-file [--tls-crl-
file CRL-file] [--tls-server-cert-issuer cert-issuer] [--tls-server-cert-subject cert-subject] --tls-cert-file cert-file --tls-key-file
key-file [-T] [-r] -i input-file
zabbix_sender [-v] -z server [-p port] [-I IP-address] -s host --tls-connect psk --tls-psk-identity PSK-identity --tls-psk-file
PSK-file -k key -o value
zabbix_sender [-v] -z server [-p port] [-I IP-address] [-s host] --tls-connect psk --tls-psk-identity PSK-identity --tls-psk-file
PSK-file [-T] [-r] -i input-file
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] --tls-connect psk --tls-psk-identity PSK-identity
--tls-psk-file PSK-file -k key -o value
zabbix_sender [-v] -c config-file [-z server] [-p port] [-I IP-address] [-s host] --tls-connect psk --tls-psk-identity PSK-identity
--tls-psk-file PSK-file [-T] [-r] -i input-file
zabbix_sender -h
zabbix_sender -V

DESCRIPTION

zabbix_sender is a command line utility for sending monitoring data to Zabbix server or proxy. On the Zabbix server an item
of type Zabbix trapper should be created with corresponding key. Note that incoming values will only be accepted from hosts
specified in Allowed hosts field for this item.

OPTIONS

-c, --config config-file
Use config-file. Zabbix sender reads server details from the agentd configuration file. By default Zabbix sender does not
read any configuration file. Absolute path should be specified. Only parameters Hostname, ServerActive and SourceIP are
supported. First entry from the ServerActive parameter is used.

-z, --zabbix-server server
Hostname or IP address of Zabbix server. If a host is monitored by a proxy, proxy hostname or IP address should be used instead.
When used together with --config, overrides the first entry of ServerActive parameter specified in agentd configuration file.

-p, --port port
Specify port number of Zabbix server trapper running on the server. Default is 10051. When used together with --config, overrides
the port of first entry of ServerActive parameter specified in agentd configuration file.

-I, --source-address IP-address
Specify source IP address. When used together with --config, overrides SourceIP parameter specified in agentd configuration
file.

-s, --host host
Specify host name the item belongs to (as registered in Zabbix frontend). Host IP address and DNS name will not work. When used
together with --config, overrides Hostname parameter specified in agentd configuration file.

-k, --key key
Specify item key to send value to.

-o, --value value
Specify item value.

-i, --input-file input-file
Load values from input file. Specify - as <input-file> to read values from standard input. Each line of file contains whitespace
delimited: <hostname> <key> <value>. Each value must be specified on its own line. Each line must contain 3 whitespace
delimited entries: <hostname> <key> <value>, where ”hostname” is the name of monitored host as registered in Zabbix

1007

frontend, ”key” is target item key and ”value” - the value to send. Specify - as <hostname> to use hostname from agent
configuration file or from --host argument.

An example of a line of an input file:

”Linux DB3” db.connections 43

The value type must be correctly set in item configuration of Zabbix frontend. Zabbix sender will send up to 250 values in one
connection. Contents of the input file must be in the UTF-8 encoding. All values from the input file are sent in a sequential order
top-down. Entries must be formatted using the following rules:

•
Quoted and non-quoted entries are supported.

•
Double-quote is the quoting character.

•
Entries with whitespace must be quoted.

•
Double-quote and backslash characters inside quoted entry must be escaped with a backslash.

•
Escaping is not supported in non-quoted entries.

•
Linefeed escape sequences (\n) are supported in quoted strings.

•
Linefeed escape sequences are trimmed from the end of an entry.

-T, --with-timestamps
This option can be only used with --input-file option.

Each line of the input file must contain 4 whitespace delimited entries: <hostname> <key> <timestamp> <value>. Times-
tamp should be specified in Unix timestamp format. If target item has triggers referencing it, all timestamps must be in an
increasing order, otherwise event calculation will not be correct.

An example of a line of the input file:

”Linux DB3” db.connections 1429533600 43

For more details please see option --input-file.

If a timestamped value is sent for a host that is in a “no data” maintenance type then this value will be dropped however it is
possible to send a timestamped value in for an expired maintenance period and it will be accepted.

-r, --real-time
Send values one by one as soon as they are received. This can be used when reading from standard input.

--tls-connect value
How to connect to server or proxy. Values:

unencrypted
connect without encryption

psk
connect using TLS and a pre-shared key

cert
connect using TLS and a certificate

--tls-ca-file CA-file
Full pathname of a file containing the top-level CA(s) certificates for peer certificate verification.

--tls-crl-file CRL-file
Full pathname of a file containing revoked certificates.

--tls-server-cert-issuer cert-issuer
Allowed server certificate issuer.

1008

--tls-server-cert-subject cert-subject
Allowed server certificate subject.

--tls-cert-file cert-file
Full pathname of a file containing the certificate or certificate chain.

--tls-key-file key-file
Full pathname of a file containing the private key.

--tls-psk-identity PSK-identity
PSK-identity string.

--tls-psk-file PSK-file
Full pathname of a file containing the pre-shared key.

-v, --verbose
Verbose mode, -vv for more details.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

EXIT STATUS

The exit status is 0 if the values were sent and all of them were successfully processed by server. If data was sent, but processing
of at least one of the values failed, the exit status is 2. If data sending failed, the exit status is 1.

EXAMPLES

zabbix_sender -c /etc/zabbix/zabbix_agentd.conf -k mysql.queries -o 342.45

Send 342.45 as the value for mysql.queries item of monitored host. Use monitored host and Zabbix server defined in agent
configuration file.

zabbix_sender -c /etc/zabbix/zabbix_agentd.conf -s ”Monitored Host” -k mysql.queries -o 342.45

Send 342.45 as the value for mysql.queries item of Monitored Host host using Zabbix server defined in agent configuration
file.

zabbix_sender -z 192.168.1.113 -i data_values.txt

Send values from file data_values.txt to Zabbix server with IP 192.168.1.113. Host names and keys are defined in the file.

echo ”- hw.serial.number 1287872261 SQ4321ASDF” | zabbix_sender -c /usr/local/etc/zabbix_agentd.conf -T -i -

Send a timestamped value from the commandline to Zabbix server, specified in the agent configuration file. Dash in the input
data indicates that hostname also should be used from the same configuration file.

echo ’”Zabbix server” trapper.item ””’ | zabbix_sender -z 192.168.1.113 -p 10000 -i -

Send empty value of an item to the Zabbix server with IP address 192.168.1.113 on port 10000 from the commandline. Empty
values must be indicated by empty double quotes.

zabbix_sender -z 192.168.1.113 -s ”Monitored Host” -k mysql.queries -o 342.45 --tls-connect cert --tls-ca-file
/home/zabbix/zabbix_ca_file --tls-cert-file /home/zabbix/zabbix_agentd.crt --tls-key-file /home/zabbix/zabbix_agentd.key

Send 342.45 as the value for mysql.queries item in Monitored Host host to server with IP 192.168.1.113 using TLS with
certificate.

1009

zabbix_sender -z 192.168.1.113 -s ”Monitored Host” -k mysql.queries -o 342.45 --tls-connect psk --tls-psk-identity
”PSK ID Zabbix agentd” --tls-psk-file /home/zabbix/zabbix_agentd.psk

Send 342.45 as the value for mysql.queries item in Monitored Host host to server with IP 192.168.1.113 using TLS with
pre-shared key (PSK).

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

EXAMPLES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 09:21:17 GMT, January 08, 2016

zabbix_server

Section: Maintenance Commands (8)
Updated: 2016-01-13
Index Return to Main Contents

NAME

zabbix_server - Zabbix server daemon

SYNOPSIS

zabbix_server [-c config-file]
zabbix_server [-c config-file] -R runtime-option
zabbix_server -h
zabbix_server -V

DESCRIPTION

zabbix_server is the core daemon of Zabbix software.

1010

OPTIONS

-c, --config config-file
Use the alternate config-file instead of the default one. Absolute path should be specified.

-f, --foreground
Run Zabbix server in foreground.

-R, --runtime-control runtime-option
Perform administrative functions according to runtime-option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Default configuration file (unless -c option is specified) will
be used to find PID file and signal will be sent to process, listed in PID file.

housekeeper_execute
Execute the housekeeper. Ignored if housekeeper is being currently executed.

log_level_increase[=target]
Increase log level, affects all processes if target is not specified

log_level_decrease[=target]
Decrease log level, affects all processes if target is not specified

Log level control targets

pid
Process identifier

process-type
All processes of specified type (e.g., poller)

process-type,N
Process type and number (e.g., poller,3)

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/usr/local/etc/zabbix_server.conf
Default location of Zabbix server configuration file (if not modified during compile time).

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_sender(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

1011

Index

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 09:11:11 GMT, January 19, 2016

1012

	Zabbix Manual
	Copyright notice
	1. Introduction
	1 Manual structure
	2 What is Zabbix
	3 Zabbix features
	4 Zabbix overview
	5 What's new in Zabbix 3.2.0
	6 What's new in Zabbix 3.2.1
	7 What's new in Zabbix 3.2.2
	8 What's new in Zabbix 3.2.3
	9 What's new in Zabbix 3.2.4
	10 What's new in Zabbix 3.2.5
	11 What's new in Zabbix 3.2.6
	12 What's new in Zabbix 3.2.7
	13 What's new in Zabbix 3.2.8
	14 What's new in Zabbix 3.2.9
	15 What's new in Zabbix 3.2.10
	16 What's new in Zabbix 3.2.11

	2. Zabbix concepts
	2 Server
	2. Definitions
	3 Agent
	4 Proxy
	5 Java gateway
	6 Sender
	7 Get

	3. Installation
	1 Getting Zabbix
	2 Requirements
	3 Installation from sources
	4 Installation from packages
	5 Installation from containers
	6 Upgrade procedure using sources
	7 Upgrade procedure using packages
	8 Known issues
	9 Template changes
	10 Upgrade notes for 3.2.0
	11 Upgrade notes for 3.2.1
	12 Upgrade notes for 3.2.2
	13 Upgrade notes for 3.2.3
	14 Upgrade notes for 3.2.4
	15 Upgrade notes for 3.2.5
	16 Upgrade notes for 3.2.6
	17 Upgrade notes for 3.2.7
	18 Upgrade notes for 3.2.8
	19 Upgrade notes for 3.2.9
	20 Upgrade notes for 3.2.10
	21 Upgrade notes for 3.2.11

	4. Quickstart
	1 Login and configuring user
	2 New host
	3 New item
	4 New trigger
	5 Receiving problem notification
	6 New template

	5. Zabbix appliance
	6. Configuration
	1 Hosts and host groups
	2 Items
	3 Triggers
	4 Events
	5 Event correlation
	6 Visualisation
	7 Templates
	8 Notifications upon events
	9 Macros
	10 Users and user groups

	7. IT services
	8. Web monitoring
	1 Web monitoring items
	2 Real life scenario

	9. Virtual machine monitoring
	Virtual machine discovery key fields

	10. Maintenance
	11. Regular expressions
	12. Event acknowledgment
	13. Configuration export/import
	Groups
	Hosts

	14. Discovery
	1 Network discovery
	2 Active agent auto-registration
	3 Low-level discovery

	15. Distributed monitoring
	1 Proxies

	16. Encryption
	1 Using certificates
	2 Using pre-shared keys
	3 Troubleshooting

	17. Web interface
	1 Frontend sections
	2 User profile
	3 Global search
	4 Frontend maintenance mode
	5 Page parameters
	6 Definitions
	7 Creating your own theme
	8 Debug mode

	18. API
	Method reference
	Appendix 1. Reference commentary
	Appendix 2. Changes from 3.0 to 3.2
	Zabbix API changes in 3.2

	19. Appendixes
	1 Frequently asked questions / Troubleshooting
	2 Installation
	3 Daemon configuration
	4 Protocols
	5 Items
	6 Triggers
	7 Macros
	8 Setting time periods
	9 Command execution
	10 Recipes for monitoring
	11 Performance tuning
	12 Version compatibility
	13 Database error handling
	14 Zabbix sender dynamic link library for Windows

	Zabbix manpages
	zabbix_agentd
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_get
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_proxy
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_sender
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_server
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO
	AUTHOR
	Index

